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Ultra-high-precision detection of single microwave photons based on a hybrid system

between a Majorana zero mode and a quantum dot
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The ability to detect single photons has become increasingly essential due to the rise of photon-based quantum
computing. In this theoretical work, we propose a system consisting of a quantum dot (QD) side-coupled to a
superconducting nanowire. The coupling opens a gap in both the QD mode and the Majorana zero mode (MZM)
at the nanowire edge, enabling photon absorption in the system. We show that the absorbed photoelectron decays
via rapid (subnanosecond to nanosecond) nonradiative heat transfer to the nanowire phonon modes rather than
by spontaneous emission. Furthermore, we calculate the temperature increase and associated resistance increase
induced by the absorption of a photon for a given appropriate set of material and environmental parameters,
yielding a temperature increase in the millikelvin range and a resistance increase in the kiloohm range, vastly
exceeding the photon-absorption-induced temperature and resistance increases for competing 2D-3D hybrid
systems by 5 and 9 orders of magnitude, respectively. Last, we determine the detector efficiency and discuss the
system density required for deterministic photon number measurement, demonstrating that a photon absorption
probability of over 99.9 percent can be achieved for an integrated system consisting of an array of nanowire-QD
complexes on-chip inside a cavity. Our results thus provide a basis for a deterministic microwave photon number
detector with an unprecedented photon-number-detection resolution.

DOI: 10.1103/PhysRevResearch.5.013034

I. INTRODUCTION

The ability to detect single radio-frequency photons has be-
come increasingly essential due to the rise of superconducting
quantum computing. The bolometer approach of single-
photon detectors is more appropriate than others because
of the extreme sensitivity of temperature-change-induced
physical measurement capabilities [1-4]. The key require-
ments in designing a bolometer-type photon number detector
are to ensure spatial separation between the absorber (the
part of the system absorbing the photons) and the bolometer
(the part that is used as a platform for measurement) so that
the measurement process does not wash out the absorbed
photoelectron, rapid and deterministic energy transfer
from the absorber to the bolometer so that the parasitic
radiative decay process does not annihilate the excited
photoelectron before the measurement can be performed, and
high-precision resolution, given the relatively small energy
of a single radio-frequency photon. Past proposals have
focused on hybrid 2D /3D systems, with a 2D surface state
absorbing the ambient photons and subsequently transferring
energy through heat transfer to the 3D bulk phonon modes,
upon which the energy gain in the bulk is measured via
bolometry. Examples of this setup include transition edge
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sensors (TESs) [2-4], and more recently, Dirac semimetals
such as Cd;As; [l] consisting of a proximity-induced
superconducting bulk (with a gap larger than the microwave
photon frequency) and a graphene-like topological surface
state. Although such systems achieve absorber-bolometer
spatial separation, with the Cd;As, detector achieving rapid
energy transfer from the photoelectrons to the bolometer as
well, the large volume required for the hybrid 2D /3D systems
sharply limits the temperature increase per absorbed photon,
with sub-micro-ohm measurement required to resolve the
temperature-induced resistance increase in the bulk.

To achieve a measurement resolution sufficient for detect-
ing every absorbed single photon, it is therefore desirable to
use a low-dimensional detector that reduces vastly the heat
capacity and, thus, increases the temperature contrast. To this
end, superconducting nanowires (consisting of a 1D semi-
conductor that has acquired a superconducting gap through
proximity) provide an ideal platform for single-photon de-
tection. Superconducting nanowire single-photon detectors
(SNSPDs), which involve a photon absorbed by a Cooper pair
causing the nanowire to revert to the normal (nonsupercon-
ducting) state, thereby reducing the current flow through the
wire, have gained popularity as a means of detecting opti-
cal photons [5-9]. However, due to efficiency constraints at
lower photon frequencies, research thus far has been limited
to telecommunication wavelengths [10,11], or more recently
infrared wavelengths [12].

Here, we propose a system consisting of a p-wave super-
conducting nanowire side-coupled to a quantum dot at each
end. The topological edge state of such a nanowire has been
theorized to be a Majorana bound state [13,14], which is by
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FIG. 1. (Wider figure) System diagram. The Majorana zero mode (MZM) at each end of the nanowire is coupled to a quantum dot (QD).

Note that the figure is not drawn to scale.

itself incapable of absorbing single photons due to the lack of
an electric dipole moment. However, the hybrid Majorana-QD
mode can absorb single photons, exciting the system to the
higher-energy state consisting of a superposition of an excited
QD electron and a nanowire edge state excitation. Ideally, the
excitation would then decay to the ground state via nonra-
diative heat transfer to the phonon modes of the nanowire.
The consequent temperature increase in the wire can then
be determined by measuring the increase in the longitudi-
nal resistivity. We will calculate the resistance increase per
photon as a function of the sample dimensions and ma-
terial properties, with the goal of ensuring high-precision
resolution for the detector. To measure the longitudinal resis-
tance without perturbing the Majorana modes (thus ensuring
absorber-bolometer separation), we will place each lead at
least 150 nm inward from the corresponding edge. Further-
more, we will theoretically derive the nonradiative energy
transfer time from the QD-Majorana mode to the nanowire
phonons, so that we can compare to the time for the undesired
radiative decay process.

Our ultra-high-precision microwave photon number detec-
tor serves as a major breakthrough in multiple respects. It
is the first real-world application of Majorana zero modes
other than topological quantum computing. It also provides
a revolutionary improvement in detection resolution for mi-
crowave photons, with a 9-orders-of-magnitude resolution
improvement over a Cds;As, detector [1]. Finally, the system
is highly integrable due to the extremely small size of each
QD-Majorana complex.

The paper is organized as follows: In Sec. II, we derive
the QD-Majorana hybridized spectrum and the interaction
strength between a photon and an electron in this complex.
In Sec. III, we calculate the heat capacity of the nanowire,
and from that the temperature increase per absorbed photon.

Section IV shows the method for calculating the energy
transfer rate from the excited photoelectron to the nanowire
phonons. In Sec. V, we lay out the means of calculating the
photon absorption probability for a system of QD-nanowire
complexes on-chip inside a microwave cavity. Finally, in
Sec. VI, we optimize the numerical values for the parameters.
The results demonstrate a near-deterministic photon absorp-
tion probability of over 99.9%, an absorber-to-bolometer
energy transfer rate exceeding the parasitic radiative decay
rate by over 8 orders of magnitude, and most crucially, an
over 6-order-of-magnitude improvement in single-photon res-
olution compared to a 2D /3D hybrid system such as a Cd;As,
detector [1].

II. QD-MAJORANA HYBRID STATES AND PHOTON
ABSORPTION

The setup of the QD-nanowire system is depicted in
Fig. 1. At low temperatures, the s-wave superconducting
strips induce p-wave superconductivity in the semiconducting
nanowire, leading to the formation of Majorana zero modes
(MZMs) at the edges. Fundamentally, this process is driven
by two phenomena. First, Rashba spin-orbit coupling, as well
as Zeeman splitting induced by an applied magnetic field,
give rise to spin-momentum locking for the semiconduct-
ing nanowire at the Fermi level. Next, Cooper pairs tunnel
from the s-wave superconducting strips to the semiconducting
nanowire due to the proximity effect. The former and latter ef-
fects are represented by the following Hamiltonian operators
Hy and Hgc, respectively [15,16]:

»

Hy = — _M+‘/zaz+a0\’px’ (D
2m ;

Hsc = / dx(A(x) f; @ f] )+ A* @ f, D)), (2)
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FIG. 2. Depiction of the coupling between each quantum dot
(QD) and the adjacent Majorana zero mode (MZM), with A rep-
resenting the hopping parameter between QD and MZM wave
functions.

where the constants m, u, V,, and « represent the effective
electron mass, chemical potential, effective Zeeman split-
ting, and Rashba spin-orbit interaction strength, respectively,
the operators p and o denote the momentum and spin, re-
spectively, and the spatially varying parameter A(x) is the
proximity-induced superconducting gap. Note that x is de-
fined as the axis of the nanowire, whereas 2 is the direction
of the applied magnetic field (i.e., the axis perpendicular to
the interface between the semiconducting nanowire and the
s-wave strips).

