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Information processing in biological systems is realized by the appropriate transmission of information flows
over complex networks, such as gene regulatory, signal transduction, and neural networks. These information
flows are affected by the input-signal characteristics and structural properties of network systems, such as the
network topology, regulation rules, and intrinsic and environmental noise. Many biological networks frequently
include several typical patterns called network motifs, which are considered to play important roles in biological
functions. However, their information-theoretic properties, particularly the dependence of the information flows
in each network on the input signal, remain poorly understood. In our previous study [Mori and Okada, Phys. Rev.
Res. 2, 043432 (2020)], we developed a graphical expansion method to describe transfer entropy (TE), a measure
of information flow, in Boolean networks in terms of multiple information pathways. There, the input signal was
limited to a simple case, and the effect of the input-signal characteristics on TE was not clarified. In this paper,
we improve our method to render it applicable to Boolean networks that receive input signals with arbitrary
stochastic characteristics. Our formula expresses how TE is determined by the input-signal characteristics, the
assignment of Boolean functions, and the noise magnitude. We find that, in both positive and negative feedback
loops, TE hardly depends on the signal timescale. In contrast, coherent and incoherent feedforward loops show
low- and high-pass filtering properties, respectively, for a time-varying signal, which is consistent with previous
reports. The emergence of either low- or high-pass filtering is determined by the Fourier components of the
Boolean functions on specific pathways transmitting information flows. Thus our formula reveals the mechanism
of information transfer in network motifs and provides insights into the origin of information processing in
biological networks.

DOI: 10.1103/PhysRevResearch.5.013037

I. INTRODUCTION

Network motifs are basic units that express the local con-
nection patterns in directed complex networks, such as gene
regulatory, signal transduction, and neural networks [1–4].
Feedforward and feedback loops are representative motifs,
which are considered to provide various types of biological
functions [5,6]. For example, the positive feedforward loop
(PFFL) is a persistent detector that filters high-frequency input
[5,7,8], whereas the negative feedforward loop (NFFL) is a
pulse generator that blocks long-timescale signals [5,7]. In ad-
dition, positive feedback and negative feedback loops (PFBL

*mori@design.kyushu-u.ac.jp
†okada.takashi.3z@kyoto-u.ac.jp

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

and NFBL) are employed as a lock-on switch [5,9,10] and os-
cillation generator [5,11–13], respectively. Attempts are being
made to clarify the relationships between the static structure
of the motifs and their dynamical properties, as one of the
central issues in network and biological sciences [14–20].

Although the biological functions performed by motifs
have been much discussed, many aspects of their information-
transfer characteristics remain unexplained theoretically and
experimentally. For instance, it is difficult to determine
whether a certain motif can process information from an
input stimulus with a short timescale or from an environ-
mental signal with slow variation. Moreover, the relationship
between the information flows in motifs and their network
topology has not been clarified. If each motif has a respec-
tive information-transfer characteristic (Fig. 1), a question
arises as to what is the internal structure of the motif that
generates this characteristic? Are the characteristics robust
against partial modification of the regulation rules? Can we
provide optimal design principles for maximizing the infor-
mation flows in motifs? To address these issues, theoretical
predictions are necessary, using mathematical models.
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FIG. 1. (a) Schematic of the statistics of the signal input to the motifs. The signal timescale � and bias M are illustrated. (b) Representative
network motifs. In each network motif, we consider the transfer entropy (TE) Ts→N from the signal source s to an output vertex labeled N .
(c) TE comparison among the motifs as a function of the signal timescale � when signal bias is absent (M = 0). The error rates are uniformly
distributed (ψi = 0.3). The symbols represent the numerically obtained TE, whereas the solid lines represent the theoretical predictions through
our pathway expansion method. (d) TE as a function of the signal bias M when � = 0.1 and ψi = 0.3.

Due to their high degree of abstraction, Boolean net-
work models [21] that approximately describe the dynamics
in gene regulatory networks and neural networks enable
theoretical investigation of the information properties in net-
works [22–31]. However, analytical understanding of the
information flow mechanism remains limited. In particular,
a systematic formula for understanding how input signals
having certain characteristics are transmitted in a network
with specific topology and regulations is still lacking. For
example, in Ref. [32], the information flows and related ther-
modynamic quantities were computed exhaustively for small
motifs, but through numerical computations. In Refs. [33–36],
information propagation was analyzed using annealed ap-
proximations, which randomly reassign inputs and functions
to all nodes at each time step. In Ref. [37], the influence
of nodes was analyzed using a quenched approximation.
However, as the annealed approximations dispose of net-
work connectedness, focusing on the ensemble properties of
random networks, and the quenched approximation neglects
dynamical correlations among variables, focusing on the av-
erage dynamical behavior, these analyses provide little insight
into the information flow mechanism in an individual network.

The major obstacles preventing analytical understanding
of the information flows over networks are summarized as
follows: (i) Because information flow is a nonlinear phe-
nomenon, the total amount of information flow from the signal

source to the output vertex cannot be considered as the sum
of flows along the routes connecting the signal source to the
output vertex. Collective behaviors or interactions must be
analyzed [38–40]. (ii) The computation of information flows
generally involves a large state space and high-dimensional
matrices. It is difficult to extract the essence of the complex
phenomena from matrix calculations. (iii) Because various
factors, such as input-signal characteristics [Fig. 1(a)], net-
work topology [Fig. 1(b)], regulation rules, and noise effects,
are involved in information flows [Figs. 1(c) and 1(d)], sys-
tematic and comprehensive analysis and elucidation of the
roles of these factors are challenging. Although an analytical
graphical expansion method was developed in Ref. [41], the
input signal was limited to a simple case, and the relationship
between the signal properties and information flows was not
clarified.

