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Universal thermodynamic uncertainty relation in nonequilibrium dynamics
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We derive a universal thermodynamic uncertainty relation (TUR) that applies to an arbitrary observable in
a general Markovian system. The generality of our result allows us to make two findings: (1) for an arbitrary
out-of-equilibrium system, both the entropy production and the degree of nonstationarity are required to tightly
bound the strength of a thermodynamic current; (2) by removing the antisymmetric constraint on observables,
the TUR in physics and a fundamental inequality in theoretical finance can be unified in a single framework.
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Introduction. Nature is rife with nonequilibrium phenom-
ena such as expansion of the universe [1–3], relaxation
dynamics of condensed matter systems [4,5], interactions in
ecological systems [6], and biological processes in living
creatures [7,8]. Nonequilibrium phenomena are not exclusive
to natural sciences. The financial market is also a far-from-
equilibrium system, with its complex dynamics arising from
interactions among a large number of investors in the market
[9–11]. The learning dynamics of deep neural networks is
also regarded as an important nonequilibrium phenomenon
[12–18]. With such a wide range of applications, one naturally
wonders what common features, if any, could be shared by all
of these heterogeneous systems. Only after knowing what is
shared across all nonequilibrium phenomena can we under-
stand what is unique to each individual field and hope to unify
nonequilibrium phenomena in different fields of natural and
social sciences. This work studies the common features shared
among various nonequilibrium problems and establishes a
universal thermodynamic uncertainty relation applicable to
general nonequilibrium dynamics.

To be concrete, we consider a trajectory of stochastic
events across M steps: [x] := (x1, ..., xM ), whose distribution
is given by P([x]), and let [x]∗ := (xM, ..., x1) be its time-
reversed trajectory under the time-reversed protocol, whose
distribution is denoted as P∗([x]∗). Each x can be a set of real
numbers if the relevant dynamics occurs in a continuous space
or a set of discrete values if the space is discrete [19]. We
denote the average with respect to P([x]) as 〈·〉, and that with
respect to P∗([x]) as 〈·〉rev. By the Markovian property, the
trajectory probability P([x]) factorizes into a product of the
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initial distribution P0(x0) and the transition probabilities

P([x]) = P(xM |xM−1, tM−1)...P(x1|x0, t0)P0(x0),

where the transition probabilities are explicitly labeled with ti
to stress that the dynamics can be time-dependent.

It has recently been shown [20–26] that the average and
variance of any thermodynamic quantity are related to the
entropy production through the thermodynamic uncertainty
relation (TUR)

G[�S] � 〈J〉2

Var[J]
, (1)

where G[·] is a functional of entropy production �S :=
− log P∗([x]∗ )

P([x]) , and J = J ([x]) is an antisymmetric current,
which is odd under time reversal: J ([x]) = −J ([x]∗). A phys-
ical interpretation of (1) is that the relative accuracy of a
measurement 〈J〉2/Var[J] is bounded from above by the en-
tropy production [27]. A crucial observation here is that a
more accurate measurement can be performed only at the cost
of higher entropy production.

However, the original TUR only holds in a linear-response
regime and is applicable to thermodynamic currents. Various
attempts at generalizing the TUR have been made [21,23,28–
37]. Notably, Ref. [23] derives a TUR from the fluctuation
theorem and the derived TUR is applicable to observables that
are not limited to currents; however, it can only be applied to
systems with strong constraints on the initial and final states of
the system. Reference [21] generalizes the TUR to an arbitrary
nonequilibrium initial state, where the bound only applies to
the boundary value of the current. One of the most general
forms of existing TUR proposed in Ref. [38] is applicable
to an arbitrary reversible system and an arbitrary observable.
However, this relation is still limited in the scope of applica-
bility because it cannot be extended to the situations where the
absolute irreversibility is involved [39].