A pair of leads are connected at the ends of the intermediate
region between the s-wave strips to dynamically measure the
resistance increase (which serves as a proxy for temperature
increase). The nanowire is side-coupled to a QD at each end,
with a hopping parameter of A between a QD mode and the
Majorana zero mode (MZM) facing the QD, as depicted in
Fig. 2. The length of the nanowire is far greater than the coher-
ence length of the Majorana wave function, thus rendering any
coupling between the opposite-end Majorana modes negligi-
ble. For each quantum dot, we start by setting the gate voltage
such that the its energy level (when occupied) is aligned with
that of the Majorana state. We set the ladder operators for
the quantum dot with Fock states |0) (unoccupied) and |1)
(occupied) as

d=10)(1], 3)
d'=1)(0|. “4)

Next, we consider the Majorana operators on each end of the
nanowire. In general, for an N-site chain, the unpaired “left”
and “right” Majorana operators (n- and n&, respectively) are
defined in terms of the fermionic operators f for the first and
N sites as follows [17]:

= A+ f )
R = —ilfy = f). (6)

Note that (7})*> =1 = (nR)?, indicating that the Majorana
operators cycle the system between states in a twofold-
degenerate system (assuming that the nanowire is much longer
than the Majorana wave function’s coherence length). Given
the requirement that these zero-energy states obey particle-
hole symmetry [18], the edge modes will be composed
of equal-weight superpositions of unoccupied and occupied
regular fermionic states. Specifically, it is worth noting that
the two Majorana superpositions for each edge feature oppo-

site parities. Applying the particle-hole symmetry condition,
the states take the following form [17]:

1

V) = ﬁ(l())l =Dy, (N
1
Vs)y = E(K»N £ [1)y). ®)

Intuitively, for each edge, the |0) and |1) states can be con-
ceptualized as a half-hole and a half-electron, respectively.
As such, the states satisfy the requirement that a Majorana
state be composed of an electron-hole superposition [19,20].
As desired, the Majorana operators act to flip the state parities:

nh ), = £ ¥s),, )

e W)y = Fi [¥)y - (10)

The overlap between the Majorana wave function and the
quantum dot wave function gives rise to the following interac-
tion Hamiltonian [21] for the left and right edges, respectively:

Hy, = hx(d +d"nk, (11)

Hg = —ihx(d — d" )R, (12)

where Hpy is modified to ensure that the interaction Hamil-
tonian only features real matrix elements corresponding to
the hopping between |01) and |10), i.e., between the QD
wave function and the Majorana wave function, and that these
hopping parameters equal those for Hy. This in turn ensures
that these wave functions remain real-valued in the real-space
representation, thus simplifying the dipole matrix element
calculation that will be performed later in this work.

For the left edge, in the composite basis (|0y_);,
0¥, (14 ), [1Y_) ), the QD-MZM interaction Hamil-
tonian is represented by the following matrix:

0 0 0 -1
0 0 1 O

Hp = h) o 1.0 ol (13)
-1 0 0 O

It is evident that the Hamiltonian couples |0y4); with [1y4);,
thus allowing the composite 4-dimensional system to be split
into two two-dimensional subsystems. Physically, we can ex-
plain it as the QD-Majorana interaction switching the QD
state while conserving the Majorana state. Solving for the
eigenvalues and eigenvectors of H, we find that the energy
levels become the following:

E. = 45, (14)
corresponding to the following composite states:
1

A, = 5000, = 1)) ()
1B, +) = %uomn L), (16)
A, —) = %uowu i), (a7)
B, —) = %uowm 1), (s)
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FIG. 3. Depiction of hybridization process between the quantum dot (QD) state and the Majorana-zero-mode (MZM) state at the each edge
of the nanowire, with the upper (lower) sign for the composite states corresponding to the left (right) edge. Note that an energy gap resonant
with a photon frequency of 2 is opened, and that the higher-energy and lower-energy states feature opposite phases.

where each state is labeled + or — based on whether the
corresponding energy is +/AA or —h.

For the right edge, in the composite basis (|0y_)g,
0¥ 1) p s 1Y)k, |14+ )g), the interaction Hamiltonian takes
the following matrix form:

0 0 0 -1
0 0 1 0

He=mf o 1 o0 o (19)
-1 0 0 0

As with the left edge, the Hamiltonian couples [0y1), with
[1v) g, allowing the composite four-dimensional system to
be split into two two-dimensional subsystems. Here, too, we
find that the energy levels split into /A, corresponding to the
following composite states:

C.4) = %ﬂow_ne 1Y), 20)
D, +) = %uomm 1), )
C-) = %(IOW—M 1), 22)
D, -) = %uowm 1Y), @3)

The hybridization of the states is depicted in Fig. 3. Concep-
tually, the energy level shift relative to an uncoupled system
can be understood as being distributed across the quantum dot
mode and the Majorana bound state, thus corresponding to the
splitting of the Majorana zero mode.

We are now ready to consider the photon absorption by the
QD-Majorana coupled system, provided a photon field reso-
nant with the gap between the — and + QD-Majorana states,
i.e., w = 2A. The electric field E interacts with the dipole
moment d of the QD-Majorana complex via the following
perturbative Hamiltonian:

H =-d-E. (24)

The dipole moment calculation is discussed in detail in
Appendix A. For the transmon frequency of about 5 GHz, the
results reveal a dipole matrix element amplitude of |d; _| &
1.8 x 10726 Cm for a QD coherence length matching that of
the Majorana wave function, corresponding a QD-Majorana
center-to-center distance of 440 nm.

However, the photon field can be expanded in terms of the
ladder operators a'" in the conventional manner:

E = Ezpf(a + aT), (25)

where the electric field zero-point function E,y¢ is oriented
along the field polarization axis and carries the following
amplitude as a function of the frequency w and cavity volume

V [22]:
[h
Eypr = —60‘; . (26)

The Jaynes-Cummings Hamiltonian H’ can thus be expressed
in terms of the ladder operators connecting lower-energy and
higher-energy QD-Majorana states |n;, —) and |ny, +) (re-
spectively) as interactions with coupling coefficient g, ,:

H =1 guyn (@ byn +abj ), @7
ning

where we sum over all possible values of n; and ny from the
list (A, B, C, D), and the operator b, ,, is defined as follows:

=) (g, +I, (28)

and the interaction coefficients g, i feature the following
amplitude:

bnf,ni = |ni7

. E,of
lgl = |(ni, —| —d - E|ng, +)| ;1"

= ldye_| | — (29)
- FléoV.

In the last line, we have assumed that the polarization axis
of the electric field is in line with the center-to-center axis
between the QD and the Majorana mode, which represents
the QD-Majorana dipole axis (effectively, the polarization
axis for the QD-Majorana system). Once the system has been
photoexcited, we desire for the excitation to rapidly decay via
heat transfer to the nanowire phonon modes, while avoiding
radiative decay. Quantitatively, this corresponds to a nonra-
diative decay rate I';; much greater than the radiative decay
rate T4, 1.€., T > [ag. However, it is also important to
ensure that the nonradiative loss rate is well below the gap
frequency, i.e., I'y; < w, so that the spectral broadening does
not wash out the distinctness of the states. Furthermore, we
also wish to ensure that a measurable temperature increase is
registered in the nanowire for a single-photon absorption by
the QD-Majorana system.