Thus this study improves the graphical expansion method
to render it applicable to Boolean networks that receive input
signals with arbitrary stochastic characteristics. Our formula
expresses information flows in terms of pathways (precisely
defined in Sec. IV). We show that only combinations of
pathways that satisfy certain graphical conditions can con-
tribute to the information flows, and each contribution is
determined separately from the input-signal characteristics,
the assignment of Boolean functions, and the noise magnitude
(Fig. 2). Note that the definition of pathways and the graphical
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=
Pathway
Product

[Fourier Components {f̂i}] × [Signal Characteristics] × (
i

φi)

Ts→N ( {Ii}, {fi}, P (st+1|st), {ψi})

φi = 1 − 2ψi
E[· · · ]

FIG. 2. Pathway expansion method of TE in a stochastic Boolean
network with an arbitrary signal. Although TE in the network de-
pends on various model assumptions, our formula can be separately
described in terms of the signal characteristics, Fourier components
of the Boolean functions, and noise parameters when the network
topology is fixed.

conditions are slightly changed from those in our previous
study [41]. Applying the method to network motifs, the ori-
gins of the information-transfer characteristics in the PFFL,
NFFL, PFBL, and NFBL are revealed. In particular, Fourier
transformation of the Boolean functions participating in the
pathway interaction indicates whether a low- or high-pass
filter property emerges in feedforward loops (FFLs).

II. MODEL AND DEFINITION

We consider a stochastic Boolean network model that re-
ceives the input signal from a signal source that provides a
binary signal [Figs. 1(a) and 1(b)]. It is assumed that the
signal characteristics are arbitrary and that the signal can be
generated by either a discrete-time Markov or non-Markov
process. We denote the signal state at time t as st , where st = 1
represents the ON or up state and st = 0 represents the OFF or
down state. As an example, we employ a signal generated by
a Markov information source:

st+1 =
{

st with probability 1 − γ (st )
st with probability γ (st ),

(1)

where the transition probability γ (0 < γ � 1
2 ) can depend

on the current state st . The negation of Boolean variable
s is denoted by s. Let γ (0) = γ0 and γ (1) = γ1; then, the
stationary distribution of st is given by Pst (st = s) = γ (s)

γ1+γ0
.

The difference between the probabilities of the up and down
states indicates the signal bias:

M ≡ γ0 − γ1

γ0 + γ1
(−1 < M < +1), (2)

i.e., the up state occurs more frequently than the down state
when M > 0 and less frequently when M < 0. Moreover, the
harmonic mean of γ0 and γ1 gives the signal timescale:

� ≡ 2γ0γ1

γ0 + γ1

(
0 < � � 1

2

)
. (3)

Note that 1
�

is equivalent to half the average period of the
stochastic-signal oscillation. Thus the signal state changes
with the long timescale when � � 0 and with the short
timescale when � � 1

2 .

In a stochastic Boolean network, the state of vertex i is
synchronously updated according to

xt+1
i =

{
fi
(
xt

Ii

)
with probability 1 − ψi

fi
(
xt

Ii

)
with probability ψi,

(4)

where xt
i is a Boolean variable of vertex i at time t and fi is a

Boolean function assigned to vertex i. We assign N to the out-
put vertex and 1, . . . , (N − 1) to the other vertices arbitrarily
[Fig. 1(b)]. A set of input vertices to vertex i is denoted as Ii,
and a set of Boolean variables of Ii at t is denoted as xt

Ii
. Note

that xt
Ii

can include st . When |Ii| = 1, fi is either the identity
function or the negation function. Parameter ψi (0 < ψi � 1

2 )
represents the error rate of vertex i, i.e., the dynamics of vertex
i become deterministic in the limit of ψi → 0, whereas they
are completely random when ψi = 1

2 .
The entropy and conditional entropy are defined as

H[x] = −∑
x P(x) ln P(x) and H[x|y] = H[x, y] − H[y], re-

spectively, where P(x) is the probability distribution of a
set of variables x. We assume a stationary signal P(st ) =
Pst (st ). Then, we employ transfer entropy (TE) for quan-
tifying the information flows [42] from the signal source
to the output vertex in the stationary state, which is
defined as

Ts→N = H
[
xt

N

∣∣x−
N

] − H
[
xt

N

∣∣x−
N , s−]

, (5)

where s− ≡ (st−l , . . . , st−1) and x−
N ≡ (xt−l

N , . . . , xt−1
N ) for

sufficiently large l . Although Ts→N depends on l for small
l , it will be confirmed later that the l dependency disappears
for large l . TE generally depends on signal statistics, network
topology, assignment of Boolean functions, and error rates.
This complicated dependence structure is dismantled in our
formulation (Fig. 2).

III. NUMERICAL RESULTS

We employ four representative network motifs, namely,
PFFL (coherent motif), NFFL (incoherent motif), PFBL, and
NFBL, as shown in Fig. 1(b). In this section, we assign the
AND function to vertices with two input variables, in all the
motifs. Vertex i = 2 in the NFFL and NFBL has the nega-
tion function f2(x) = x, and the other vertices with an input
variable have the identity function f (x) = x. The error rates
are assumed to be homogeneously distributed: ψi = 0.3 for
all i. The input signal is assumed to be generated by a Markov
information source [Eq. (1)].

