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Superconductivity of non-Fermi liquids described by Sachdev-Ye-Kitaev models
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We investigate models of electrons in the Sachdev-Ye-Kitaev class with random and all-to-all electron hop-
ping, electron spin exchange, and Cooper-pair hopping. An attractive on-site interaction between electrons leads
to superconductivity at low temperatures. Depending on the relative strengths of the hopping and spin exchange,
the normal state at the critical temperature is either a Fermi-liquid or a non-Fermi liquid. We present a large-M
[where spin symmetry is enlarged to SU(M )] study of the normal state to superconductor phase transition. We
describe the transition temperature, the superconducting order parameter, and the electron spectral functions.
We contrast between Fermi liquid and non-Fermi liquid normal states: we find that for weaker attractive on-site
interaction there is a relative enhancement of Tc when the normal state is a non-Fermi liquid, and correspondingly
a strong deviation from BCS limit. Also, the phase transition in this case becomes a first-order transition for
strong non-Fermi liquids. On the other hand, for stronger on-site interaction, there is no appreciable difference
in Tc between whether the superconductivity emerges from a Fermi liquid or a non-Fermi liquid. Notable features
of superconductivity emerging from a non-Fermi liquid are that the superconducting electron spectral function
is different from the Fermi-liquid case, with additional peaks at higher energies, and there is no Hebel-Slichter
peak in the NMR relaxation rate in the non-Fermi liquid case.

DOI: 10.1103/PhysRevResearch.5.013045

I. INTRODUCTION

The classic BCS theory provides a highly successful de-
scription of the onset of superconductivity (SC) from a Fermi
liquid (FL). However, in modern correlated electron materials,
the normal state at the onset of higher temperature super-
conductivity is usually not a Fermi liquid. Below the critical
temperature, basic aspects of the BCS superconducting state
[such as the breaking of U(1) gauge symmetry by an electron
pair condensate] continue to hold, but numerous quantitative
details on the critical temperature, superconducting gap am-
plitude, and electron spectral function are not described by
BCS theory.

A popular class of theories for the onset of superconduc-
tivity from a non-Fermi liquid (NFL) focus on a normal state
which has a Fermi surface coupled to a critical boson [1–6].
The boson could represent a symmetry breaking order pa-
rameter at a quantum critical point, or an emergent excitation
associated with spin liquid physics. This critical boson plays
a dual role—it leads to the breakdown of quasiparticles in
the normal state, and it also leads to superconductivity at low
temperature (T ) by inducing pairing between the underlying
electrons. The precise manner in which the non-Fermi liquid
gives way to superconductivity at low T is not well under-
stood, and remains a topic of great interest.
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In this paper, we will address the interplay between the
non-Fermi liquid and superconductivity using a different class
of simpler and more tractable models. These models do not
have much spatial structure because of the presence of all-to-
all hopping and interactions. However, they have the virtue
of being exactly solvable, and so can describe the compe-
tition between the different energy scales in a quantitative
manner. We consider the Sachdev-Ye-Kitaev (SYK) type of
models [7,8], which are a rare class of solvable models leading
to non-Fermi liquid phases [9]. Models in this class have been
recently studied in different contexts of strongly correlated
systems. In this work, we consider a model of electrons with
an attractive on-site interaction. In the spirit of SYK models,
we consider random and all-to-all hopping, exchange inter-
action, and Cooper-pair hopping. This model was previously
considered by us and for weak interaction an anomalous metal
phase (or a Bose metal) was shown to exist [10] in the prox-
imity of superconducting phase. In this work, our focus is on
the superconducting phase, and the associated thermal phase
transition. Depending on the relative strength of the hopping
amplitude and exchange interaction, the normal state at higher
temperatures is either a FL or a NFL. Thus our model allows
us to systematically investigate the emergence of supercon-
ductivity by continuously tuning between FL and NFL normal
states. Moreover, we show that SC emerging from a NFL has
certain unique features in the spectral function that are absent
in the case of a FL-SC transition.

There have been previous studies of superconductivity in
SYK models [11–19]. However, our model is distinct from
the previously considered models. In our model in Eq. (18),
we start with a SU(2) spin symmetry [see HJ in Eq. (20)],
just as in the original Sachdev-Ye (SY) model [7]. In previous
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models the random and all-to-all SYK term is in general not
SU(2) symmetric: in Refs. [11,12] a general Hamiltonian of
two coupled SYK models is considered, which has a SU(2)
symmetry only at a special point (α = 1/4 in the notation
used in Ref. [11]), and it corresponds to the zero hopping limit
with U = t = L = 0 in our model. However, it is shown in
Refs. [11,12] that at this SU(2) symmetric point there is no
superconductivity, which is consistent with our results. Refer-
ence [14] also examined models without any hopping, but did
examine finite N corrections. The models of Refs. [16,17] are
related to the one examined here, but with lattice rather than
random matrix hopping: the lattice dispersions and all-to-all
random hopping for electrons lead to equations with similar
solutions [9]. Because of the simpler form of our equations,
we are able to present spectral functions within the supercon-
ducting phase across the full range of the crossover between
the FL and NFL cases.

The plan of the paper is as follows. In Sec. II, we first
study SC in a simple model of attractive Hubbard model with
random and all-to-all hopping. Then we introduce our model
in Sec. III and discuss the saddle-point equations. These equa-
tions are solved to obtain the normal state and SC solutions
in Sec. IV. Therein we discuss several observables. Finally
we conclude in Sec. V. Technical details are provided in
Appendices.