In this work, we overcome the limitations of the previous
generalizations of the TUR and derive a universal TUR that
is applicable to an arbitrary system with or without absolute
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irreversibility and to an arbitrary observable. Also, our result
only involves the quantities that appeared in the original TUR.
We prove the following universal inequality for an arbitrary
observable f = f ([x]) [40]:

〈e2R〉
γ 2

� 1 + (〈 f 〉Q:P>0 − 〈 f 〉)2

Var[ f ]
, (2)

where R := log Q/P is the log-probability ratio between the
probability of the primary dynamics P and a reference dynam-
ics Q, and 〈 f 〉Q:P>0 := EQ[ f |P([x]) > 0] is the conditional
expectation value of f under Q, conditioned on P([x]) > 0.
The freedom of choice of the reference dynamics is a generic
feature of fluctuation theorems [41,42]. The choice with phys-
ical relevance is Q = P∗([x]∗), which makes the left-hand
side of the inequality dependent on the entropy production:
e2R = e−2�S [41,43]. The term γ := 〈e−�S〉 on the left-hand
side represents the degree of reversibility in the system, which
is equal to one (zero) when it is fully reversible (irreversible)
[41].

General Properties of the Universal TUR. If the reference
dynamics is the time-reversed one of the forward dynamics,
i.e., Q = P∗([x]∗), then our TUR (2) leads to the following
nontrivial relation between the current f , its variance Var[ f ],
the degree of absolute irreversibility γ , and the total entropy
production �S:

Var[ f ] � (〈 f 〉P∗([x]∗ ):P>0 − 〈 f 〉)2

〈e−2�S〉/γ 2 − 1
. (3)

This TUR is universal in that it applies to arbitrary initial
and final states, allows for arbitrary time-dependent protocols,
can be applied to arbitrary observables, makes no assumption
about the transition probabilities, and is applicable to both
continuous-time and discrete-time dynamics. The generality
of the derived TUR is a consequence of the generality of
the master fluctuation theorem, which finds its mathematical
foundations in the general change-of-measure theorem in the
measure theory [41]. A key feature of this bound is that it
involves an exponentiated entropy production, which may be
dominated by rare trajectories [44]. However, we note that this
is not a weakness of the proposed theory, but a reflection of the
underlying physics that rare trajectories can have significant
influence on the expected strength and fluctuation of physical
quantities. This argument is further substantiated by the fact
that no matter how strongly the term 〈e−2�S〉 is dominated
by the rare trajectories, there is always some observable that
makes the bound satisfied.

The choice of Q suitable for the system and observable
is crucial. For example, the entropy term e2R is minimized
when the reference dynamics Q is as close to the original
one as possible; the current term 〈 f 〉Q:P>0 − 〈 f 〉 is maximized
when Q is chosen to make 〈 f 〉Q:P>0 have a sign opposite to
that of 〈 f 〉. We will see later that appropriate choices of Q
lead to meaningful results for physics and theoretical finance.
Also, the result in (2) achieves two types of optimality. First,
for every system, there exists an observable f such that the
bound is saturated. Second, for every observable f , there
exists P and Q such that the bound is saturated [45]. These
optimalities imply that having a different form of TUR leads
to either a looser bound for some systems or making the bound

inapplicable to some observables. For example, the standard
TUR has a linear entropic term [30] in place of e−2�S/γ 2 − 1
in our bound with �S. However, it is not hard to see that the
standard TUR bound is trivial for any irreversible process:
when the support of P∗ is a proper subset of that of P, �S =
∞, so the left-hand side of the standard TUR (1) diverges, and
we obtain the trivial result Var[ f ] � 0. Some bounds are more
similar to ours and involve an exponential term, but with the
plus sign in the exponent [23,28]: e�S; this type of formula
also cannot appear in the most general TUR because e�S also
diverges when γ �= 1. Among the three choices of the entropic
term (�S, e−�S , e�S), only the form e−�S can remain finite.