We numerically calculated Eq. (5) with l = 5 for the
motifs. It will be shown later that l = 5 is sufficient for l
independency of TE in the motifs. The calculation steps are
as follows: The steady-state probability distribution was first
obtained from the eigenvector of the transition matrix cor-
responding to the eigenvalue of 1. Next, P(st−l , xt−l ) was
assumed as the steady state, where xt ≡ (xt

1, . . . , xt
N ). Fur-

thermore, the transition matrix of the system and P(st−l , xt−l )
were multiplied to obtain P(st−l , xt−l , st−l+1, xt−l+1). Re-
peating this, P(st−l , xt−l , . . . , st , xt ) was obtained. Fi-
nally, P(st−l , xt−l , . . . , st , xt ) was marginalized to obtain
P(xt

N , x−
N , s−), and substituting P(xt

N , x−
N , s−) into Eq. (5)

yielded Ts→N .
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FIG. 3. Two-dimensional heat map of the numerically obtained
TE as a function of γ0 and γ1 in the (a) PFFL, (b) NFFL, (c) PFBL,
and (d) NFBL.

Figures 3(a)–3(d) show the numerically obtained TE as
a function of γ0 and γ1 for the four motifs. While the
PFFL and NFFL exhibit obviously different heat maps, the
PFBL and NFBL have similar signal-statistics dependence of
the TE.

We first focus on the diagonal line γ0 = γ1 in these figures
and inspect the signal-timescale dependence of TE when there
is no signal bias. In Fig. 1(c), the symbols represent the nu-
merically obtained Ts→N as a function of � for M = 0 for the
four motifs. With the increase in �, TE decreases in the PFFL,
whereas it increases in the NFFL. In the PFBL and NFBL, TE
appears to be independent of �.

Next, we extract only the signal-bias effect on TE, fixing �.
In Fig. 1(d), the symbols represent the numerically obtained
Ts→N as a function of M under � = 0.1. It can be observed that
TE is maximized at approximately M = 0 in all the motifs.
When the signal is highly biased, TE becomes small because
Ts→N � H[s−] and the signal ambiguity H[s−] disappears
with the increase in the bias.

We discuss the above numerical results, referring to the
previous reports on the biological functions in motifs. The
PFFL is called a persistence detector [5,7,8] because it can
respond only to a persistent signal and it does not show a clear
response to an impulsive one. Conversely, the NFFL behaves
as a pulse generator [5,7], where its response to a persistent
signal is transient. These functions are consistent with our nu-
merical results, indicating that the PFFL and NFFL function
as a low- and high-pass filter, respectively, for information
transfer. Regarding feedback loops, it is known that the PFBL
performs lock-on switching [5,9,10], whereas the NFBL gen-
erates oscillations [5,11–13]. Therefore the ambiguity of the
output variable of the NFBL is expected to be larger than that
of the PFBL. As shown later, the difference in the ambiguity
of the output variable causes a difference in TE of the NFBL
and PFBL.

IV. DIAGRAMMATIC EXPANSION

As discussed in the previous section, our numerical results
provide supportive evidence that the PFFL, NFFL, PFBL,
and NFBL act as a low-pass filter, high-pass filter, lock-on
switch, and oscillator, respectively. However, these numeri-
cal results were obtained only for specific Boolean functions
and error rates. Then, the following questions arise: How
robust are these results against the modifications of the model,
such as the replacement of the AND function by the OR

function, and the heterogenization of the error rates? Can
the aforementioned behaviors be explained in terms of the
network-motif structures such as the network topology and
regulation functions? To address these questions systemati-
cally, general formulations for the information transfer are
required.

In this section, we extend the diagrammatic expansion
method for TE proposed in Ref. [41], i.e., render it applicable
to a system with arbitrary input-signal characteristics. This
method reveals how the information-transfer characteristics
are realized from the topology and regulations of the motifs.

General formula for TE

In preparation for the formulation, certain assumptions
about the network topology are made. Because we focus on
network systems transmitting information flows, a direct link
from the signal source to the output vertex is prohibited. The
signal source is independent, i.e., it does not take any input
from the other vertices. Moreover, the output variable xN is
in accordance with either one of the following two cases: (i)
As in the FFL, it is never employed as an input. (ii) As in the
feedback loop (FBL), it is input to a one-variable function of
another node.

We derive the TE formula with a sufficiently large l . The
details of the derivations are presented in Sec. A of the
Supplemental Material (SM) [43]. We first convert the error
rate ψi into an expansion parameter φi (0 � φi < 1):

φi = 1 − 2ψi. (6)

Note that when φi = 0 for all i, the probability distribution
of all the variables except the input signal is uniform, and
P(xi ) = P(xi ) for any i. This symmetry is the key for consid-
erably reducing the computational complexity. Using φi, the
following conditional probability is expressed as

P
(
xt

i |xt−1
Ii

) = 1
2

(
1 + φt

i D
[

fi
(
xt−1

Ii

)
, xt

i

])
. (7)

Here, D[x, y] is the function defined by D[x, x] = 1 and
D[x, x] = −1. In Eq. (7), we append t to φi as a marker to
assist in our formulation.