II. RANDOM MATRIX BOGOLIUBOV-DE
GENNES THEORY

Before we dive into the actual model and its detailed
analysis, let us first consider a simpler case. In this section,
we present a BCS theory of superconductivity for a Hub-
bard model with attractive on-site interaction U along with

a random and all-to-all hopping. Our main purpose here is to
introduce the formalism in a more familiar setting. Curiously,
the spectral functions in the superconducting state in this
simple model do not appear to have been obtained earlier,
although there have been results for other quantities for finite
N [20,21].

We consider a model of electrons ciα , with i = 1, . . . , N a
site index, and α = 1, . . . , M a USp(M) index. We have thus
enlarged the usual SU(2) spin symmetry. The USp(M) group,
M even, is defined by the set of M × M unitary matrices U
such that

UTJU = J , (1)

where

Jαβ = J αβ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
−1

1
−1

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2)

is the generalization of the ε tensor to M > 2. It is clear
that USp(M ) ⊂ SU(M) for M > 2, while USp(2) ∼= SU(2).
We will consider SYK-like models on N sites with USp(M )
symmetry, and take the N → ∞ limit followed by the M →
∞ limit. We don’t expect the large M limit to significantly
modify the results, as discussed in Ref. [9]; the large N limit
is more significant, and there can additional phases at finite N ,
as discussed in Refs. [14,18].

We shall calculate the electron spectral density using a
set of saddle-point equations, which we derive below. We
consider an attractive Hubbard model on a random hopping
matrix with the Hamiltonian,

HtU = − 1√
N

∑
i< j

ti j
(
c†

iαcα
j + c†

jαcα
i

) +
∑

i

[
−μc†

iαcα
i + U

2M
|J αβc†

iαc†
iβ |2

]
, (3)

where ti j is a real random number with zero mean and root-mean-square value t , N is the number of sites, μ is the chemical
potential and U < 0 is the attractive on-site interaction. In terms of the electron annihilation (creation) operator, cα (c†

α ), the
number operator nα = c†

αcα .
We perform a disorder average to obtain the following action:

S =
∑

i

∫
dτ

[
c†

iα (τ )

(
∂

∂τ
− μ

)
cα

i (τ ) + U

2M
|J αβc†

iα (τ )c†
iβ (τ )|2

]

+ t2

2N

∫
dτdτ ′

⎡⎣∣∣∣∣∣∑
i

c†
iα (τ )cβ

i (τ ′)

∣∣∣∣∣
2

−
∣∣∣∣∣∑

i

c†
iα (τ )c†

iβ (τ ′)

∣∣∣∣∣
2
⎤⎦, (4)

where τ is the imaginary time. Note that we have ignored here the replica indices as they are not significant for the present
discussion. Next, we proceed by the G-� method used for SYK models. We introduce the normal and anomalous Green’s
functions G and F , respectively, as well as the normal and anomalous self-energies � and �, respectively. We can then write the
path integral as

ZtU =
∫

DGDFD�D�Dc exp(−S0 − S1), (5)
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where, initially, the role of the self-energies is to impose delta functions which define the Green’s functions as two-point fermion
correlators. Let us now look at the two contributions in the action. First we have

S0 =
∫

dτ
∑

i

c†
iα (τ )

(
∂

∂τ
− μ

)
cα

i (τ ) +
∫

dτdτ ′�(τ, τ ′)

[∑
i

c†
iα (τ )cα

i (τ ′) − NMG(τ ′, τ )

]

+
∫

dτdτ ′ �(τ, τ ′)
2

[
J αβ

∑
i

c†
iα (τ )c†

iβ (τ ′) + NMF ∗(τ, τ ′)

]

−
∫

dτdτ ′ �
∗(τ, τ ′)

2

[
Jαβ

∑
i

ciα (τ )cβ
i (τ ′) − NMF (τ, τ ′)

]
. (6)

For the interaction terms in (4), we need to introduce additional Hubbard-Stratonovich terms which decouple the quartic fermion
interactions, and then use the large M limit to replace these fields by their saddle-point values. This procedure has been carried
out explicitly for a related model in Ref. [22], and we do not display the intermediate steps here. Assuming the saddle-point has
USp(M) symmetry, we can obtain the final answer more directly simply by the following identifications in the interaction terms:

c†
α (τ )cβ (τ ′) ⇒ δβ

α G(τ ′, τ ), cα (τ )cβ (τ ′) ⇒ −J αβF (τ, τ ′). (7)

In this manner, we obtain the second contribution in the action,

S1

NM
= U

2

∫
dτ |F (τ, τ )|2 + t2

2

∫
dτdτ ′[G(τ, τ ′)G(τ ′, τ ) − F (τ, τ ′)F ∗(τ ′, τ )]. (8)

Now we take the variational derivative of the action with respect to G and F ∗, and obtain the saddle-point equations,

�(τ, τ ′) = t2G(τ, τ ′), �(τ, τ ′) = −UF (τ, τ )δ(τ − τ ′) + t2F (τ, τ ′). (9)

These equations have to be supplemented by the Dyson equations obtained from the single-site action for the fermions, which
follows from the first 2 spin components of the action S0,

Sc = T
∑

ω

(c†
↑(iω), c↓(−iω))

(
−iω − μ + �(iω) �(iω)

�∗(iω) −iω + μ − �(−iω)

)(
c↑(iω)

c†
↓(−iω)

)
, (10)

where T is the temperature. We can now write down the combined saddle point equations:

G� (iω) ≡ 1

iω + μ − �(iω)
,

�(iω) = t2G(iω) = t2 [G� (−iω)]−1

|�(iω)|2 + [G� (iω)G� (−iω)]−1 ,

� = −UT
∑

ω

�(iω)

|�(iω)|2 + [G� (iω)G� (−iω)]−1 ,

F (iω) = �(iω)

|�(iω)|2 + [G� (iω)G� (−iω)]−1 ,

�(iω) = � + t2F (iω). (11)

The normal and anomalous Green’s function in the super-
conducting state are G(iω) and F (iω) along the Matsubara
frequency axis, while G� (iω) is an intermediate quantity de-
fined for notational convenience; G(iω) = G� (iω) only in the
normal state where � = F (iω) = 0.