013034-4
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III. TEMPERATURE INCREASE PER ABSORBED PHOTON

Here, we determine the heat capacity of the superconduct-
ing nanowire to calculate the temperature increase caused
by the absorption of a single photon by the QD-Majorana
system. In the low-temperature limit, the occupied phonon
modes are restricted to the long-wavelength acoustic modes,
thus enabling the use of the Debye model [23]. The nanowire
contains 1 longitudinal acoustic branch and 2 transverse (tor-
sional) acoustic branches [24]. To first order, these branches
feature approximately equal speeds of sound, and we label the
average value as v;. Applying the Bose-Einstein distribution,
the total phonon energy equals the following summation over
the wave vectors g:

ho
Un(T) =3 ———, (30)
q ek — 1

where w, = v,q represents the average frequency of a mode
at wave vector ¢. As in a 3D lattice, this summation can be
solved by determining the density of states for each branch,
given a 1D lattice of length L:
dN dq L1 L
Dw)y=2——=2——= . 3D
dg dw 2w vy T
Note that the factor of 2 in the first line is inserted to ensure
that for each wave-vector amplitude ¢, the modes at both +¢
and —gq are included.

We thus convert the summation in Eq. (30) to integral form
by incorporating the density of states. Since only the linear
regime of the acoustic branches is nonnegligibly occupied at
low temperatures, we can integrate to infinite energy without
measurable loss of accuracy:

o0 i
Un(T) =3 / dwD(w)—2—
0 e

kBT — 1

3L /°° hiw
= do————
TVs Jo

_3Lk};T2/°°d iw\ &7
 muh o ksT ) pir — 1

3LK3T? (72
- anh (?) (32)

While the total phonon energy scales quadratically with tem-
perature 7', the corresponding heat capacity varies linearly in
the baseline temperature, as expected for a 1D lattice:

dUp nLkgT
dT ~ hv

Intuitively, the scaling of the heat capacity with the lattice
length L corresponds to a fact that a larger lattice is more resis-
tant to temperature change. Furthermore, the inverse variation
with the speed of sound is due to the fact that a higher speed
of sound leads to a lower number of occupied states (due to
the sharper dispersion), causing greater occupation number
increase per state for a given total energy gain, in turn leading
to a greater temperature increase. Similarly, the variation with
the baseline temperature 7 can be explained by the fact that
a higher baseline temperature lifts the maximum occupied

Cph(T) =

(33)

energy level, resulting in a higher number of occupied states
and hence a lower occupation number increase per state for
a given total energy gain (and thus a lower temperature in-
crease as well). Upon absorption of a single photon of angular
frequency w by the QD-Majorana system, the temperature
increase AT in the nanowire is thus calculated as follows:

Li2
ho = (” B +CS>AT,
hvg
(34)
Lk}

—1
AT:hw( T+cf) ,

Us

where C; is the heat capacity of the s-wave superconducting
strips. It is therefore desirable to minimize the superconduct-
ing critical temperature when selecting the nanowire material.
It is worth noting that when calculating the actual peak
temperature increase, it is important to consider dissipation
through the leads. We will consider the resulting attenuation
of the temperature increase in detail later in this work.

IV. ENERGY TRANSFER RATE FROM QD-MAJORANA TO
NANOWIRE BULK

We now calculate the energy transfer rate through carrier-
phonon interaction from the photoexcited carriers of the
QD-Majorana system to the phonon modes of the nanowire.
Fundamentally, carrier-phonon interaction requires that the
Majorana mode be occupied by an electron. Consequently, the
allowed QD-Majorana tensor-product transitions are |01) , —
|01)_ and |11), — |11)_ (where the 4 and — subscripts de-
note the higher-energy and lower-energy states, respectively).
Given a carrier-phonon interaction Hamiltonian H” [which
will be defined later in equation (39)], the emission of a
phonon of wave vector g and branch u requires a transition
from initial state |n;, +) to a final state |ny, —), where n; # ny.
This is due to the fact that in this case, the initial and final
states feature the same phase between |01) and |11), resulting
in constructive interference between the |01), — [01)_ and
[11), — |11)_ phonon emission processes:

|((nf1 _)7 nﬂ,q + 1|H//|(niv +)1 nu,q)|
= 1101, ny g + 11 £ (11, npg + 11)
x H"(|01, n,4) £ 111, 1, 4))]

= 3= tyug + UH" 1+, )] (35)
where n,, , represents the phonon number in a mode at wave
vector g and branch u, (n;, ny) = (A, B), (B,A), (C,D), or
(D, C), and we have introduced the notation |+) and |—)
to distinguish the higher-energy and lower-energy QD states.
However, |n;, +) and |n;, —) feature opposite phases for |01)
and [11), causing the probability amplitudes for the |01), —

|01)_ and [11), — |11)_ phonon emission processes to can-
cel out through destructive interference:

(i, =) g + HH" (i, +), )]
= 1101, nyg + 1 F (11, my g + 1)
x H"(]01, Nug) £ 111, 1,.4))l
=0. 36)
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Consequently, just half of the possible pairs of initial higher-
energy and final lower-energy states are available for phonon-
induced transitions. This will attenuate the overall transition
rate by a factor of 2, which we will incorporate into Fermi’s
Golden Rule later in this section.

Next, we estimate the wave function for the QD state
so that we can decompose it into plane wave states with
well-defined momenta and thereby calculate the matrix ele-
ment (—, n, , + 1|H"|+, n, 4) for any phonon wave vector g.
Although we modeled this wave function as an exponential
function in Appendix A, its narrowness relative to the length
of the nanowire ensures that it can be approximated as the
square-root of a Dirac § function from the perspective of the
full nanowire:

L O0<x<b

Yop(x) = { NN

, 37
0, otherwise (37

where b denotes the span of the QD. Following the treatment
in our prior analysis of Cd3As, [1], this localized state decom-
poses into plane-wave states |k) delocalized along the span of
the nanowire (where k is the wave vector corresponding to a
particular plane-wave state) with approximately equal weight
for each wave vector:

/b

b
IQD>=\/; > k). (38)

k=—m/b

As this expression shows, a spatially narrower edge state
corresponds to a wider range of momenta, and vice versa,
thus satisfying the Heisenberg uncertainty principle. This
representation is useful since, in general, the carrier-phonon
Hamiltonian H” couples initial wave vector k and final wave
vector k — g through emission (absorption) of a phonon g
(—q) from branch u:

H' = gugci bl +bug)  (39)

w.k.q

where ¢ = |0)(k’| is defined as the annihilation operator for
the electron at wave vector k’. Note that the coupling coef-
ficient g, 4 is independent of the initial wave vector k (see
Appendix A of [1] for quantitative proof). As a result, the
matrix element corresponding to the transition from |+) to

J

_27t 1

|—) via phonon emission can be simplified in the following
manner:

(—, nyq+ 1|H”|+a nu,q)

a !
= D (k=g + HH ko)
k

w/a
a
= ;fzzgﬂ,q,/nM +1 Z 1. (40)
k=—m/a
Since the reciprocal space between k = —m /a and 7 /a is di-

vided into L/a segments (each of length 277 /L), the transition
matrix element from |+) to |—) due to emission of a phonon
q is simply equivalent to the transition from any initial wave
vector k to final wave vector kK — g through the same process:

(= g + VH" |4, 1y g) = g gy/Mug + 1
=(k—q,nuq+1H"k,n,,).

(41)

Next, we examine the values of the coefficients g, ,. Here,
we note that since the energy gap between |+) and |—) cor-
responds to the long-wavelength acoustic phonon regime, we
can use the deformation potential treatment [25]:

D gl =
"

where D, v; and V represent the nanowire deformation poten-
tial, speed of sound, and quantization volume, respectively.