The pathways utilized to express TE are defined in a tem-
poral graph [41]. A similar graph was used in Refs. [44–47].
Figures 4 and 5 display the temporal graphs for the FFL and
FBL, respectively. These graphs represent the connections
between the stochastic variables and do not specify the in-
put signal, Boolean functions, or error rates. Here, variables
st and xt

i are represented by a circle node (◦) at t . Signal
nodes {st ′ |t − l � t ′ � t} are located on the top line. Output
nodes {xt ′

N |t − l � t ′ � t} specially represented by double cir-
cles are located on the bottom line. The other nodes {xt ′

i |i �=
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FIG. 4. Temporal graphs for the FFL. (a) Example of a bond:
φt

N D[ fN (xt−1
1 , xt−1

2 ), xt
N ] (magenta lines). This is also an existent

pathway consisting of a single bond. (b) and (c) Other examples
of existent pathways (magenta lines). The abovementioned existent
pathways are labeled P (1)

t , P (2)
t , and P (3)

t , respectively, because they
contain one, two, and three bonds (squares), respectively, and their
rightmost node is the output node at t . (d) Example of a nonexistent
pathway (dotted lines). This does not satisfy condition C2 (shown
later) because internal node xt−2

1 is connected to only one open square
within the pathway.

N, t − l � t ′ � t} are called internal nodes. An internal or
output node xt

i is connected to a set of circle nodes xt−1
Ii

via a
square node, which is associated with the function fi(xt−1

Ii
). If

the function is a single-variable function (i.e., |Ii| = 1), it is
represented by an open square (�); otherwise (i.e., |Ii| > 1),
it is represented by a solid square (�).

We associate the factor φt
i D[ fi(xt−1

Ii
), xt

i ] with a subnet-
work called a bond, which comprises a square, the edges
incident on the square, and the circles neighboring the square
[Fig. 4(a)]. Moreover, we define the union of bonds (that is not
empty) as a pathway, Pα . Examples of pathways are depicted
in Figs. 4 and 5.

Each pathway has a pathway weight. We use Pα both for a
pathway and for its weight. It is given by

Pα = 1

2Jα

∑
xα

∏
bond∈α

φt
i D

[
fi
(
xt−1

Ii

)
, xt

i

]

= 1

2Jα

∑
xα

∏
bond∈α

φt
i σ

(
fi
(
xt−1

Ii

))
σ
(
xt

i

)
, (8)

where σ (x) ≡ D[x, 1] and D[x, y] = σ (x)σ (y).
∏

bond∈α rep-
resents the product of all the bond factors φD’s in pathway
Pα . xα denotes a set of internal nodes xt

i within pathway Pα ,
and Jα denotes the number of internal nodes. For example,
the pathway weight for pathway P (1)

t in Fig. 4(a) is given by
P (1)

t = 1
22

∑
xt−1

1 =0,1

∑
xt−1

2 =0,1 φt
N D[ fN (xt−1

1 , xt−1
2 ), xt

N ].
Using the pathways, the joint probability distribution re-

quired for the TE calculation can be expressed as follows (see
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FIG. 5. Temporal graphs for the FBL. (a)–(c) Existent pathways
(magenta lines) labeled P (2)

t , P (3)
t , and P (5)

t . (d) Nonexistent path-
way (dotted lines). This does not satisfy condition C2 (shown later)
because the internal node xt−4

1 is connected to only one open square
within the pathway.

Sec. A1 of the SM [43]):

P
(
xt

N , x−
N , s−) = 1

2l+1
P(s−)

[
1 +

∑
α

Pα + O(φq)

]
, (9)

where q is a positive integer, which can be chosen according
to the desired calculation precision. It is to be noted that
signal nodes are treated separately from the other variables
[squares (�) are not introduced between signal transitions].
This enables us to factor out the signal distribution in Eq. (9).
Thus the effect of the signal statistics on TE is clarified as
shown in Eq. (13).

In Eq. (9), most of the pathways contain
∑

x=0,1 σ (x) =
0 due to the symmetry P(xi ) = P(xi ), and therefore they
are nonexistent. The existent pathways satisfy the following
graphical conditions.

(C1): In the pathway, circle nodes that do not have nodes
on their right side must be one of the output nodes.

(C2): For every internal node in the pathway, if all the
squares directly connected to the node and located within the
pathway are open, then the number of open squares must be
even.

Condition C1 implies that an output node can be reached
by starting from any internal node of the pathway and moving
forward in time. In other words, an internal node can influence
an output node only through a chain of causal interactions.
Condition C2 originates from a property of a single-variable
Boolean function: σ ( f (x)) is equal to either +σ (x) or −σ (x).
A pathway that does not satisfy condition C2 includes an inter-
nal node xt ′

i that is surrounded only by an odd number [2m + 1
(m ∈ Z�0)] of open squares located in the pathway. The path-
way contains

∑
xt ′

i =0,1 σ (xt ′
i )2m+1 = ∑

xt ′
i =0,1 σ (xt ′

i ) = 0. This
symmetric property causes the contribution of the pathway to
the joint probability distribution, Eq. (9), to vanish. Pathways
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that do not satisfy condition C2 are shown in Figs. 4(d) and
5(d) as examples. The proofs of conditions C1 and C2 are
presented in Sec. A1 of the SM [43].