It is useful to first solve these equations in the normal state
solution by setting � = F (iω) = 0, which yields for μ < 2t

G(iω) ≡ G0(iω) = iω + μ

2t2
− i

sgn(ω)

2t2

√
4t2 + (ω − iμ)2,

(12)
where the sign in front of the square-root is discontinuous
across the real frequency axis, and is chosen so that G0(z) ∼
1/z as |z| → ∞. This yields the expected semicircle density
of states.

Next, we can linearize Eqs. (11) in � at T > 0 and so
obtain the superconducting critical temperature Tc. We find
the condition

1 = −UT
∑
ωn

G0(iωn)G0(−iωn)

1 − t2G0(iωn)G0(−iωn)
, (13)

with ωn a Matsubara frequency. At small |ωn| we obtain from
Eq. (12) that

t2G0(iωn)G0(−iωn) = 1 − 2|ωn|√
4t2 − μ2

+ O
(
ω2

n

)
. (14)

We can now observe that the denominator in Eq. (13) has a
singularity at ωn = 0, which yields the BCS log divergence.
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(a) (b)

(c) (d)

FIG. 1. (a) The spectral function, A(ω), of the normal Green’s function in the SC phase at a fixed � for the particle-hole symmetric case
(μ = 0). The solid line is exact solution to the saddle point equations (11), and the yellow bars are obtained by averaging exact diagonalizations
of random instances of Eq. (3). (b) Same as (a) but μ = 5. (c) Imaginary part of the anomalous Green’s function F (ω) in the SC phase at a
fixed � and μ = 0. (d) Same as (c) with μ = 5. In all the plots, t = 10 and � = 5.

This implies that there is superconductivity at T = 0 for in-
finitesimal negative U .

We can analytically solve Eqs. (11) at T = 0 to linear
order in � for general μ. Such a solution will be valid for
|ω|,

√
4t2 − μ2  �. We find

F (iω) = �
(
√

4t2 + (ω − iμ)2 +
√

4t2 + (ω + iμ)2 − 2|ω|)
4|ω|

+ O(�3),

G(iω) = G0(iω) + O(�2). (15)

Note that F (iω) is a real and even function of ω along the
imaginary frequency axis. However, neither F nor G are ana-
lytic at ω = 0. Similarly, we can see that G(−iω) = G∗(iω),
and for μ = 0 G(iω) is purely imaginary, with G(−iω) =
−G(iω).

At μ = 0, the exact solution of the saddle-point equa-
tions in (11) is

G(iω) = − iω

2t2

(√
ω2 + 4t2 + �2

√
ω2 + �2

− 1

)
,

F (iω) = �

2t2

(√
ω2 + 4t2 + �2

√
ω2 + �2

− 1

)
. (16)

Analytic continuation gives the spectral function, A(ω) ≡
− 1

π
ImG(ω + iδ),

A(ω) = |ω|
2πt2

√
4t2 + �2 − ω2

√
ω2 − �2

, � < |ω| <
√

�2 + 4t2.

(17)
The spectral function is plotted in Fig. 1(a), along with the
numerical results obtained by exact diagonalization of random
realizations of the Hamiltonian in Eq. (3). As expected, the
gap is centered at ω = 0, between � and −�. It is also
straightforward to obtain the imaginary part of the retarded
anomalous Green’s function, which is shown in Fig. 1(c). For
μ �= 0 an analytic solution is no longer possible, and we show
numerical results in Figs. 1(b) and 1(d).

III. MODEL

Having discussed the basic set-up we are now ready to
discuss our model. To the random Hubbard model considered
in the previous section, we will now add random and all-to-all
spin exchange and Cooper-pair hopping terms. So the full
Hamiltonian is

H = HtU + HJ + HL, (18)
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HtU = − 1√
N

∑
i< j

ti j
(
c†

iαcα
j + c†

jαcα
i

)
+

∑
i

[
−μc†

iαcα
i + U

2M
|J αβc†

iαc†
iβ |2

]
, (19)

HJ = 1√
NM

∑
i< j

Ji j c†
iαcβ

i c†
jβcα

j , (20)

HL = − 1

2
√

NM

∑
i< j

Li jJ αβJγ δ

[
c†

iαc†
iβcγ

j cδ
j + c†

jαc†
jβcγ

i cδ
i

]
.

(21)

Recall that we have solved HtU in Sec. II. HJ describes the
exchange interaction of the original SY model [7], while
HL describes the random Cooper-pair hopping. In the above
Hamiltonian, Ji j are real random numbers with zero mean

value and root-mean-square value of J . Similarly, Li j can be
either real or complex random numbers with zero mean value
and root-mean-square value of L.

For clarity, let us consider the contribution of individual
terms in the Hamiltonian in Eq. (18). The first term, HtU , in
Eq. (19) was already dealt with in Sec. II. Next, let us consider
the contribution of HJ in Eq. (20) to the action of the full
Hamiltonian. After averaging over Gaussian random variable
Ji j the resulting action is

SJ = − J2

4NM

∫
dτdτ ′

∣∣∣∣∣∑
i

c†
iα (τ )cβ

i (τ )c†
iγ (τ ′)cδ

i (τ ′)

∣∣∣∣∣
2

.