‘We are now ready to determine the nonradiative decay rate.
In general, for a continuum of electronic states, a rapid carrier-
carrier rethermalization occurs first, elevating the system to
a hot electron Fermi-Dirac distribution [26-29]. This is then
followed by heat transfer from the hot electron distribution to
the phonon modes via electron-phonon interaction, bringing
the electron and phonon temperatures to equilibrium. Here,
however, we have a discrete two-level electronic spectrum.
Therefore, the sole nonnegligible means of nonradiative decay
is through phonon emission, which disturbs the Bose-Einstein
phonon distribution and immediately gives rise to a rether-
malization of the phonon modes. To this end, the phonon
emission rate by an electron in |+) is calculated through
Fermi’s Golden Rule, based on the composite matrix element
calculated in Eq. (35):

2

h
2pv,V

lql, (42)

I , ’
rnr _(_H_v Mg + 1|H/ |+’ n#s‘]”) 8(E+ —E-— hvS|q|)

h 2\2
1.q

i
=1 Z (=, My oy, + VH" |4, 1y oy )
m

where w = (E4+ — E_)/h. Note that the extra factor of 1/2 in
the first line is inserted due to the fact that for an excited pho-
toelectron in a given higher-energy state, there is only a 50%
probability that the required final state is unoccupied. The
Dirac § function enforces energy conservation, ensuring that
the emitted phonon carries an frequency of w = vyq, where g

D(w)

T @

(

is the phonon wave vector. We thus replaced the summation
of the Dirac § functions with the density of phonon modes
with respect to energy, i.e., D(w)/h, at ¢ = £w/v,. Using
the matrix element value calculated in Eqgs. (41) and (42),
and substituting the nanowire phonon density of states from
Eq. (31), we find the following expression for the nonradiative
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decay rate at baseline nanowire temperature 7':

P, T) = = (22 Y o, 7y 4 11 £
nr (@, = = — |Jnlw,
45\ 2pv,V v, 7 hivg

_ Do I T
= ShipAvi L

where n(w, T) is the Bose-Einstein phonon occupation num-
ber at frequency w and temperature 7, and A denotes the
cross-sectional area of the nanowire. We note that the non-
radiative decay rate rises with increasing temperature, as
expected due to the greater phonon occupation number at
higher temperatures. Furthermore, in the limit ¢"/*%7 > 1, it
scales linearly with the phonon frequency w, since the tran-
sition strength (i.e., the matrix element amplitude-squared)
increases linearly with the wave-vector magnitude |g|. Finally,
the rate varies inversely with the nanowire cross-sectional area
A. This can be conceptualized as follows: A broader area leads
to a reduction in the vibrational amplitude of each bond for
a given mode energy (thus lowering the electron-phonon cou-
pling strength per phonon), without simultaneously increasing
the number of phonon modes (in the 1D limit).

—1)7 +1], (44)

V. ENSURING DETERMINISTIC PHOTON NUMBER
DETECTION

Here, we seek to verify the deterministic nature of the
measurement process in two steps: first, by ensuring that the
absorbed photon energy is faithfully transferred to the internal
energy of the nanowire, and second, by designing a network
of QD-nanowire complexes on-chip inside a cavity such that
multiple absorbers can be effectuated in parallel, and the

J

system will have a vast number of opportunities to absorb
each photon (since each photon travels back and forth inside
the cavity). For the former step, it is essential to calculate
the parasitic radiative loss rate to ensure that it is negligible
compared to the energy transfer rate from the photoelectrons
to the bulk phonons (calculated in the previous section). For
the latter step, we will derive the absorption rate per QD-
nanowire complex, from which we can determine the overall
probability that a photon inside the cavity is absorbed by the
system before it escapes the cavity.

Both the radiative loss and absorption rates vary quadrat-
ically with the transition dipole moment amplitude |d; _|
(which was calculated in Appendix A). The radiative decay
rate is determined as follows [30]:

w? 2

\ds (45)

Thd = ————
rad 3mephic?

Note that the radiative loss rate scales cubically with the
resonance frequency. Since the microwave frequency range
we are interested in falls about 5 orders of magnitude below
the typical optical frequency, we would expect the rate to be
far smaller than the radiative loss rate for an optical transition.
In the next section, we will numerically demonstrate that the
radiative loss rate is multiple orders of magnitude smaller than
the phonon emission rate, given practical material parameters.

Next, we seek to derive the absorption rate for a QD-
nanowire complex and lay out a procedure for calculating
the total absorption probability for a system of QD-nanowires
on-chip inside a cavity. For a single complex, the photon
absorption rate "y, is determined using Fermi’s Golden Rule:

2 , )
Caps = (f= (@0, T) — f1(w, T))7 Z {(ng, +),n — 1|H |(n;, —), n)|"8(Ey — E- — hw)

}’l,’,nf

_ 87lgl*n
=(f-(0,T) — fi(o, T))m,

where the parameters fi(w, T') denote the equilibrium pop-
ulations of the upper and lower levels, respectively, of the
QD-Majorana hybridization ladder, and 'y represent the
spectral broadening of the respective levels. In a lattice fea-
turing a continuum of electronic states, the populations would
be governed by the Fermi-Dirac distribution, with the thermal
broadening dominated by electron-electron interaction. How-
ever, in this highly localized QD-Majorana system, the lack of
a significant electron population strongly suppresses electron-
electron interaction, leaving the dominant thermal broadening
mechanism as the interaction between the QD-Majorana elec-
trons and the nanowire phonons. To this end, the equilibrium
electron populations are achieved when the phonon emission
rate by upper-level electrons is balanced out by the phonon
absorption rate by lower-level electrons. In turn, the phonon
absorption and emission rates are proportional to n(w, T)
and n(w, T) + 1, respectively, where n(w, T') represents the
phonon number for a mode featuring a frequency w with a
lattice temperature 7. Using the Bose-Einstein distribution to

(46)

(

model the phonon population, we find the following relation-
ship between f and f_:

Frlo, TY((ew —1)"" +1) = £ (o, T)(ew —1)". @47)
Furthermore, in the low-temperature limit, each two-level sys-
tem consists of a single ground-state electron and a vacuum
excited state. Consequently, the total electron population for
each two-level system should be one, with the individual-state
population representing the probability that the single electron
is residing in that state:

fe(@.T)+ f(0.T) = 1. (48)

The above two expressions yield the following state popula-
tions:

1
f~(,T) = ——-, (49)
| e for
1
4@, T)= ——-. (50)
| 4 efsr
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As expected, for the low-temperature limit (kg7 < hw), all
of the population is concentrated in the ground state (i.e.,
f- — 1 and f; — 0), whereas in the high-temperature limit
(kgT > hw), the spectral broadening makes the states indis-
tinguishable in population (i.e., f_, f+ — 1/2.

We now turn to the spectral broadening of the upper and
lower states (I" and I'_, respectively). As we discussed previ-
ously, the electron-phonon interaction serves as the dominant
decay mechanism for both states. Consequently, I'y and T'_
are approximately equivalent to the phonon emission and ab-
sorption rates, respectively, at frequency w and temperature 7 .
Based on Eq. (44), this yields the following spectral broaden-
ing values:

D? o _

r, ~ 8hp:’y3[(ekir —1)7" +1], 51)
D? o _

-~ 8hp:)v3 (‘fkr”’ - 1) g (52)

Comporting with intuition regarding thermal broadening, a
higher temperature leads to a higher spectral broadening, and
vice versa.

We are thus in a position to derive a closed-form expression
for the single-pass absorption probability Py,s = I'ansl/c for
a single photon in a cavity of length / and beam area Apeym
(such that the effective cavity volume V = Apeaml), substi-
tuting state populations fi(w, T) from Egs. (49) and (50),
photon-material coupling coefficient g from Eq. (29), and
spectral broadening values I'y from Egs. (51) and (52):

sinh x " — 1\ 64mpv? A
Pas = s de_|*, (53
abs (l—}—coshx)(e"—i—l) eoD?c Abeam| +-1 53

where x = hw/kpT represents the ratio between the gap
energy and the thermal energy parameter. Note that the single-
pass absorption probability for each QD-nanowire complex
varies inversely with the beam area Ape,y. Consequently, for
an array of complexes on a 2D chip, the total single-pass
absorption probability will vary with the spatial density of
complexes 0 = N/Apeam, Where N is the number of complexes
covered by the beam:

Pabs,chip = PN

sinh x e — 1)\ 647 pAv? )
= ldy |70
1+coshx J\e*+1/) €D '

(54)

The optimal method for achieving deterministic photon ab-
sorption is by placing the chip in a high-finesse cavity. In
general, Bragg mirrors can feature transmittance rates as low
as 1 ppm [31]. Labeling this single-pass loss probability
as Pss, we calculate the overall absorption probability as
follows:

00

n

Pabs,net = Pabs,chip } (1 - Pabs,chip - Ploss)
n=0

1
B 1+ Ploss/Pabs,chip .

In the next section, we will calculate the numerical value
for the net absorption probability Pypschip given a maximal

(55)

on-chip complex density o. The results will demonstrate near-
deterministic photon absorption by the detector system.