Substituting Eq. (9) in the definition of entropy, the two
types of conditional entropy are expanded in terms of path-
ways as follows:

H
[
xt

N

∣∣x−
N , s−]

= H
[
xt

N , x−
N , s−] − H[x−

N , s−]

= ln 2 −
∞∑

k=2

(−1)k

k(k − 1)

∑
α1

· · ·
∑
αk

E
[
Pα1 · · ·Pαk

]
(10)

and

H
[
xt

N

∣∣x−
N

] = H
[
xt

N , x−
N

] − H[x−
N ]

= ln 2 −
∞∑

k=2

(−1)k

k(k − 1)

∑
α1

· · ·
∑
αk

E
[
Pα1

] · · · E
[
Pαk

]
,

(11)

where E [· · · ] represents the signal average defined as

E [X (s−)] =
∑

s−
X (s−)P(s−). (12)

For both conditional entropies, the set of pathways
{Pα1 , . . . ,Pαk } appearing in each term satisfies the following
condition.

(C3): m(t ′,Pα ) denotes the number of squares directly
connected to an output node xt ′

N within pathway Pα . For any t ′,
the sum

∑k
i=1 m(t ′,Pαi ) must be even. In particular, for t ′ = t ,

the sum must be greater than or equal to 2.
For example, in Fig. 5, m(t,P (2)

t ) = 1, m(t,P (3)
t ) = 1,

m(t − 3,P (3)
t ) = 1, m(t,P (5)

t ) = 1, and m(t − 3,P (5)
t ) = 2.

{P (2)
t ,P (5)

t } satisfies condition C3, whereas {P (3)
t ,P (5)

t } does
not; m(t − 3,P (3)

t ) + m(t − 3,P (5)
t ) = 3.

Moreover, the pathway product E [Pα1 · · ·Pαk ] appearing
in H[xt

N |x−
N , s−] cancels out with other terms in Eq. (10),

unless the set {Pα1 , . . . ,Pαk } satisfies a connectivity con-
dition C4-i. In a similar manner, the pathway product
E [Pα1 ] · · · E [Pαk ] appearing in H[xt

N |x−
N ] cancels out with

terms in Eq. (11), unless the set {Pα1 , . . . ,Pαk } satisfies an-
other connectivity condition C4-ii.

(C4-i): Pα1 ∪ · · · ∪ Pαk is connected, and
Pα1 ∪ · · · ∪ Pαk \ Pc is connected.

(C4-ii): At least one of the following two conditions must
be satisfied: (1) Pα1 ∪ · · · ∪ Pαk is connected, and Pα1 ∪ · · · ∪
Pαk \ Pc is connected. (2) Pα1 ∪ · · · ∪ Pαk ∪ Ps− is connected,
and Pα1 ∪ · · · ∪ Pαk ∪ Ps− \ Pc is connected.

Here, the symbol ∪ denotes the union of pathways
in the temporal graph, Pc corresponds to any of the k
pathways, \Pc represents the subtraction of Pc from a union,
and Ps− corresponds to a subgraph consisting of signal nodes
s− and the edges between them in the temporal graph. In
Fig. 6, an example of a pathway product that satisfies neither
condition C4-i nor condition C4-ii is illustrated, where Ps− is
indicated by a blue rectangle.

FIG. 6. Nonexistent pathway product P (1)
t P (2)

t P (1)
t−1P

(2)
t−1 in the

FFL. Because the union of pathways P (1)
t ∪ P (2)

t ∪ P (1)
t−1 ∪ P (2)

t−1 is
disconnected, condition C4-i is violated. Thus E [P (1)

t P (2)
t P (1)

t−1P
(2)
t−1]

is not required for calculating H [xt
N |x−

N , s−]. Adding Ps− to
it, the union P (1)

t ∪ P (2)
t ∪ P (1)

t−1 ∪ P (2)
t−1 ∪ Ps− is connected. How-

ever, if P (2)
t−1 is removed, the union P (1)

t ∪ P (2)
t ∪ P (1)

t−1 ∪ Ps−

is disconnected, i.e., condition C4-ii is violated. Therefore
E [P (1)

t ]E [P (2)
t ]E [P (1)

t−1]E [P (2)
t−1] is not required for calculating

H [xt
N |x−

N ].

Taking the difference between the conditional entropies in
Eqs. (10) and (11), we finally obtain the general TE formula:

Ts→N =
∞∑

k=2

(−1)k

k(k − 1)

∑
α1

· · ·
∑
αk(

E
[
Pα1 · · ·Pαk

] − E
[
Pα1

] · · · E
[
Pαk

])
, (13)

where pathway products satisfying condition C4-i and those
satisfying condition C4-ii contribute to E [Pα1 · · ·Pαk ] and
E [Pα1 ] · · · E [Pαk ], respectively. The factors that characterize
the system appear implicitly in this formula. The signal statis-
tics are employed for averaging the pathways and pathway
products, and the Boolean functions and error rates are in-
cluded in the pathways. Note that Eq. (13) is not restricted to
systems with a Markov information source.

In Eq. (13), for the set {Pα1 , . . . ,Pαk } that satisfies
both condition C4-i and condition C4-ii, E [Pα1 · · ·Pαk ] and
E [Pα1 ] · · · E [Pαk ] can be canceled out by each other in certain
cases. If all the pathways in set {Pα1 , . . . ,Pαk } have no signal
nodes, E [Pα1 · · ·Pαk ] = E [Pα1 ] · · · E [Pαk ] holds. Moreover,
if only one pathway in set {Pα1 , . . . ,Pαk } has signal nodes,
the same equation holds. Therefore the set {Pα1 , . . . ,Pαk } that
actually contributes to TE satisfies the following condition.