(22)
In the large M limit, we can use an identity analogous to
Eq. (7),

c†
α (τ )cβ (τ )c†

γ (τ ′)cδ (τ ′) ⇒ δδ
αδβ

γ G(τ, τ ′)G(τ ′, τ ) + J βδJαγ F ∗(τ, τ ′)F (τ, τ ′). (23)

Here we have dropped factorizations associated with equal-time Green’s functions. Then the contribution to the action from the
HJ term is SJ with

SJ

NM
= −J2

4

∫
dτdτ ′([G(τ, τ ′)G(τ ′, τ )]2 + |F (τ, τ ′)F (τ ′, τ )|2). (24)

Finally, let us consider the contribution from the random Cooper-pair hopping term, HL, in Eq. (21). Averaging over real
Gaussian random variable Li j yields the action

SL = − L2

8NM

∫
dτdτ ′J αβJ μνJγ δJρσ

⎡⎣(∑
i

c†
iα (τ )c†

iβ (τ )cρ
i (τ ′)cσ

i (τ ′)

)⎛⎝∑
j

c†
jμ(τ ′)c†

jν (τ ′)cγ

j (τ )cδ
j (τ )

⎞⎠
+

(∑
i

c†
iα (τ )c†

iβ (τ )c†
iμ(τ ′)c†

iν (τ ′)

)⎛⎝∑
j

cγ
j (τ )cδ

j (τ )cρ
j (τ ′)cσ

j (τ ′)

⎞⎠⎤⎦. (25)

Note that the last term would be absent for complex Li j . Now, we use large M identities similar to Eqs. (7) and (23), again
dropping equal-time factorizations,

c†
α (τ )c†

β (τ )cρ (τ ′)cσ (τ ′) ⇒ (
δσ
α δ

ρ

β − δρ
αδσ

β

)
[G(τ, τ ′)]2, c†

α (τ )c†
β (τ )c†

μ(τ ′)c†
ν (τ ′) ⇒ (JανJβμ − JαμJβν )[F ∗(τ, τ ′)]2. (26)

The contribution of the HL term to the action is SL with

SL

NM
= −L2

4

∫
dτdτ ′([G(τ, τ ′)G(τ ′, τ )]2 + |F (τ, τ ′)F (τ ′, τ )|2), (27)

having the same form as SJ in Eq. (24).

So finally, the action corresponding to the full Hamiltonian
in Eq. (18) is

S = S0 + S1 + SJ + SL, (28)

with the terms S0 and S1 quoted in Eqs. (6) and (8), respec-
tively, while the terms SJ and SL are shown in Eqs. (24)
and (27), respectively.

Putting everything together, the final saddle-point equa-
tions for the normal and anomalous equations are

G� (iω) ≡ 1

iω + μ − �(iω)
, (29)

�(τ, τ ′) = t2G(τ, τ ′) − (J2 + L2)G2(τ, τ ′)G(τ ′, τ ), (30)

G(iω) = [G� (−iω)]−1

|�(iω)|2 + [G� (iω)G� (−iω)]−1 , (31)

� = −UT
∑

ω

�(iω)

|�(iω)|2 + [G� (iω)G� (−iω)]−1 , (32)

F (iω) = �(iω)

|�(iω)|2 + [G� (iω)G� (−iω)]−1 , (33)

�(τ, τ ′) = − UF (τ, τ )δ(τ − τ ′) + t2F (τ, τ ′)

+ (J2 + L2)F 2(τ, τ ′)F ∗(τ ′, τ ). (34)

Note that Eqs. (30) and (34) generalize the expressions in
Eq. (9) upon the inclusion of the spin exchange and Cooper-
pair hopping terms.
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(a) (b)

FIG. 2. (a) The normal-state spectral function A(ω) for different values of θ at μ = 0, and R/|U | = 2. The dashed line is the exact
semicircle solution for θ = 0, as obtained in Eq. (12). (b) Effective spin exponent as a function of θ in the normal state at R/|U | = 2. The spin
exponent takes the expected FL value for low θ , while it approaches the SYK value for larger θ .

IV. NUMERICAL SOLUTIONS

We shall now solve the saddle-point equations [Eqs. (29)–
(34)] at finite temperature and obtain the normal-state as well
as SC solutions. For simplicity and clarity, we will focus on
the μ = 0 half-filling case, but the results are qualitatively
similar for nonzero μ as we show at the end of this section.
Hence, unless otherwise stated μ = 0 throughout this section.
We introduce the notation J̃ = √

J2 + L2 since the interac-
tions J and L are on equal footing in the large-M limit, as seen
from Eqs. (30) and (34). Furthermore, we will parametrize the
hopping t and interaction J̃ as

t = R cos θ, J̃ = R sin θ, (35)

where R =
√

t2 + J̃2, and the parameter θ ∈ [0, π/2] tunes
between FL (θ = 0) and SYK-NFL (θ = π/2) limits. We will
discuss results for different relative strengths with respect to
U , i.e., different ratios R/|U |.

We solve the saddle-point equations, Eqs. (29)–(34), on the
imaginary (Matsubara) frequency axis at finite temperature.
The strategy is as follows. We first start with a free fermion
normal Green’s function, G(iωn) = (iωn + μ)−1, and a ran-
domly chosen real function F (iωn), and iterate until we find
a converged solution for the normal and anomalous Green’s
functions. The SC order parameter, �(T ) = −UJαβ〈cαcβ〉,
is then determined as a function of temperature. It is finite
at low temperatures in the superconducting phase, and it
vanishes in the normal state at higher temperature. The su-
perconducting critical temperature Tsc is thus determined nu-
merically using �(T → T −

sc ) → 0. We will use the notation
�0 ≡ �(T → 0).

In both the normal and SC phases, we also compute the
spectral function. The spectral function is obtained by nu-
merical analytic continuation of Matsubara Green’s functions
to the real frequency axis. More details regarding numerical
analytic continuation are discussed in Appendix A.