VI. OPTIMIZING PARAMETERS

Here, we provide a recipe for optimizing the controllable
parameters, namely the nanowire dimensions, the nanowire
material, the s-wave superconducting material used to induce
superconductivity in the nanowire (and the associated critical
temperature), and the baseline temperature relative to the crit-
ical temperature. We also calculate the temperature increase
and corresponding resistance increase for a single absorbed
photon, accounting for thermal dissipation.

We start by discussing the trade-offs when choosing an
s-wave superconductor based on the critical temperature. This
serves as the key temperature parameter, since the baseline
temperature is only about 10-20% lower than the critical
temperature (as we will discuss later in this section). The
primary advantage of a lower temperature is more determin-
istic detection, due to a greater photon absorption rate. The
increase in the photon absorption rate is due to two effects
of suppressing the electron-phonon interaction rate: first, the
spectral broadening of the hybridized QD-Majorana states is
reduced, thus sharpening the absorption peak; second, the
population contrast between the upper and lower hybridized
states is increased, thus causing the raw photon absorption
process to dominate more strongly over stimulated emission.
However, the key advantage of a higher critical temperature
is a larger superconducting gap, which allows for detection of
photons in a wider range of frequencies.

Another controllable parameter is the nanowire cross-
sectional area A, which plays an important role in the
electron-phonon interaction rate. To suppress the spectral
broadening of the QD-Majorana system (thus ensuring a high
absorption rate and a deterministic detection process), we set
A high enough such that the nonradiative decay rate 'y, [see
Eq. (44)] is much lower than the resonance frequency w:

A D?
ho

> . 56
(ekB7-_1)—1+1 8hpv} (56)

However, we set A low enough such that the phonon modes
behave as a true 1D system, i.e., the energy gap between
phonon wave vectors separated along the transverse axis is
much greater than the thermal energy kg7, thereby ensur-
ing that the phonon population in the transverse-propagating
branches is negligible and the heat capacity is minimized (thus
optimizing the resolution of the detector):

27

kT < hvy,——=,

B \/Z
hv,

TVA < o (57)
B

Together, these two conditions set a range for the nanowire
diameter (which approximately equals +/A) in terms of the
baseline temperature 7T = r7, (where r is the ratio between
the baseline temperature and critical temperature) and the
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material properties:

D 1 fiw_

il [(em —1 hus
2V2\ hpv}

ksT

) 1] < VA< (58)

Based on the example of InAs (indium arsenide) as a typi-
cal nanowire, we use the material parameters v; =~ 4500 m/s
[32], p &~ 5700 kg/m?, and D = 6.0 eV [33]. Here, it is worth
noting that the high speed of sound relative to other materials
(such as InSb nanowires, which feature a speed of about
2900 m/s [34]) is advantageous for the same reason as a lower
baseline temperature: it provides a greater detector absorption
probability [see Eq. (54)].

We now consider the optimal range of baseline temper-
atures, which is related to the critical temperature of the
superconducting metal used to induce superconductivity in
the nanowire. Here, it is essential to choose a material such
that the superconducting gap (the energy required to break a
Cooper pair) is significantly larger than the photon frequency
to ensure that the photon can only be absorbed by the QD-
Majorana complex at either edge rather than by the nanowire
bulk. For proximity-induced superconductivity in a nanowire,
studies have shown that the critical temperature is similar
to the critical temperature of the metal inducing the super-
conductivity [35]. Quantitatively, this condition corresponds
to the following expression for the superconducting critical
temperature 7;.:

1. > frew (59)
7 3.5k

For a resonance frequency of 5 GHz (i.e., w = w x 10'0s71),
a reasonable low-end value for 7, would be 0.39 K, i.e.,
the critical temperature for titanium [36], corresponding to a
Cooper-pair-breaking frequency of 3.5k3T./h = 28 GHz (far
above the 5-GHz photon frequency). This lies far above the
5-GHz photon frequency, allowing for a detectable photon fre-
quency range up to about 10 GHz. The baseline temperature
should be somewhat below the critical temperature, since the
superconducting gap will then approach the maximum value
while the rate of change of resistance over temperature is
still significant. As such, we can consider the low-end value
for the baseline temperature to be roughly 0.3 K. However,
a reasonable high-end value for the baseline temperature is
about 0.7 K, since this is roughly the highest temperature for
which a large range of nanowire diameters is available [see
Eq. (58)]. This would allow for a detectable photon frequency
range up to about 20 GHz.

Before we proceed to determining the absorption probabil-
ity and detection resolution as functions of temperature and
nanowire diameter, we compare the nonradiative decay rate
to the radiative loss rate to ensure that the energy transfer
from excited photoelectrons to bulk phonons is far faster than
parasitic spontaneous emission. We specifically calculate the
minimum nonradiative decay rate, which is applicable at the
zero-temperature limit for a maximally wide nanowire. Since
nanowires typically feature an upper-bound diameter of about
100 nm, we use the corresponding cross-sectional area to
determine the nonradiative decay rate at the zero-temperature

limit from Eq. (44):

P = 2 (60)
nr,min — SFL,OAUS
=8.4x10°0s7". (61)

However, based on the dipole moment matrix element
amplitude of |d, _| =1.8x 1072 Cm (as calculated in
Appendix A), the radiative decay rate is determined using the
expression laid out in Sec. V:

3
——|d
3mephc? I+

=4.1x 1072571, (62)

2
Crag = — |

for w = m x 10'% s~!. The radiative loss rate is thus negligi-
ble even compared to the minimum nonradiative decay rate.
As a result, the excited photoelectron in the QD-Majorana
system will decay through the desired phonon emission chan-
nel rather than through the undesired spontaneous photon
emission process.

Having established that the energy transfer from the ex-
cited photoelectrons to the nanowire phonons is dominant,
we now return to our analysis of the absorption probability
as a function of temperature and nanowire diameter to prove
that the overall detection process is deterministic. As dis-
cussed previously, we select the baseline temperature range
0.3 to 0.7 K. For the diameters, we select the values roughly
satisfying Eq. (58) for all temperatures up to 0.7 K. This
yields a range of approximately 15 to 30 nm. In designing
the chip consisting of QD-nanowire complexes, we maximize
the spatial density of nanowires by setting the transverse and
longitudinal unit cell dimensions to physically feasible min-
imum values of 2 and 20 um, respectively. This ensures that
the spacing between nearest-neighbor nanowires is far greater
than the coherence length of the Majorana wave function
(discussed later in this section). Note also that there exist 2
QD-Majorana hybridized systems per nanowire, since each
nanowire features quantum dots on both ends (see Fig. 2).
These parameters yield a maximum achievable QD-Majorana
on-chip density of 5 x 10'® m~2. Figure 4 thus depicts the ab-
sorption probability (i.e., the detector efficiency) for the given
temperature and diameter ranges. As desired, the efficiency
significantly exceeds 99.9% for all design parameters shown
in Figure 4, indicating an extremely deterministic detector.
Also, as expected, the efficiency increases with nanowire
diameter while decreasing with baseline temperature, since
higher diameter and lower temperature values lower the non-
radiative decay rate, thus yielding sharper absorption peaks.
Recall that a lower temperature also creates a greater con-
trast in equilibrium population between upper and lower
hybridized states, thus increasing the raw absorption rate rel-
ative to the stimulated emission rate.