(C5): At least two pathways in k pathways {Pα1 , . . . ,Pαk }
must have signal nodes.

Conditions C3, C4-i, C4-ii, and C5 have intuitive inter-
pretations. Condition C3 indicates that any existent pathway
product has the output node xt

N . Conditions C4-i and C4-ii
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indicate that pathways in any existent pathway product are
connected. Condition C5 indicates that any existent pathway
product contains signal nodes. Therefore their combination
indicates that only the pathway products that bridge the input
and output achieve information transfer. Thus the essential
structures for information transfer are extracted by the graph-
ical conditions. The proofs of conditions C3, C4-i, C4-ii, and
C5 are presented in Secs. A2, A3, and A4, respectively, of the
SM [43].

In practical applications, even a pathway product that satis-
fies all the graphical conditions does not need to be considered
if its order of φ is high. The reason is that the contribution
of a high-order pathway product to TE is less. Such products
are those containing (i) many pathways and (ii) long-past
nodes. The contribution from a pathway with long-past nodes
decays on the signal timescale �. Thus pathway products
with long-past nodes can be neglected. This implies that TE
is independent of l for sufficiently large l in the definition
Eq. (5).

The graphical restrictions [conditions (C1)–(C5)] that re-
move numerous irrelevant pathways and their products enable
efficient computation of TE. Applying Eq. (13) to a concrete
system, TE is further decomposed into its individual elements
as illustrated in Fig. 2.

V. APPLICATION TO NETWORK MOTIFS

We apply the general formula in Eq. (13) to the motifs.
One may suspect that Boolean functions would need to be
specified before starting the computation of TE because the
pathway weights appearing in Eq. (13) depend on the choice
of the Boolean functions. However, Fourier transformation of
the Boolean functions [48,49] makes it possible to defer the
substitution of a specific set of Boolean functions into the
pathway weight Eq. (8); thus it provides the TE formula for
a certain network with arbitrary Boolean functions. In this
section, we first introduce the Fourier transformation and then
present the TE formulas for the FFL and FBL. Finally, we
discuss how the length difference of the respective routes from
the signal source to the output vertex in a motif generates the
signal-timescale dependence of TE.

A. Fourier transformation of Boolean functions

An n-variable function σ ( f (x)) can be expressed as the
following Fourier series [48,49]:

σ ( f (x)) =
∑

k

f̂(k)

{∏
j∈k

σ (x j )

}
, (14)

f̂(k) = 1

2n

∑
x

σ ( f (x))

{∏
j∈k

σ (x j )

}
, (15)

where k is a subset of input variables x and f̂k is the Fourier
coefficient of f at k. We illustrate the Fourier transforma-
tion for one- and two-variable functions. For f (xi ) (namely,

n = 1), k is either empty ∅ or xi:

σ ( f (xi )) = f̂(∅) + f̂(i)σ (xi ),

f̂(∅) = 1

2

∑
xi=0,1

σ ( f (xi )),

f̂(i) = 1

2

∑
xi=0,1

σ ( f (xi )) σ (xi ).

Because f̂(∅) = 1
2 [σ ( f (0)) + σ ( f (1))] = 0, σ ( f (xi )) =

f̂(i)σ (xi ). When f is the identity (negation) function,
f̂(i) = +1 (−1).

For n = 2, k ∈ {∅, x j, xk, (x j, xk )}, and we denote the
Fourier series as follows:

σ ( f (x j, xk )) = f̂(∅) + f̂( j)σ (x j )

+ f̂(k)σ (xk ) + f̂( j,k)σ (x j ) σ (xk ),

f̂(∅) = 1

22

∑
x j=0,1

∑
xk=0,1

σ ( f (x j, xk )),

f̂( j) = 1

22

∑
x j=0,1

∑
xk=0,1

σ ( f (x j, xk )) σ (x j ),

f̂(k) = 1

22

∑
x j=0,1

∑
xk=0,1

σ ( f (x j, xk )) σ (xk ),

f̂( j,k) = 1

22

∑
x j=0,1

∑
xk=0,1

σ ( f (x j, xk )) σ (x j ) σ (xk ).

Each Fourier coefficient measures the correlation between
the output variable of the function and the respective input
variable or a combination. For example, f̂( j) measures the cor-
relation between σ ( f (x j, xk )) and σ (x j ). When f (x j, xk ) is the
AND function, f̂(∅) = − 1

2 and f̂( j) = f̂(k) = f̂( j,k) = + 1
2 . When

it is the OR function, f̂(∅) = f̂( j) = f̂(k) = + 1
2 and f̂( j,k) =

− 1
2 . When it is the XOR function, f̂(∅) = f̂( j) = f̂(k) = 0 and

f̂( j,k) = −1, i.e., the XOR function correlates only with a com-
bination of two input variables.

This transformation simplifies a polynomial expression of
a pathway weight, Eq. (8), by performing the summation
over internal nodes xα . As shown later, for any pathway, the
Fourier components of the Boolean functions contributing to
the pathway weight are those projected along the pathway.

B. TE of the FFL and FBL

The steps for calculating the TE of the motifs are sum-
marized below: (i) The temporal graph is drawn for a motif
(Figs. 4 and 5). (ii) The existent pathways satisfying con-
ditions C1 and C2 are listed. (iii) The pathway products
satisfying conditions C3–C5 are constructed up to a desired
order of φi. (iv) The pathway weights appearing in the path-
way products constructed in step (iii) are simplified using
Fourier transformation. (v) The constructed pathway products
are averaged over the signal distribution according to Eq. (13).