A. Normal state

The normal-state equations with � = 0 and F = 0 are the
same as those in Refs. [23,24]. As stated earlier, in our model
we tune the parameter θ , defined in Eq. (35), to go from FL

to NFL normal states. At any given temperature T , the normal
state is FL like for θ � θcoh and NFL-like for θ � θcoh, where
θcoh is defined by T ∼ Tcoh = t2/J̃ = R cos θcoh cot θcoh.

In Fig. 2(a), we show the spectral function in the normal
state. For the FL-like phase (smaller θ ), we see the expected
semicircular spectral function, whereas for a NFL-like phase
(larger θ ) a pronounced peak at ω = 0 is seen. This is consis-
tent with earlier results obtained for a similar random model
in Ref. [23].

Also, note that the FL-like normal state (θ < θcoh) has the
usual T 2 dependence of resistivity, while the NFL state (θ >

θcoh) has a linear-in-T resistivity. This is similar to the results
obtained in Refs. [23,24].

The cross-over between the FL and NFL normal states
can be further characterized by looking at the effective spin
exponent (ηs), which is shown in Fig. 2(b). This exponent is
extracted from the dynamical susceptibility, χ ′′(ω), which is
the imaginary part of the spin correlation. In Appendix B,
we discuss the details related to the evaluation of the spin
exponent ηs. Clearly, for lower values of θ the spin exponent
takes the value ηs = 2 expected for a disordered FL, while in
the limit θ → π/2, it takes the value ηs = 1 corresponding to
the marginal NFL. In the intermediate θ region ηs smoothly
interpolates between these extreme values. As expected, this
crossover is roughly around θcoh.

B. Superconducting state

Before we discuss the numerical results, we first show
analytically that SC phase exists at zero temperature for any
infinitesimal attractive on-site interaction. The analysis is sim-
ilar to that presented in Sec. II. We determine the instability to
the superconducting state by expanding the action to second
order in F (iω). This leads to the same condition for the in-
stability as Eq. (13). However, the important difference is that
the Green’s function now also contains contribution from the
exchange interaction terms and satisfies the equations:

G0(iω) = 1

iω + μ − �el (iω) − �in(iω)
,

�el (iω) = t2G0(iω),

�in(τ ) = −(J2 + L2)[G0(τ )]2G0(−τ ). (36)
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FIG. 3. SC order parameter, �, as a function of temperature, T . (a) SYK-NFL (θ = π/2) case with varying R/|U |. Note that for larger
values of R/|U |, the phase transition becomes first order instead of a continuous transition. (b) Here R = |U | is fixed and θ is varied.

Note that we have separated the self-energy into an ‘elastic’
part �el , and an ‘inelastic’ part �in. This is useful because
Im �in(ω → 0) = 0 at T = 0, and that is not true for the
elastic part.

From Eq. (36), we can write a quadratic equation for G0(0):

t2[G0(0)]2 − (μ − �in(0))G0 + 1 = 0. (37)

An important point is that �in(0) is real, and so it can be
absorbed into μ. This quadratic equation has two roots, and
they correspond to G0(i0+) and G0(i0−). From the formula
for the product of the roots of a quadratic equation, we can
therefore conclude that at T = 0,

lim
ω→0

G0(iω)G0(−iω) = 1

t2
. (38)

So this equation holds even when J or L are nonzero, and
the denominator in Eq. (13) vanishes. Thus indicating the
presence of SC at T = 0.

Let us now discuss the numerical results obtained by solv-
ing the saddle-point equations. For low enough temperature,
we find a SC solution with a nonzero � and F (iω). In Fig. 3,
we have shown the variation of SC order parameter, �, with
temperature. It turns out that for small values of θ , i.e., FL-like
normal state, the SC-normal state transition is continuous.
However, at larger values of θ , the phase transition (SC to
NFL) becomes first order for larger values of R/|U | [as seen
in Fig. 3(a)]. Note that although the absolute value of � and
Tsc depends on the value of U , the variation of �/|U | as a
function of T/|U | depends only on the ratio R/|U |. In Fig. 4,
we show the variation of SC transition temperature (Tsc) as a
function of θ for different values of R/|U |. For very large on-
site interaction, i.e., for very small R/|U | there is no difference
between SC emerging from FL or NFL. This is because in
this case both hopping as well as exchange interaction are
subdominant. However, at larger values of the ratio R/|U |,
i.e., weaker on-site interaction the SC transition temperature
Tsc strongly depends on the nature of the normal state or θ .
It is larger for NFL-SC transition (larger θ ) as compared to
the FL-SC transition (smaller θ ). The same trend applies to
the SC order parameter in the limit of zero temperature, �0,
and the SC gap (as obtained from the spectral function) in the
T → 0 limit, �̃0, as seen in Fig. 5. Recall that in our model

SC phase corresponds to the condensation of doublon, i.e., the
Cooper pairs are on the same site. A single-particle hopping
tends to break these pairs and destroy SC. The exchange
interaction and Cooper-pair hopping have a very weak effect
in destruction of SC. Therefore, Tsc, �0, and �̃0 have very
weak dependence on θ for larger on-site interaction (smaller
R/|U |), as in this case the relative strength of hopping and
spin-exchange is unimportant. On the other hand, for weaker
on-site interaction the relative strength of hopping, t , com-
pared to J̃ is important. Hence for larger θ (weaker t) SC is
more stable leading to a higher Tsc. This is also the reason
why the SC-NFL transition becomes first order in nature for
larger R/|U |.