Inequality (2) takes a simpler form for antisymmetric cur-
rents. Let the quantity f be an antisymmetric current, the
protocol be time-independent, and the initial and final dis-
tributions stationary. Our TUR reduces to: 〈e�S〉 − 1 � 4〈 f 〉2

Var[ f ]
[46]. Expanding this relation to first order in �S, it recovers
the original TUR in Ref. [20], which holds in the linear-
response regime. Also, as in Ref. [33], we can also generalize
the main result in (2) to a vector-valued observable f as
detailed in Appendix C, which is the most general TUR we
derive. Lastly, we note that the proposed relation also takes
a meaningful form in the equilibrium limit where �S ap-
proaches zero. We study this in Appendix F.

Application I—Interplay between the degree of nonstation-
arity and entropy production. When the transition probabilities
are time-independent and γ = 1, our result offers a crucial
insight into the achievable measurement accuracy of a thermo-
dynamic current f that is antisymmetric against time reversal.
Let P0 and PM denote the initial and final distributions of the
process P([x]). We choose Q to be the distribution resultant
from the time-reversed dynamics, with P0 as the initial distri-
bution: Q = P∗([x]∗)P0(xM )/PM (xM ). Then, (2) becomes

〈e−2�S−2D(PM ||P0 )〉 − 1 � 4〈 f 〉2

Var[ f ]
, (4)

where D(PM ||P0) := log PM (xM )
P0(xM ) [47], 〈D〉 is the Kullback-

Leibler divergence between the initial and final distributions.
We see that D measures the trajectory-wise distance between
the initial distribution and the final (possibly nonstationary)
distribution. The right-hand side of (4) is the relative accuracy.
Noting that 〈D〉 is zero when the system is stationary, it char-
acterizes the “degree of nonstationarity.” Thus the interplay
between the degree of nonstationarity and entropy production
plays a key role in providing the accuracy of a thermodynamic
current in the most general Markovian relaxation dynamics,
whose initial and final distributions can be out-of-equilibrium.
Specifically, we find that the maximum achievable accuracy
decreases with an increasing deviation between the initial and
final distributions. Physically, this strong dependence on the
initial condition can be understood as follows: when measur-
ing a local parameter close to a site z, it is most efficient for
us to initialize the state of the system in the neighborhood of
z. If we choose the initial state according to the Boltzmann
distribution, many states away from z are involved, resulting
in a reduced measurement efficiency.

The conventional TUR dictates that the bound on the mea-
surement accuracy of antisymmetric currents increases as we
increase the entropy production [27,43]. On the contrary, our

013039-2



UNIVERSAL THERMODYNAMIC UNCERTAINTY RELATION … PHYSICAL REVIEW RESEARCH 5, 013039 (2023)

FIG. 1. Numerical simulation of a two-state system, where an an-
tisymmetric current is measured. (a) Accuracy vs the proposed bound
in (4). The proposed bound agrees with the measurement accuracy
in both trend and magnitude. (b) Proposed bound vs 〈�S〉. 〈�S〉
both increases and decreases with the bound. (c) Accuracy vs 〈�S〉.
〈�S〉 both increases and decreases with accuracy. (d) All relevant
quantities together. For a wide range of transition probabilities, we
see that D is comparable to or dominates �S, showing that it does
play an important role in the bound.

result implies that the measurement accuracy can decrease
with an increasing entropy production when the system is out-
of-equilibrium and when D dominates the entropy production.
Lastly, when the system is close to stationarity, D becomes
negligible, and one can show that the bound approximately
reduces to 〈e�S〉 − 1 � 4〈 f 〉2