In Secs. B1 and B2 of the SM [43], we indicate the existent
pathways required for calculating TE of the FFL and FBL,
respectively. As an example of a Fourier-transformed pathway
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FIG. 7. Schematic of the origin of the TE signal-timescale de-
pendence in the FFL. Here, for example, f̂N (1) is represented as the
“shadow” of fN cast by the “incident light” 1 → N . The filtering
property of the motif is determined by the combination of the pro-
jected Boolean functions along pathways P (2)

t and P (3)
t .

weight, we present P (3)
t for the FFL drawn in Fig. 4(c):

P (3)
t = f̂1(s) f̂2(1) f̂N (2)φ1φ2φNσ (st−3)σ

(
xt

N

)
, (16)

where the Boolean functions are not yet specified. Although
this pathway contains fN (x1, x2), only the Fourier component
of the direction along the pathway, f̂N (2), contributes to the
pathway weight.

The pathway products required for the FFL and FBL are
also shown in Secs. B1 and B2, respectively, of the SM [43].
The formulas for the FFL and FBL up to the order of φ7

comprise ten and five pathway products, respectively. These
formulas precisely reproduce the numerically obtained TE
values, as shown in Figs. 1(c) and 1(d), where ψi = 0.3 (i =
1, 2, N ) are assumed. As the error rates are increased (ψi →
1
2 ), the accuracy of our perturbative method improves. We
point out that all the pathways used for obtaining the formulas
contain no nodes st ′

or xt ′
i (t ′ < t − 5). This indicates that, up

to O(φ7), the TE of the motifs is independent of l when l � 5.
The first and second leading terms in the expansion series

for the FFL are sufficient to identify the difference between
the PFFL and NFFL. Assuming φi = φ for simplicity, the TE
of the FFL is given by

T FFL
s→N = 1

2 f̂N
2
(1)(1 − M2)φ4

+ f̂2(1) f̂N (1) f̂N (2) (G1 − M2)φ5 + O(φ6), (17)

where GL is the autocorrelation function of the signal defined
as

GL = E [σ (st−L )σ (st )]. (18)

The correlation G1 can be simply described in terms of the
harmonic mean �:

G1 = 1 − 2�, (19)

i.e., G1 increases with the increase in the average signal
timescale 1/�. Thus we find that the timescale dependence
of TE is caused by the presence of G1 in Eq. (17).

Equation (17) further indicates that, for M � 0, an increase
in G1, i.e., an increase in the signal timescale, leads to an
increase in T FFL

s→N , if a motif satisfies

f̂2(1) f̂N (1) f̂N (2) > 0. (20)

Note that the left-hand side consists of the Fourier com-
ponents along the pathways (Fig. 7). In contrast, a smaller

G1, i.e., a shorter signal timescale, leads to an increase in
T FFL

s→N for any motif that satisfies f̂2(1) f̂N (1) f̂N (2) < 0. Hence
the emergence of either the low- or high-pass filtering prop-
erty for a time-varying signal is determined only by the sign
of f̂2(1) f̂N (1) f̂N (2). This reveals that such filtering properties
are robust with respect to various modifications, such as the
replacement of the AND function by the OR function, position
change of an inhibition interaction or negative link from 1 →
2 to 2 → N , and shuffling of noise parameters ψ1, ψ2, and ψN .
Thus the inequalities in Eq. (20) and f̂2(1) f̂N (1) f̂N (2) < 0 can
be employed for defining the PFFL and NFFL, respectively.

The leading term of Eq. (17) includes a square of the bias
M. Therefore T FFL

s→N is maximized when M � 0, independent
of the signal timescale, as observed in Fig. 1(d).

The TE formula for the FBL up to φ7 is presented in
Sec. B2 of the SM [43]. It turns out that the FBL has the
same leading term as the FFL. Therefore TE in the FBL is
maximized when M � 0 [Fig. 1(d)]. Here, we show the TE of
the FBL with an unbiased signal:

T FBL
s→N (M = 0) = 1

2 f̂1
2
(s)φ

4 + 1
2 f̂1

2
(s,2)φ

6

− f̂N (1) f̂2(N ) f̂1
2
(∅) f̂1(2)φ

7 + O(φ8). (21)

We can see that Eq. (21) is independent of the signal
timescale. For M �= 0, TE depends on the signal timescale �.
However, this dependence is weak because it first appears in
the order of φ7.

Noting that f̂2(N ) = 1
2 and f̂2(N ) = − 1

2 for the PFBL and
NFBL that we employed, respectively, the difference in TE
between the PFBL and NFBL [Figs. 1(c) and 1(d)] is due to
the φ7 term in Eq. (21). More specifically, this term originates
from H[xt

N |x−
N ], as shown in Sec. B2 of the SM [43]. Thus our

analytical method verifies the intuition mentioned in Sec. III
that the TE difference among FBLs is generated by the differ-
ence in the ambiguities of the output variables.

As shown above, the TE of the FFL depends on the signal
timescale due to the existence of G1 in the second leading
term, whereas that of the FBL hardly depends on the signal
timescale because GL is absent in both the first and second
leading terms. In the following section, we discuss the net-
work structure that causes GL to appear in the low-order terms
of TE.