We have also calculated the ratio 2�0/Tsc and 2�̃0/Tsc,
which is 3.53 for the BCS superconductivity (for FL-SC there
is no difference between �0 and �̃0 as discussed below). This
is shown in Figs. 5(c) and 5(d). We find that in our case,
this ratio approaches the BCS value for smaller θ (FL normal
state) and weaker on-site interaction. For SC emerging from
NFL normal state this ratio deviates strongly from the BCS
value. The value of this ratio first increases with θ as long as
the transition is continuous, and then tends to decrease as the
transition changes its nature to first order. This trend follows
from the observation that the transition temperature increases
very sharply for large values of θ and R/|U | compared to
the much gradual increase in �0. In the FL case (smaller θ ),
both �0 and Tsc are suppressed exponentially as a function
of R/|U | such that their ratio is a constant. However, in the
NFL case (larger θ ) this is not true anymore. Both �0 and Tsc

appear to decrease with different power-laws with respect to
R/|U |, and in particular for larger values of θ the transition
temperature Tsc saturates quickly for large θ . This is shown
in Fig. 13 in Appendix. We have also computed the spectral
function for the SC phase. This is shown in Fig. 6. As ex-
pected, we clearly see the SC gap in the spectral function.
For θ = 0 (FL normal state), we see the expected square-root
divergence near ω = �. The form of this divergence seems to
be modified for θ away from zero. In particular, for θ = π/2
(SYK-NFL normal state), we see very narrow peaks. We also
note that the SC gap (�̃) observed in the spectral function may
not be the same as SC order parameter � calculated above, as
is shown in Figs. 5(a) and 5(b). The two quantities are same
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FIG. 4. (a) The SC transition temperature Tsc as a function of θ for different values of R/|U |. Qualitatively, the phase transition becomes first
order (indicated by open circles) at larger values of R/|U | and θ instead of a continuous transition (indicated by filled circles). (b) Comparison of
Tsc and Tcoh/3 = t2/3J = (1/3)R cos θ cot θ at R/|U | = 3. For larger values of R/|U |, the transition becomes first order for θ � θcoh. (c) Same
as (b) but R/|U | = 5.

for SC emerging from FL (smaller θ ), but may deviate from
each other for the SC emerging from a NFL phase (larger
θ ). In particular, the deviation between � and �̃ is strongest

for larger θ and larger values of R/|U | (where the transition
is of first order). In Fig. 7(a), we show the variation of the
ratio of these two quantities in the limit of zero temperature,

FIG. 5. (a) The variation of SC order parameter in the zero temperature limit, �0, with θ for different values of the ratio R/|U |. (b) The
SC gap observed in the spectral function in the zero temperature limit, �̃0, as a function of θ . (c) The ratio 2�0/Tsc. (d) The ratio 2�̃0/Tsc. For
larger values of θ , these ratios deviate strongly away from the BCS value of 3.53. As θ → 0 and R/|U |  1, both 2�0/Tsc and 2�̃0/Tsc tend
to the BCS result.
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FIG. 6. The spectral functions in the superconducting phase at R = |U | for different values of θ .

i.e., �̃0/�0, with respect to θ and R/|U |. We do not have
an analytic expression for the gap in the spectral function,
�̃. But numerically we find that �0 + �̃0 � |U | at θ = π/2,
independent of the ratio R/|U |. This relation does not hold for
other values of θ . This is shown in Fig. 7(b).

A noticeable new feature for SC emerging from NFL
(larger values of θ ) is the presence of peaks at higher energies
compared to the SC gap [see Figs. 6(c) and 6(d). In the limit
of T → 0 the first higher-order peak appears at ∼3�̃. A dom-
inant all-to-all exchange interaction (large θ ) means strongly
interacting Cooper pairs, which may be the reason for these
additional peaks. For smaller values of θ the Cooper pairs
are weakly interacting. Note that such high energy features
in the spectral function have also been reported for SYK-like
electron-phonon model for SC [15].

We have so far focused on the particle-hole symmetric
point, μ = 0, for clarity. However, it is straightforward to also
do the same analysis for a nonzero chemical potential. The re-
sults are qualitatively the same as discussed above. The main
difference seen is the particle-hole asymmetric distribution
of the spectral weights at positive and negative frequencies,
as shown in Fig. 8. The gap is however symmetric around
ω = 0. In the remainder of the paper, we again focus only
on μ = 0.

We further also compute the spin correlation in the SC
phase. In Fig. 9, we plot χ ′′(ω) for different values of θ

in the SC phase. The features essentially follow from what
was discussed for the electron spectral function earlier. The
high-energy peak present in the electron spectral function at
larger values of θ is also seen in χ ′′(ω).

FIG. 7. (a) In the limit of zero temperature, the ratio of the SC gap, �̃0, (as obtained from the spectral function) and the SC order parameter,
�0, as a function of R/|U | at θ = π/2 (blue) and as a function of θ at R/|U | = 1 (red) is shown. The two quantities are in general different
away from the FL limit and for small on-site interaction the deviation between the two quantities is strongest. (b) The sum �̃0 and �0 as a
function of R/|U | at θ = π/2 (blue) and as a function of θ at R/|U | = 1 (red) is shown. The sum is a constant for θ = π/2. However, this is
not the case for other values of θ .
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FIG. 8. The spectral functions in the superconducting phase at R = |U |, μ/|U | = 0.2 for different values of θ .