Next, we consider the resolution of the detector by calcu-
lating the temperature increase per absorbed photon. Here, it
is important to consider the role played by thermal dissipa-
tion, which will serve to lower the peak temperature increase.
As depicted in Fig. 1, each nanowire is surrounded by vac-
uum and a thermally insulating buffer. However, a pair of
superconducting leads (typically made from aluminum) is
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FIG. 4. Photon absorption probability vs baseline temperature
and nanowire diameter for a chip consisting of InAs-QD systems
inside a high-finesse cavity. Note that we assume transverse and
longitudinal spacing values of 2 and 20 pm (respectively) between
nanowires and a resonance frequency of 5 GHz.

continuously connected to the nanowire to dynamically mea-
sure the longitudinal resistance, with the other end of each
lead connecting to a thermal reservoir. These leads thus serve
as the dominant channel of thermal dissipation. Given a length
liead, cross-sectional area Aje,q, and thermal conductivity &, for
each lead, the rate constant for thermal dissipation through
the two leads can be calculated in terms of the nanowire
heat capacity Cpn(T') and the heat capacity C; of the s-wave
superconducting strips as follows:

2ktAlead
(Cph(T) + Cs)llead '

where we substituted the relationship between Cp, and the
temperature 7 shown in Eq. (33). The s-wave heat capacity
C; can be calculated to first order for a generic metal using the
expression determined by Phillips for aluminum [37], since
the Fermi temperatures for the relevant metals are similar to
first order:

Vdis = (63)

C, ~ 7.1y T,nVye '3/ (64)

where n denotes the molar density of the material (i.e.,
10° mol/m? for aluminum, corresponding to 4 atoms per unit
cell), V; denotes the volume of the material, and y = 1.35 x
1073 J/(mol - K?). Regarding the volume, the material covers
about 4/5 of the nanowire length, with a thickness as low as
d; = 5 nm, yielding V; & O.SdSL«/Z, where L and +/A are the
nanowire length and diameter, respectively. Finally, as will be
discussed later in this section, the baseline temperature 7 lies
slightly below the critical temperature 7;, with a relationship
of approximately T =~ 0.867,. Substituting these, we find that
C; is linear in the nanowire length L and baseline temperature
T, as is the case with the nanowire heat capacity Cpy:

C, ~ (VALT, (65)

where ¢ = 9.4 x 1077 J/(K?> m?). Based on Eq. (34), this in-
duces the following temperature increase per photon (AT )max
in the absence of thermal dissipation:

_ ho (7k} B
(AT )pax = ﬁ(h_vs + NZ) . (66)

Per Eq. (63), the dissipation rate yy;s takes the following form:
2ktAlead

— : (67)
(5t + ¢VA)headLT

Vdis =

Given an input heat transfer rate from the absorbed photo-
electron at a rate I';, we can evaluate the actual temperature
increase per absorbed photon as a function of ideal increase
(AT )max using the following differential equation:

d(AT)
dt

Solving this, we find that the attenuation factor (i.e., the ratio
between the peak temperature increase and the dissipationless
ideal increase) becomes a function of r = ;s /T

= (AT)maanre_rmt — vais AT. (68)

AT = (AT )axF 77 . (69)

Note that if the dissipation rate is much higher than the
nonradiative decay rate (i.e., if # > 1), then this relationship
reduces to AT =~ (AT )max/r. We can obtain an analytical
approximate expression for AT based on the dissipation rate
yais from Eq. (67) and the nonradiative electron-phonon inter-
action rate 'y, from Eq. (44) in this regime:

2 2
D w l[ead (ekf;"T _ 1)71 + 1] (70)

AT ~ ——————
8/) vs ktAleadA

Note that the temperature increase for the high-dissipation
regime is independent of nanowire length L, since the higher
heat capacity associated with a greater length leads to a re-
duced ideal temperature increased but also a lower dissipation
rate, with these two shifts canceling out. For the other two
controllable parameters, i.e., nanowire cross-sectional area A
and baseline temperature 7, AT increases with temperature
and decreases with cross-sectional area. These correlations
are due to the fact that the a lower cross-sectional area and a
higher temperature yield a greater electron-phonon interaction
rate, as previously mentioned, thus causing more rapid heat
transfer into the nanowire phonons and enhancing the peak
temperature increase.

We now substitute practical values to numerically calcu-
late the temperature increase per absorbed photon. Regarding
the lead dimensions, each of our superconducting aluminum
leads features a minimum diameter of 100 nm and a maxi-
mum length (from nanowire to thermal reservoir) of 500 pwm.
The thermal conductivity in the superconducting temperature
range can be extrapolated from experimental data as k; =
[1W/(m K?)]T [38]. For a nanowire of diameter 20 nm, Fig. 5
depicts the temperature increase per photon for nanowire
lengths ranging from 5 to 15 pm. Note that the lower-bound
value for the length is over 20 times greater than the Majorana
wave-function coherence length of 250 nm [39], ensuring that
the overlap between opposite Majorana states is negligible.
As desired, the maximum actual temperature increase lies
in the high end of the microKelvin range, thus improving
the resolution far beyond the nanoKelvin range found for a
cadmium arsenide (Cd3As;) detector [1]. The corresponding
increase in longitudinal resistance across the region between
the leads can be determined from the characteristic d p,/dT of
the material at T (where p, is the resistivity) and the nanowire
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FIG. 5. Single-photon temperature increase vs nanowire length,
given a 5-GHz resonance frequency and 20-nm nanowire diameter,
at baseline temperatures 0.3 K (solid), 0.5 K (dot-dashed), and 0.7 K
(dotted).

dimensions:
L etween ~ 26d e
AR = bt—iAT
A dT
Lyetween — 28 r dpe
- AT max? ' ——, 71
1 (AT )maxr T (71)

where Lperween 1S the overall length of the region between the
s-wave superconducting strips, and the parameter é represents
the distance between each end of the intermediate region and
the side of the corresponding lead facing the center of the
nanowire. In general, the length of each s-wave strip should be
greater than the material’s superconducting coherence length
L’, while the length of the intermediate region should be sig-
nificantly less than 2L’ [16]. Consequently, the intermediate
region between the strips must take up well below 1/2 of
the total nanowire length. A useful design would be to have
the intermediate region cover the middle 1/5 of the nanowire
length, with 4/5 of the nanowire length covered by the s-
wave strips, leaving enough room for resistance measurement
through the intermediate region. This yields a strip-to-strip
distance of Lperween = 0.2L. Further, given a lead diameter
of 100 nm and a spacing of 150 nm between the s-wave
material and the side of the lead facing the material, § re-
duces to 250 nm. In general, the rate of increase of resistivity
with temperature, dp./dT, varies with the magnetic field
along the nanowire. Generalizing from the results in Fig. 5(a)
of Yoshizawa et al. [40], and setting the baseline tempera-
ture at 7 = 0.97, (to establish a sufficient superconducting
gap while also ensuring a sufficient increase of resistance
with temperature) we deduce that for a magnetic field of
0.15B;, dp./dT =~ 0.6pmax/T,.0, while for a field of 0.25B,,
dp./dT =~ 1.7pmax/Te0, where T, o is the critical temperature
at zero magnetic field. Note that B, and py,,x denote the critical
magnetic field and normal-state resistivity, respectively. For
the InAs nanowire, the normal-state resistivity is about ppax =
5.5 x 1073 Q@ m [41], while the critical magnetic field will be
set by the s-wave superconducting material in proximity to
the InAs nanowire. Consequently, the resistance increase per
photon takes the following form:

AR — Lictween — 28 1pmax
A T. 0

(AT )uax 77, (72)
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FIG. 6. Single-photon resistance increase vs nanowire length
given a 20-nm nanowire diameter, 5-GHz resonance frequency, and
zero-magnetic-field critical temperature 7. o = 0.56 K. The magnetic
field strengths are 15% (solid) and 25% (dot-dashed) of the criti-
cal field B.. Note that the baseline temperatures are 0.8737., and
0.843T. , respectively, yielding T ~ 0.5 K.