Var[ f ] , which, in agreement with the
standard TUR, suggests that the limit of measurement ac-
curacy should increase with the entropy production. As an
example, we numerically simulate an out-of-equilibrium two-
state system. The two states are labeled as A and B. We let
the initial state be PA(0) = 0.9 and PB(0) = 0.1. The transi-
tion probability is set to be symmetric: P(A|B) = P(B|A). We
study the bound at different P(A|B), varying from zero to one.
The observable f we consider is the net number of transitions
from state A to state B: f := δxM ,B − δx0,A, which is by defini-
tion an antisymmetric observable. Figure 1 shows the relevant
quantities of this simulation. We see that the proposed relation
(4) places a bound of the measurement accuracy of the far-
from-equilibrium system across all transition probabilities,
whereas the standard TUR is almost everywhere inapplicable.
A detailed comparison is given in Appendix E, where we show
that the bound in inequality (4) can be considerably tighter
than other TURs.

Application II—A Fundamental Bound in Theoretical Fi-
nance. This example shows that it is, in fact, important to
freely choose Q if we want to make the TUR relevant to
general nonequilibrium dynamics in fields other than physics.
The financial market is a major nonphysical nonequilibrium
system that impacts our daily life [48,49]. Consider the price
trajectory of a product (e.g., a stock) that changes from time
0 to time τ , denoted as x0, ..., xτ , where each unit of time

corresponds to a day. The price return is defined as rt =
xt+1−xt

xt
. Here, we assume that the price dynamics follows

a discrete-time Markovian dynamics in continuous space.
While this assumption may not hold in general, it holds for the
standard minimal models in finance such as the Black-Scholes
model [50] and the Heston model [51]. A key quantity is the
volatility of the price return σ := √

Var[r].
With Q = P∗([x]∗), our TUR in (2) gives

σ �
√

(〈r〉 − 〈r∗〉rev)2

〈e−2�S〉 − 1
, (5)

which explicitly shows that the thermodynamic entropy pro-
duction gives a bound on price volatility, which can be
useful for problems such as option pricing. This may open
a venue for studying quantitative finance in terms of stochas-
tic thermodynamics. Moreover, since the price return is not
a time-antisymmetric observable, the standard TUR cannot
apply.

We now show that a fundamental inequality in theoretical
finance can be derived as a special case of the general TUR in
(2). By investing a fraction of one’s capital, pt , in the product
at different times, one can make profit, which is measured
with the wealth return rate Rt : Rt (p) := xt+1−xt

xt
p + r f (1 − p),

where r f is the risk-free interest rate. In theoretical finance
(capital asset pricing model), a fundamental quantity is the
Sharpe ratio, defined as

χ (p) := 〈R〉 − r f√
Var[R]

, (6)

where R := ∏τ−1
i=0 (1 + Ri ) − 1. Again, the observable R is

not antisymmetric, and therefore the standard TURs do not
apply. The Sharpe ratio is widely accepted as a fundamental
quantity in theoretical finance [52,53] and used in practice as
a metric of successful investment. Theoretically, it is known
that optimal portfolios should all have the same maximized
Sharpe ratio [52], and it is an important problem to find an
upper bound on the Sharpe ratio.

For this problem, the relevant reference dynamics is no
longer P∗([x]∗) because 〈r∗〉rev �= r f in general. We need to
choose Q to be the dynamics such that the wealth grows at the
risk-free rate on average. These dynamics can be achieved if
the stock price grows deterministically as xt = (1 + r f )xt−1,
or if we create and transact a financial derivative according
to the Black-Scholes formula. With f = R, our TUR yields

Var[R] � (〈R〉−r f )2

〈e2R〉−1 , or, equivalently,√
〈e2R〉 − 1 � χ (p) (7)