Using χ ′′(ω) we can also evaluate the temperature depen-
dence of the NMR relaxation rate, 1/T1, which we show in
Fig. 10. The NMR relaxation rate is given by the following
relation [23]:

1

T1
= T

χ ′′(ω)

ω

∣∣∣∣
ω=0

. (39)

Recall that for the standard BCS superconductor one expects
a peak (often referred to as the “Hebel-Slichter” peak) around
the critical temperature as a consequence of the square-root
divergence in the spectral function [25]. However, one of
the signatures of the unconventional superconductivity is the
absence of Hebel-Slichter peak, for instance, as observed in
cuprates [26] and Fe-based superconductors [27]. We find that
for a fixed R/|U | when θ � θcoh there is a well distinguished

θ = 0
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FIG. 9. Plot of imaginary part of spin correlation χ ′′(ω) in the SC phase as a function of real frequency for different values of θ at R = |U |
and T = 0.01.
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FIG. 10. Temperature dependence of the NMR relaxation rate, 1/T1, for different values of θ at R = 2|U |. Note that for smaller values
of θ , where the normal state is FL-like, there is a Hebel-Slichter peak around the SC transition temperature. This can be seen in (a) around
T/|U | ∼ 0.006 and in (b) around T/|U | ∼ 0.018, which have FL normal state. Note that the peak height diminishes as we increase θ and go
closer to NFL case. The Hebel-Slichter peak is absent (and replaced by a kink) in case of NFL normal state, shown in (c) and (d).

Hebel-Slichter peak whose strength diminishes with increas-
ing θ [see Figs. 10(a) and 10(b)]. After the crossover into
the NFL regime for larger θ the peak is absent and there is
only a kink around the critical temperature [see Figs. 10(c)
and 10(d)]. This is another distinguishing feature between
the FL and NFL cases. We also see that the relaxation rate
is higher for the NFL case compared to the FL case. In the
normal state this trend easily follows from the fact that the
critical temperature is much higher in the NFL case. Also note
that the height of the Hebel-Slichter peak present for smaller
θ is roughly inversely proportional to R/|U |, i.e., for smaller
Hubbard interaction the peak is smaller.

V. DISCUSSION

We have investigated the emergence of SC in a SYK-like
model of interacting electrons, Eq. (18). The model is solved
in the large-M limit, where we generalize the spin symmetry
from SU(2) to SU(M ). The solution of the large-M saddle-
point equations can be viewed as a dynamical mean-field
solution. We have shown the contrast between the emergence
of SC from a NFL as opposed to a FL normal state. Several
distinguishing features are found for SC emerging from a NFL
and we summarize below the salient features of our work.

(1) Even in the presence of all-to-all and random exchange
interaction and Cooper-pair hopping, we show that BCS-
type superconducting instability is present, thus ensuring SC
ground state at zero temperature for any infinitesimal attrac-
tive Hubbard interaction.

(2) The SC transition temperature Tsc is shown to be
strongly enhanced for NFL normal state as compared to
a FL normal state. This is an important highlight of our

results. This is understood physically by realizing that the
most dominant mechanism to break Cooper pairs is single-
particle hopping. However, for the NFL case, the Cooper pairs
are strongly interacting, and single-particle hopping is sub-
dominant, thus leading to a higher Tsc. This also renders the
transition in case of NFL to be first order for weaker Hubbard
interaction.

(3) While for the FL (BCS-like) case both Tsc and � are
exponentially suppressed with respect to R/|U |, we show that
for NFL case they decay with different power-laws. Conse-
quently, the ratio 2�/Tsc strongly deviates from the BCS value
for SC arising from NFL.

(4) We have presented a detailed study of the local electron
spectral function in the SC as well as the normal states (FL
and NFL). This is an observable in photoemission experi-
ments like ARPES. We discuss how the SC gap closes upon
approaching Tsc. In the case of a FL normal state, the transi-
tion is continuous and BCS like, and the spectral function in
SC phase features the well-known square-root divergence at
ω = �. We show that this is not the case when the normal
state is a NFL.

(5) We show that for SC emerging from a NFL there is a
distinct new feature in the local electron spectral function—
peaks at higher energy at ω ∼ 3�. This is a consequence of
strong interactions between Cooper pairs (which is absent in
case of FL normal state). We believe that this is a generic
feature of SC emerging from a NFL, and could be a relevant
observation in many materials. How generic and model in-
dependent is this feature is an interesting open question for
future.

(6) In the normal state, as a function of the parameter θ ,
there is a crossover between FL and NFL phase for a fixed
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FIG. 11. (a) Plot of χ ′′(ω) for different values of θ at a fixed temperature T/|U | = 0.13 in the normal state. (b) Plot of χ ′′(ω) for different
values of temperature at a fixed value of θ = 0.388π . In both the plots, R/|U | = 2.

temperature, which we characterize using the effective local
spin correlation exponent, ηS . The exponent deviates from FL
value for θ � θcoh. We hope that our work motivates the ob-
servation of this exponent in neutron scattering experiments.

(7) We also note that NFL phase, i.e., the normal state
for θ > θcoh has a linear-in-temperature resistivity. Thus SC
emerging from this state may have some relevance to the
situation in correlated systems.

(8) We have evaluated the local dynamic structure factor,
χ ′′(ω), an observable in neutron scattering experiments. In the
SC phase emerging from NFL, χ ′′(ω) shows distinct peaks at
high energies akin to that discussed for the spectral function.

(9) Further we have also calculated the NMR relaxation
rate, 1/T1, as a function of temperature. Here we show that
for FL normal state there is a Hebel-Slichter peak near Tsc,
which is a hallmark of BCS SC. However, for NFL case, this
peak disappears and the transition temperature is marked by a
kink. Such observations have been reported in experiments on
unconventional SC in cuprates and pnictides. Our work clearly
shows the mechanism for the disappearance of the Hebel-
Slichter peak in the case of a NFL normal state. This may be of
general relevance to the NMR experiments in unconventional
SC materials.

We believe that our work will further motivate and pro-
vide a pathway to investigate SC emerging from NFL. Our
work also motivates numerical investigation of the model in
Eq. (18) at M = 2 to further elucidate the SC-NFL phase
transition. We hope that our work may also provide a good
starting point for constructing more realistic lattice models.