where n = 0.6 and 1.7 for B = 0.15B, and 0.25B,, respec-
tively. Figure 6 depicts the single-photon resistance increase
as a function of nanowire length for a diameter of 20 nm
and a zero-field critical temperature 7., = 0.56 K. For the
purpose of setting a precise baseline temperature, it is im-
portant to note that the critical temperature decreases slightly
as the magnetic field is increased to 0.25B,, reaching values
of 0.97T, and 0.937T, for field strengths of 0.15B, and
0.25B,, respectively. As previously discussed, we set the base-
line temperature 10% below the critical temperature, yielding
baseline values of 0.8737T, o and 0.843T, o for the respective
fields, corresponding to T & 0.5 K. Throughout the relevant
range of nanowire lengths, we find a resistance increase above
in the kiloohm range, far above the minimum resolution for
resistance measurement. In fact, the resistance increase per
photon is on the order of 9 orders of magnitude higher than
the corresponding resistance increase in a Cd;As; device [1].
As such, we could set the baseline temperature even signif-
icantly below 90% of the critical temperature. That way, we
would further increase the superconducting gap (allowing for
the detection of a greater range of photon frequencies) while
still obtaining an easily resolvable single-photon resistance
increase.

We now briefly discuss how to tune the QD-Majorana
coupling coefficient A to satisfy the resonance condition
w = 2A and physically implement the scheme discussed in
Appendix A. To this end, the ability to open a microwave-
frequency gap in the Majorana zero mode has been recently
demonstrated experimentally [42]. In general, A can be con-
trolled by properly setting the distance between the QD
electronic mode and the nanowire edge mode. It is desirable to
fabricate the system such that the length of the QD yields the
center-to-center distance required for the hybridization gap
to be resonant with the photon frequency. However, small
adjustments may be required post-fabrication to satisfy the
resonance condition more precisely. One potential means of
achieving this is by using a piezoelectric material. Specifi-
cally, such a structure can be built by fabricating the quantum
dot in a pillar protruding out from the buffer material, as has
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been demonstrated by Oulton [43]. Similarly, the nanowire
can also levitated by a couple of insulating supports above the
buffer. The piezoelectric material can be then be sandwiched
between the base of the quantum dot pillar and the nearest
support for the nanowire. By applying a small voltage, the
piezoelectric material can be stretched or compressed, thus
providing for the ability to tune the QD-nanowire distance.
Another means of tuning the QD-Majorana coupling is by
adjusting the height of the potential energy barrier separating
the two wells. Appendix B provides an analysis of the shift
in barrier height required to induce a particular fractional
change in the QD-Majorana coupling strength (and hence in
the resonance frequency).

VII. CONCLUSION

We have theoretically demonstrated a revolutionary ultra-
high-precision microwave photon number detector using a 1D
system consisting of a nanowire coupled to a quantum dot at
each end. To the best of our knowledge, our system serves as
the first real-world application of Majorana zero modes since
topological computing. The Majorana edge states couple with
the quantum dots, giving rise to a hybridized energy spectrum
well-suited for microwave photon absorption, while the su-
perconducting nanowire bulk acts as a bolometer. As with our
previous Cd3As; detector [1], this system offers the benefits
of complete spatial separation between the absorber and the
bolometer, as well as rapid and deterministic energy transfer
from the absorber electrons to the bolometer phonons. How-
ever, owing to the vastly reduced heat capacity caused by the
low dimensionality, our nanowire system improves upon the
Cd;As; detector’s measurement precision (resistance increase
per photon) by 9 orders of magnitude, serving as a major
breakthrough in microwave-photon detection resolution.

In addition to serving as a photon number detector, the
nanowire-QD system will provide a highly promising plat-
form for conclusively proving the existence of Majorana zero
modes. Specifically, demonstrating photon absorption would
prove the existence of a zero-energy edge mode that hy-
bridizes with the quantum dot. Furthermore, we can verify
the spinlessness and charge-neutrality of such a mode by
applying new magnetic and DC electric fields to test the
Zeeman and Stark effects, respectively. The energy level of
a spinless and charge-neutral Majorana edge mode would
be unperturbed by these fields, while the quantum dot level
would shift, thus breaking the QD-Majorana hybridization
and suppressing photon absorption. Our nanowire-QD system
thus holds significant potential in solving one of the central
physics questions in recent decades.
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APPENDIX A: CALCULATING THE DIPOLE MATRIX
ELEMENTS

Here, we will calculate the dipole matrix element cor-
responding to transitions between lower-energy and higher-
energy QD-Majorana hybrid states. It is important to note that
an electromagnetic field cannot induce a transition between
the vacuum state and the occupied state in either the QD or
the nanowire edge alone. Instead, a field acts on the complex
by shifting the electron position in a manner that induces
hopping between the QD and the nanowire edge. As such, net
charge must be conserved in any photon-induced transition.
Consequently, the dipole moment can only act between |01)
and |10), where the first and second indices represent the
electron occupation numbers in the QD and Majorana modes,
respectively. We thus solve the dipole matrix element for each
pair by decomposing the composite states from Egs. (15)
through (18) into the occupation number basis, namely |00),
|01), |10}, and |11}, starting with the QD-Majorana pair on the
left end of the nanowire:

1 1

1
A, ) = — 00) — |01 —(10) — |11
A, %) ﬁ[ﬁ(l ) — | >):Fﬁ(| ) — | >)}

1
= 5(100) — [01)  |10) = [11)), (AD)

171 1
+)=—|— 1)+ —(|1 11
|B, £) ﬁ[ﬁ(IOOHIO ) ﬁ(l 0) +1 >)]

1
= 5(100) +101) £ |10) £ [11)). (A2)
In solving for the dipole matrix elements, it is conventional
to express the dipole operator d in terms of the momentum
operator p instead:

iqe

<nfv +|d|nlv _> = -
maw

(ng, +lplni, =), (A3)
where g, and m represent the electron charge and effec-
tive mass, respectively, and w = (Ey — E_)/kh. In terms
of the hybrid states, Eqgs. (Al) and (A2) imply that all
transitions between higher-energy and lower-energy states,
ie., |A, =) < |A,+),|B, =) < |B,+),|A, —) < |B, +),and
|B, —) < |A, +) are valid. Noting that all hopping funda-
mentally takes place between |01) and [10) (representing
a carrier going back-and-forth between the QD and Majo-
rana modes), and utilizing the fact that for the higher-energy
(lower-energy) states, the coefficients for |01) and |10) feature
equal (opposite) signs, we find that all of the transitions for the
QD-Majorana complex on the left end of the nanowire feature
the same matrix-element amplitude:

iq.

|<i’lf, +|d|nl’ _>| =\ mo (i’lf, +|p|nl’ _>
= 46]e |((01] + (10D)p(l01) — [10))]
maow
= 2qe Im[(01[p[10)]], (A4)
maow

where n; and ny can each equal either A or B. Note that the
result in the last line is a consequence of the Hermitian nature
of the momentum operator p.
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Next, we examine the dipole matrix elements for the right
end of the nanowire. As in the left end, we substitute the
representation of the composite states shown in Egs. (15)
through (18):

171 1
C,£) = —| —=(/00) — [01)) F —=(|10) + [11
IC, £) ﬂ_ﬁ(l ) =1 ))qﬁﬁ(l )+ ))_
1
= 5(100) = 101)  [10)  [11)), (A5)
171 1 1
D, +) = —| —=(/00) +[01)) £ —(|10) — [11
D, £) ﬁ_ﬁ(l )+ 101)) ﬁ(l )= 1 ))_
1
= 5(100) +101) & [10) F [11)). (A6)

Note that the sign corresponding to |01) and |10) each is the
same for the A and C superpositions, as well as for the B and D
superpositions. Consequently, the matrix-element amplitude
for each transition is equivalent to that calculated in Eq. (A4):

qe
naw

lng, +ldn;, —)| = 7 Im[{01|p[10)], (A7)
where n; and ny can each equal either C or D.