for any trading strategy. The existence of such a Q is guar-
anteed by the fundamental theorem of finance (no-arbitrage
theorem), and inequality (7) applies to any price dynamics that
obeys the fundamental theorem of finance. In fact, this bound
has the same form as the celebrated Hansen-Jagannathan (HJ)
bound in theoretical finance [54–56]. The HJ bound is a funda-
mental relation in theoretical finance because it applies to all
models of the market, and there have been many applications
of it besides upper bounding the Sharpe ratio [57–60]. While
the original HJ bound can only be applied to the case in
which Q is a martingale distribution, our result applies to an
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arbitrary distribution Q such that 〈R〉Q = r f . The bound (5)
is a new relation we discovered. One important utility of the
proposed relation for finance is that it allows one to check the
validity and correctness of existing theories of finance (this
is also what the related Hansen-Jagannathan bound can be
useful for). For example, existing stock price data allows one
to estimate the return r and its volatility σ , and the minimal
models allow one to calculate the time-reversed return r∗, and
the entropic term e−2�S , and this can be plugged into the pro-
posed TUR relation, the violation of which can then be used
to reject the economic theory under consideration. Our result
thus offers a novel method to test the validity of economic
theories with physics-relevant quantities (such as the entropy
production rate), which presents yet another remarkable usage
of physics principles in other fields.

This application shows that the HJ bound in finance is com-
parable to the thermodynamic uncertainty relations in physics,
and the crucial difference between the two bounds arises
from the choice of the reference probability Q. The choice
of fundamental importance in physics is the time-reversed
dynamics P∗([x]∗), while the fundamental choice in finance is
the martingale measure, under which one obtains the risk-free
return. Therefore, our derived TUR unifies the fundamental
bounds in physics and finance.

Conclusion and discussion. We have derived a universal
form of TUR for an arbitrary Markovian dynamics in dis-
crete space-time, which includes the continuous space-time
dynamics as a special limit. Our bound is shown to achieve
two kinds of optimalities, but it is unlikely to be the optimal
bound if we restrict the problem to systems of special types
or observables with specific symmetries. Investigating how
such constraints on observables may help improve the bound
is an important future work. One crucial quantity identified
in this work is the degree of nonstationarity D, and it should
be important to understand it better in the future. Our result
also links the fundamentals in theoretical finance and physics,
and further exploring this connection may lead to exciting
crossfertilization of both fields.
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We first note that for notational consistency, we treat the
expectations as a sum over discrete trajectories:

〈 f 〉 =
∑
[x]

P([x]) f ([x]). (8)

One can simply replace the sum by path integrals to obtain the
same results for continuous paths.

APPENDIX A: DERIVATION OF THE MAIN RESULT

Let R := log P∗([x]∗)/P([x]). For an arbitrary observable
f = f ([x]) and a reference dynamics Q, the master fluctuation
theorem with absolute irreversibility [41] implies

γ 〈 f 〉Q:P([x])>0 = 〈 f exp(R)〉P, (A1)

where γ := ∑
[x]:P([x])>0 Q([x]) � 1, and

〈 f 〉Q:P([x])>0 := 1∑
[x]:P([x])>0 Q([x])

∑
[x]:P([x])>0

Q([x]) f ([x]).

(A2)
Note that when setting f = 1, one obtains the integral fluctu-
ation theorem with absolute irreversibility: 〈eR〉 = γ .

The Cauchy-Schwarz inequality gives Var[ f ]Var[exp(R)]
� Cov( f , exp(R))2, where Var[exp(R)] = 〈exp(2R)〉 −
〈exp(R)〉2 = 〈exp(2R)〉 − γ 2, which follows from the integral
fluctuation theorem: 〈eR〉 = γ . The master FT implies that
Cov( f , exp(R)) = γ (〈 f 〉Q:P>0 − 〈 f 〉). We thus have the main
result of this work:

Var[ f ] � (〈 f 〉Q:P>0 − 〈 f 〉)2

〈e2R〉/γ 2 − 1
, (A3)

which is equivalent to (2) in the main text. The right-hand side

of (2) includes the term (〈 f 〉Q:P>0−〈 f 〉)2

Var[ f ] , which can be interpreted
as a general form of the measurement accuracy of f relative
to a reference point 〈 f 〉Q:P>0 [61].