C. Signal-timescale independence in a biparallel motif

For FFL motifs, the TE dependence on the signal timescale
is caused by G1. This originates from the pathway product
P (2)

t P (3)
t , as indicated by the derivation process for Eq. (17).

The pathway product corresponds to the interaction between
the shortest route s → 1 → N and second shortest route s →
1 → 2 → N in the regulation network (Fig. 7). In contrast,
for FBL motifs, which do not exhibit signal-timescale depen-
dence, only route s → 1 → N connects the signal source to
the output vertex. If a regulation network has only multiple
information routes of the same length, does TE depend on
the signal timescale? To answer this question, we introduce
a motif called “biparallel,” which only has routes of the same
length, as shown in Fig. 8(a).

013037-8



INFORMATION-TRANSFER CHARACTERISTICS IN … PHYSICAL REVIEW RESEARCH 5, 013037 (2023)

FIG. 8. (a) Biparallel network motif. Two existent pathways
P (3a)

t and P (3b)
t are drawn, which are defined in (b). (b) Existent

pathways P (3a)
t and P (3b)

t for the biparallel network motif, where
superscripts a and b are introduced to distinguish two pathways of the
same order of φ3. We emphasize that they share an identical signal
node st−3. Consequently, the pathway product P (3a)

t P (3b)
t does not

provide GL . Therefore TE does not depend on the signal timescale.

In the biparallel motif, TE hardly shows timescale depen-
dence (the derivation is presented in Sec. B4 of the SM [43]):

T biparallel
s→N = 1

2

[
f̂N

2
(2) + f̂N

2
(3) + 2 f̂2(1) f̂3(1) f̂N (2) f̂N (3)

]
×(1 − M2)φ6 + O(φ8). (22)

This is because the two pathways, corresponding to the two
shortest routes from the signal source to the output vertex,
share the same signal node [Fig. 8(b)] and, consequently, their
interaction does not provide GL. Conversely, for the signal-
timescale dependence of TE, i.e., the filtering property for
information flow, at least two routes with different lengths
should exist in a regulation network.

VI. DISCUSSION AND CONCLUSION

Utilizing the abstraction of a Boolean network model, we
revealed the information-transfer characteristics of an indi-
vidual motif, which is the most basic functional unit in a
complex network, including biological, technological, and so-
cial systems. The PFFL and NFFL have low- and high-pass
filtering properties, respectively, for fluctuating signals with
various timescales. Such properties originate from the interac-
tion between information pathways with different lengths. The
emergence of a low- or high-pass filter is solely determined by
the positive or negative sign of the product of the Fourier com-
ponents along the pathways. This indicates that emergence is
possible even with various structural modifications. In con-
trast, the PFBL and NFBL can transmit information stably,
independently of the signal timescale. This is because they do
not have multiple information routes with different lengths.

Owing to the systematic nature of the TE formula, the
aforementioned information-transfer characteristics in each
motif were clarified to be independent of the details of its
regulation rules and determined only by topological aspects
of pathway combinations. In other words, the informational
function indicated by a motif originates from the connection
pattern of the motif, that is, what defines the motif or the defin-
ing property of the motif. Discovering such general properties

solely by using numerical calculations and experiments would
be difficult.

Our graphical expansion method avoids all the obstacles
for the analytical computation of TE. Expansion around the
uniform probability distribution with symmetrical property
P(xi ) = P(xi ) realizes significant reduction in the computa-
tional complexity. Consequently, the few pathway products
that satisfy all the graphical restriction conditions express the
essential features of the interactions that give rise to informa-
tion flows. This reduction is also found in the literature [41].
There are two aspects to this study that we wish to highlight.
First, the special treatment of the signal nodes in constructing
the joint probability distribution Eq. (9) enables the postpone-
ment of the consideration of signals to the final operation, that
is, averaging the pathways, for obtaining TE. This technique
successfully separates TE into the parts derived from the inter-
nal structure and those derived from the signal characteristics.
Second, Fourier transformation of the Boolean functions en-
ables TE calculation without requiring the determination of
specific functional forms for the regulations. Consequently,
a general condition on the regulatory relations for the emer-
gence of the filtering property is derived for a motif. Because
our method can be extended to other entropic quantities, such
as mutual information, dissipation rate, and learning rate, it
would be employed to perturbatively examine relations be-
tween information-theoretic measures [50–59].

Our theory can provide design principles for regulation
networks that transfer information for different purposes. Al-
though only one signal source was considered in this paper,
biological systems often receive signals from various sources
simultaneously and process them. For example, the neural
network of Caenorhabditis elegans can integrate multiple
sensory inputs, such as O2, CO2, and the temperature [60].
ERBB signal transduction can respond to a variety of ligand
molecules [61]. To understand such information processing,
it is desirable to include multiple information sources in our
formulation.

Our methods can be applied to Boolean networks with
a general topology. Although we focused on motifs in this
paper, our methods can be beneficial for understanding the
effect of other topological properties, such as the redundancy,
centrality, hierarchy, clustering, and degree distributions [62],
on the information-transfer characteristics. Moreover, appli-
cation of the methods to real biological networks can enable
the identification of the dominantly contributing pairs or
combinations of pathways for transmitting information. The
identification of such pairs or combinations will contribute to
bridging the gap between observable microscopic processes,
such as firing of neurons or expression of genes, and the
macroscopic emergence of biological functions.
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