While this work was being completed, we learnt of the
study Ref. [18] of essentially the same model, but with a focus
on the finite N behavior.

ACKNOWLEDGMENTS

We thank G. Tarnopolsky for valuable discussions. This
research was supported by the National Science Foundation
under Grant No. DMR-2002850. This work was also sup-
ported by the Simons Collaboration on Ultra-Quantum Matter,
which is a grant from the Simons Foundation (651440, S.S.).
D.G.J. acknowledges support from the Leopoldina fellowship
by the German National Academy of Sciences through Grant
No. LPDS 2020-01.

APPENDIX A: NUMERICAL ANALYTIC CONTINUATION

We also perform numerical analytic continuation to real
frequency. In general, performing analytic continuation is an
ill-posed problem if the function on the imaginary axis is
known only at a finite number of points. There are several
techniques to do analytic continuation. However, for simplic-
ity, we use the Pade approximation method. This technique
parametrizes the function on imaginary axis as a ratio of two
polynomials or by terminating a continued fraction. There
are several ways for implementing Pade approximation. We
adopt the simple strategy outlined in Ref. [28] of evaluating
the coefficients of the two polynomials recursively, which is
based on Thiele’s reciprocal difference method. Details of the
algorithm can be found in the Appendix of Ref. [28]. Briefly,
we first solve the saddle-point equations on the imaginary-
frequency axis to obtain the required Green’s function, say
G(iω), at non-negative Matsubara frequencies. The number of
Matsubara frequencies used in our calculation is 105. Then we
evaluate the required polynomials, An(z) and Bn(z), to approx-
imate the imaginary-frequency function, G(z) = An(z)/Bn(z).
The accuracy of these polynomials depends on the number
of Pade points, n, and in our calculation we find that n =
200 points are sufficient to obtain accurate results. We have
checked our results by increasing or decreasing n and it does
not result in any significant improvement. The resulting ra-
tio of polynomials then corresponds to the retarded Green’s
function on real-frequency axis, once we identify z = ω +
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FIG. 12. Plot of ln(χ ′′(ω0)/ω0) vs ln(T ) at ω0 = 0.2, R/|U | = 2,
and in the temperature range between T/|U | = 0.13 and T/|U | =
0.15, for different values of θ . The slope of the linear fit (black
dashed lines) gives ηs − 2, from Eq. (B3). This is used to plot the
curve of ηs as a function of θ in Fig. 2(b).
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FIG. 13. Plots of transition temperature Tsc, the SC order parameter �0 and the SC gap �̃0 vs R for different values of θ . Note that for
smaller values of θ when the normal state is FL-like, there is an exponential decay with respect to R/|U |. In contrast, in the case of NFL normal
state these are replaced by different power laws.

i0+. Imaginary part of this function then gives the spectral
function.

APPENDIX B: EFFECTIVE SPIN EXPONENT

In this Appendix, we discuss the evaluation of the effec-
tive spin exponent (ηs) in the normal state. To start with,
we first evaluate the spin correlation, χ (τ ) = 〈�S(τ ) · �S(0)〉 ∼
−G(τ )G(−τ ), which is straightforward to obtain from the
imaginary frequency numerics. We then Fourier transform to
obtain χ (iω), and then perform numerical analytic continu-
ation to obtain χ (ω) whose imaginary part is the dynamical
susceptibility, χ ′′(ω). This is shown in Fig. 11 for the normal
state and in Fig. 9 in the SC phase.

At temperature above the SC transition temperature, the
normal state solution is one of the SYK-type conformal so-
lutions at low energy (ω � J̃). For such a solution, the spin
susceptibility follows the scaling relation [23,29,30],

χ ′′(ω) ∼ T ηs−1�ηs

(
h̄ω

kBT

)
, (B1)

where

�ηs (y) = sinh
( y

2

)∣∣∣�(ηs

2
+ i

y

2π

)∣∣∣2
. (B2)

For h̄ω � kBT , we have

χ ′′(ω) ∼ ω T ηs−2, (B3)

while in the limit of h̄ω  kBT , the result is similar to the zero
temperature form, χ ′′(ω) ∼ sgn (ω)|ω|ηs−1.

We can thus use Eq. (B3) to extract the effective spin
exponent (ηs) from the slope of plot of ln(χ ′′(ω0)/ω0) versus
ln(T ), where ω0 is a fixed small frequency. In Fig. 12, we
present the data for such a procedure for R/|U | = 2 in the
temperature range of T/|U | = 0.13 and T/|U | = 0.15, with
ω0 = 0.2. We have also checked our results for two other
small frequency points, and the results are unchanged. The
resulting ηs as a function of θ is plotted in Fig. 2(b). Similar
procedure can be done at other values of R/|U |. This works
well for larger values of R/|U |. At smaller values of R/|U |, the
transition temperature is relatively high, where our numerical
analytic continuation is not very reliable, and so extracting ηs

there is difficult.

APPENDIX C: ADDITIONAL PLOTS FOR Tsc AND �

As noted earlier in the main text, the SC transition
temperature (Tsc) and the SC order parameter (�0) decay
exponentially with R/|U | in the case of SC emerging from FL
normal state. This results in the expected BCS value for the
ratio of Tsc and �0. However, we observe that in the case when
SC emerges from a NFL normal state the transition tempera-
ture and the order parameter decay with different power-laws
with respect to R/|U |. This is shown in Fig. 13. Deducing
these power-laws analytically is an interesting problem for
future work. The consequence of these power-law decay in
place of an exponential is that the ratio of Tsc and �0 is no
longer a constant.
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