APPENDIX B: OPTIMALITY

As mentioned in the main text, there are two types of
optimalities that the proposed relation achieves:

(1) for every system (any P and Q), there exists an observ-
able f such that the bound is saturated;

(2) for every observable f , there exists P and Q such that
the bound is saturated.

In essence, both optimalities are proved by the fact that the
Cauchy-Schwarz inequality is tight when (and only when) the
two relevant random variables are proportional to each other.

To prove the first optimality property, simply let f = eR,
and one can then show that equality holds. To focus on the
physics relevance, we let R = −�S. The right-hand side of
(2) becomes 〈e2R〉/γ 2 − 1 and so equality holds.

To prove the second optimality property, we first assume
without loss of generality that the observable under consid-
eration f ([x]) is nonnegative for some [x] (otherwise, just
consider the nonpositive part in a similar manner). We first
choose an arbitrary distribution P such that the following
properties hold:

(1) 〈 f 〉P is finite;
(2) P([x]) > 0 if and only if f ([x]) � 0.
Now, let Q([x]) = 1∑

f ([x])P([x]) f ([x])P([x]), which exists
because 〈 f 〉P is finite. One can then employ this choice of P
and Q to show that the bound is saturated.

Note that Q and P have the same support, and so γ = 1,
the proposed bound thus reads

Var[ f ] � (〈 f 〉 − 〈 f 〉Q)2

〈e2R〉 − 1
. (B1)

Each quantity can be directly found

〈 f 〉Q =
∑

Q f = 1∑
f P

∑
f 2P = 〈 f 2〉

〈 f 〉 , (B2)

〈e2R〉 =
∑

P
Q2

P2
= 1

(
∑

f P)2

∑
P

( f P)2

P2
= 〈 f 2〉

〈 f 〉2
. (B3)

Substituted into (B1), one sees that the equality is achieved.
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APPENDIX C: MATRIX TUR

This matrix form bound can be tighter than inequality
(2) when one wants to simultaneously bound two correlated
variables.

Theorem 1. Let f be an arbitrary vector observable. Then,

covP(f, f ) � (〈f〉Q − 〈f〉)(〈f〉Q − 〈f〉)T

〈e2R〉/γ 2 − 1
. (C1)

Proof. We start from the general TUR in (10) for a general
scalar observable f ′:

Var[ f ′] � (〈 f ′〉Q:P>0 − 〈 f ′〉)2

〈e2R〉/γ 2 − 1
. (C2)

Let f ′ = fu(f ) := uTf for some constant u. Plugged into the
left-hand side of (C2), we obtain

Var[ f ′] = uTCu. (C3)

The right-hand side of (C2) reads:

(〈 f ′〉Q:P>0 − 〈 f ′〉)2

〈e2R〉/γ 2 − 1
= uT (〈f〉Q − 〈f〉)(〈f〉Q − 〈f〉)T

〈e2R〉/γ 2 − 1
u. (C4)

(C2) can thus be written as

uTCu − uT (〈f〉Q − 〈f〉)(〈f〉Q − 〈f〉)T

〈e2R〉/γ 2 − 1
u � 0 (C5)

for an arbitrary u. This inequality is equivalent to the state-
ment that

C − (〈f〉Q − 〈f〉)(〈f〉Q − 〈f〉)T

〈e2R〉/γ 2 − 1
(C6)

is positive semidefinite. This completes the proof. �

APPENDIX D: OTHER SPECIAL CASES OF TUR

Let the quantity f be an antisymmetric current, as in
the standard TURs: f = ∑M−1

i=0 g(xi, xi+1) for antisymmetric
functions g(xi, xi+1) = −g(xi+1, xi ). In this case, it is easy to
check that f ∗ = − f . The TUR takes the form [62]:

Var[ f ] � (〈 f 〉rev,P>0 + 〈 f 〉)2

〈e−2�S〉/γ 2 − 1
. (D1)

From now on, we focus on the case of γ = 1. The TUR then
becomes:

Var[ f ] � (〈 f 〉rev + 〈 f 〉)2

〈e−2�S〉 − 1
. (D2)

When the protocol is time-independent, the reversal dynamics
is the same as the forward dynamics and so 〈 f 〉rev is nothing
but the expectation of f running from time τ to time 2τ .
Therefore, we obtain a simpler form:

Var[ f ] � (〈 f 〉rev + 〈 f 〉)2

〈e−2�S〉 − 1
= (〈 f (2τ )〉)2

〈e−2�S〉 − 1
. (D3)

This shows that the fluctuation of an antisymmetric current
after time period τ is bounded from below by its expected
value at time 2τ .

However, prima facie, this inequality seems to contradict
the standard TURs: the denominator at the right-hand side
(e−2�S) seems to decrease as the entropy production increases.

That is to say, the quantity f becomes easier to measure as
the entropy production increases: this is the opposite tendency
to that of the standard TURs, where the measurement of f
becomes harder as the entropy production decreases. How-
ever, a closer examination suggests that the proposed relation
is consistent with the standard TURs. In fact, the proposed
relation can reduce to a form similar to the standard TUR. To
show this, let f1 = e−�S . Then,

〈e−2�S〉 = 〈 f1e−�S〉 = 〈 f ∗
1 〉rev. (D4)

By the definition of f1 = e−�S , we have f ∗
1 = e�S , i.e.,

〈e−2�S〉 = 〈e�S〉rev. (D5)

Note that this relation holds for any system such that the main
theorem is applicable. This leads to the following general
inequality:

Var[ f ] � 〈 f (2τ )〉2

〈e�S〉rev − 1
. (D6)

When the protocol is timeindependent and when the initial
state is steady, we have that 〈·〉rev = 〈·〉 and f (2τ ) = 2 f (τ ),
and so, for steady-state currents, we have

Var[ f ] � 4〈 f 〉2

〈e�S〉 − 1
. (D7)

a. An alternative Derivation

A key step in the above derivation is that when the system
is stationary,

〈e−2�S〉 = 〈e�S〉. (D8)

This relation can be derived in a more straightforward manner:

〈e−2�S〉 =
∑
[x]

P([x])

(
P∗([x]∗)

P([x])

)2

(D9)

=
∑
[x]

P∗([x]∗)
P∗([x]∗)

P([x])
(D10)

=
∑
[x]∗

P∗([x]∗)
P∗([x]∗)

P([x])
(= 〈e�S〉rev) (D11)

=
∑
[x]∗

P([x]∗)
P([x]∗)

P([x])
= 〈e�S〉, (D12)

where we have used the fact that the reversed trajectory prob-
ability is equal to the forward trajectory probability if the
system is stationary: P∗([x]∗) = P([x∗]).

APPENDIX E: NUMERICAL COMPARISON WITH
CONVENTIONAL TURS

In this section, we test the proposed TUR for the cases
where conventional bounds apply. A related result is proposed
by Ref. [21], which also applies to an arbitrary (reversible)
initial state for discrete-time dynamics but only for time-
independent protocols. Let us first describe again the problem
setting.

We consider a two-state system with labels A and B with
the same energy. We let the initial state be PA(0) = 0.9 and
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FIG. 2. Comparison with the conventional TURs. We see that the
standard forms of TUR do not hold due to a nonstationary initial
state. The result in [21] holds but does not agree in trend with the
actual fluctuation. In contrast, our result can be much tighter and
agree in trend, which is a signature that the proposed theory captures
the correct essential physics of the dynamics.

PB(0) = 0.1. The transition probability is set to be symmetric:
P(A|B) = P(B|A). We compare the two bounds for varying
P(A|B) from zero to one. Note that this system satisfies the
detailed balance condition, and the result in [21] indeed ap-
plies. All the existing TURs can be seen as a lower bound of
the fluctuation of an observable f :

Var[ f ] � q, (E1)

where the term q is different for different TURs, and a TUR
can be said to be “better” if q is closer to Var[ f ]. We thus make
the comparison between the q term of each TUR and Var[ f ].

In this example, the observable f we consider is the net
number of transitions from state A to state B: f := δxτ ,B −
δx0,A, which is by definition an antisymmetric observable.
To apply the proposed relation (2), we need to specify the
reference dynamics. We make two choices: (1) the standard
choice Q = P∗, and (2) the choice that leads to (4), i.e., Q =
P∗([x]∗) P0(xM )

PM (xM ) . The difference between these two choices can
highlight the advantage of freely choosing Q. The reason why
this choice is better than the original is that the current term
〈 f 〉rev can be very small for the relaxation process under con-
sideration. Choosing Q = P∗([x]∗) P0(xM )

PM (xM ) , on the other hand,
makes 〈 f 〉Q comparable to the magnitude of 〈 f 〉 and is likely
to make the bound much tighter. We show this numerically.

Figure 2 plots the q term from the standard TUR (qstd.) [30]
and the discrete-time TUR (qPB) [28]. We see that both the
standard TUR and the discrete-time TUR are not applicable,
because they are insufficient to characterize a nonstationary
initial state. In contrast, we see that both the result of this
work (qours and qours(Q)) and that of Ref.[21] (qLGU) hold as
expected. Here, qours denotes the standard choice and qours(Q)

denotes the second choice.
We first study qours. We note that the result from [21] is only

better than qours for small values of the transition probability
(P(A|B) < 0.2). For the whole range, qLGU can be six orders

of magnitude smaller than the quantity it is trying to lower
bound. More importantly, qLGU predicts the opposite trend
for a large proportion of the transition probabilities. In sharp
contrast, our proposed bound agrees in trend with the bound
everywhere. Also, it is important to note that qours is tight
for the two ends of the transition probabilities, while that of
Ref. [21] is only tight to one side of P(A|B) (i.e., only when
P(A|B) is small). For qours(Q), our bound is improved every-
where and performs similarly or better than qLGU in lower
bounding the fluctuation across all transition probabilities.
This example shows that the freedom in choosing Q can have
strong physical implications and is useful in practice when
one can take knowledge of the problem into consideration.

APPENDIX F: EQUILIBRIUM LIMIT

This section studies the equilibrium limit of the proposed
relation (2). In particular, we show that it is a meaningful
lower bound of any observable f under consideration.

For simplicity, we assume γ = 1. Note that this assump-
tion should be valid when we are very close to equilibrium.
When the system is in equilibrium, the probability of the
reversed dynamics should be equal to the forward dynamics
P∗([x]∗) = P([x]). Thus, when the system is only slightly
away from equilibrium, there should exist a perturbatively
small parameter α, such that

P∗([x]∗) = P([x]) + αh([x]) = Pα ([x]), (F1)

for a function h([x]), such that
∑

[x] h([x]) = 0. Recall that
our bound can be written as

Var[ f ] � [〈 f 〉 − 〈 f 〉P∗([x]∗ )]2

〈e−2�S〉 − 1
(F2)

= [〈 f 〉P0 − 〈 f 〉Pα
]2〈

P2
α

P2
0

〉
− 1

. (F3)

In the limit of zero α, both the denominator and the numerator
of the right-hand side become zero, whereas the ratio does not
tend to zero in general and remains a meaningful lower bound
of the variance of the observable consideration.

In fact, in the limit α → 0+, we have

Var[ f ] �
(

d
dα

〈 f 〉P0

)2〈− ∂2

∂α2 log P0
〉 , (F4)

which is a Cramer-Rao’s bound when treating α as a param-
eter of the distribution P([x]), and is nontrivial in general.
For example, d

dα
〈 f 〉P0 can be seen as the susceptibility of

observable f to an external perturbation controlled by α, and
this inequality can thus be seen as a form of the fluctuation-
response theorems.
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