It is worth noting that these matrix elements are nonzero
if and only if the QD-Majorana hopping dipole moment con-
tains an imaginary component. Indeed, since p = —ihV, and
since |[10) and [01) are both localized states with fully real
wave-function values in position space, the matrix elements
are fully imaginary, as desired. Defining  as the direction of
the electric field E, the matrix-element amplitudes for d E
thus reduce to the following:

qe
2mw

ldy | = Im[(01|p - E10)]]

qgeh
= 5 (0110, [10)]. (A8)
me
Although the localized states |10) and |01) effectively reduce
to Dirac § functions from the point of view of the nanowire
length, it is convenient to model them as ground-state so-
lutions to finite potential wells, with exponentially decaying
tails outside their respective wells:

vl <7
z, A9
by > & (A9)

v =Nl

where «, A, and the normalization coefficient N are functions
of the well width w and the constant k (proportional to the
square of the state energy):

kw
kK = ktan -5 ) (A10)
Kw/2 kw
A=c¢ cos -5 ) (A1)
N — kw 4+ sin (kw) n 1 + cos (kw) 71/2. (A12)
2k 2K

The potential well depth can be expressed in terms of k and «
as Vo = f(k* + «?), where f = h*/2m.

For the exponentially decaying part of each wave func-
tion to be dominant, it is necessary that the well width be
much smaller than the wave-function span, ie., w < 1/k.
Furthermore, for the ground state, it is necessary that w <
1/k. Applying these limits, we find that the normalization
coefficient N approximately reduces to \/k, and A ~ 1. Then,
if the QD and Majorana mode centers are separated by a
length I > 1/k > w, the dipole matrix element is solved by
the following integral:

qeh
2mw

g.hN?A%k
NS
2mw
gehix?l

2mw

ldy | =

/ dy(NAe“O~)3 (NAe™)

I—w/2
[
w/2

e . (A13)

—K

I

Note that for |y — /2| > (I — w)/2, the initial and final wave
functions are both even about y = //2, thus negating the con-
tribution of these regions to the dipole matrix element. It is
also worth noting that at small center-to-center distances /, the
dipole matrix element increases with the distance, whereas at
long distances, the correlation is reversed. This is due to the
trade-off between an increase of dipole moment with distance
between charges and the drop-off in wave-function overlap
with distance.

Next, we seek to solve for the center-to-center distance !/
that produces the desired QD-Majorana coupling A = w/2,
where w is the RF photon angular frequency. Note that /A
represents the transition amplitude for a charge carrier be-
tween the QD mode and the Majorana mode. To calculate this
hopping parameter, we use as our operator the alteration of the
potential energy landscape induced by the new neighboring
potential well:

0, x<l-%
AVy)y=1-V, -5 <x<Il+3.
0, x>1+3

(Al4)

Consequently, the hopping parameter is determined as
follows:

1
A= 21 {Ymzm| AV [Yrop)|

_h

T 2m

h

~ —

I4+w/2
/ dy(N cos (k(y — 1))(—k* — k*)(NAe™)
l—w/2

I4+w/2
/I dy(ViIO) (k) (ke ™)

—w/2

~—e (A15)

where we used the narrow-well approximations kw < 1 and
kw < 1 < «l, yielding N =~ /k, A~ 1, and K2~ 2k /w >
k2. It is now straightforward to determine the dipole matrix
element amplitude |d _| by dividing Eq. (A13) by Eq. (A15)
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and substituting @ = 2A:

qel
dyo| ~ T
As intuitively expected, the dipole moment amplitude lin-
early varies with the center-to-center length /. Regarding the
value of «, although the coherence length of the Majorana
wave function is about 14 nm in iron-based superconduct-
ing nanowires [44], the corresponding length scale for InAs
nanowires was determined by Higginbotham to be about
250 nm [39], consistent with InAs material parameters laid
forth by Das et al. [45]. Using the inverse of this as «,
along with an electron effective mass of 0.020m in InAs
[46], we find that for a frequency of 5 GHz, [ = 440 nm,
corresponding to |dy _| ~ 1.8 x 10726 Cm. The center-to-
center distance is significantly longer than the coherence
length of each wave function, as desired. It is worth not-
ing that both the center-to-center distance and the dipole
matrix element amplitude correlate negatively with the res-
onance frequency. This is due to the fact that a higher
resonance frequency necessitates a stronger QD-Majorana
coupling strength, which in turn requires a closer spacing
between the modes, thus lowering the center-to-center dis-
tance /. This also reduces the dipole moment amplitude due
to the aforementioned attenuation at lower center-to-center
spacing.

(A16)

APPENDIX B: FINE-TUNING THE DIPOLE MATRIX
ELEMENT

Here, we discuss the adjustments required to the height of
the barrier separating the QD and Majorana wells to tune the
QD-Majorana coupling strength. This method is advantageous
in that it preserves symmetry in the potential energy landscape
for the two modes. Labeling the shift in the potential energy
barrier as 8§V, we obtain the following wave functions for
the quantum dot and Majorana states, respectively, in the

J

1
A= £|<¢MZM|AV|WQD>|

I+w/2 1 —-1/2 5 5 1 1 1/2
+— 2 =) — + — w2y
‘/l w/2 (2K1 2K2) (= )<2K1 2;@) ¢

I+w/2
I

L -
2m 2/{1 2/(2

hK]KQ
~ e Kzl’

—w/2

~

m

Defining §x = m8V/(2h%k), we can make the first-order ap-
proximation that «k, & k2, leading to the conclusion that the
dominant effect of the shift in the potential energy barrier
occurs on the exponential term due to the replacement e <! —
e+l _Consequently, given the fact that A is proportional to
the resonance frequency w, the original resonance frequency
wp can be shifted to a different value o’ via the following

narrow-well limit:

| 1\ 12 eax, X< -3
1/fD(y)%(——i-—> 1, Y <x< ¥,
Q 2K 2K> e x i % 2
(B1)
1 1 \-12
Ymzm(y) ~ <2—K1 + 2—/(2)
e, x<l—-3
x {1, I-%<x<I+% (B2
e x> [+ %
where k| and «; are defined in the following manner:
2mV;
k=t =R (B3)
7
2m(Vy + 8V 2msV
Ky = \/% —Kk= \/K12+ r;—z (B4)

Similar to our approximation that k> ~ 2« /w for the case
of Vi =V, =V, we can show that k? =~ (x| + k2)/w for the
general case. If we also assume a perturbative barrier poten-
tial energy shift such that §V « V), we can approximate the
relationship between the decay constants x; and k, and the
original « (for 8V = 0) as follows:

mdV
K1~ K — , B5
1 T (B5)
méV
Kp XK+ ——. B6
2 TEm (B6)

We are now in a position to calculate the change in the hop-
ping parameter induced by the barrier potential energy shift
S8V. To this end, we use the method that we introduced in
Eq. (A15):

(B7)
(
potential energy barrier shift §V:
2Rk o
8V ~ — In{— ). (BY)
ml wo

As desired, lowering the barrier (§V < 0) leads to stronger
QD-Majorana hybridization and hence a larger frequency gap,
and vice versa.
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The dipole moment amplitude |d _| is solved in a manner
analogous to Eq. (A13), focusing on the region between the
wells (which dominates the overlap):

1 1\ e
d _ _ Ko (y—
/ Y <2K1 + 2K2> ¢
; 1 1\
X O 2K1 + 2/(2 ¢

g (1 1\
2ma)(2/c1+2k2) e

qeh/q/czzl

g.h
2mw

|d+,7| =

l—w/2
L.
w/2

N2l (B9)
mw(k + K2)

Substituting @ = 2A, and merging Eqgs. (B7) and (B9), we find
|d+ | in terms of the center-to-center distance / and the decay

constants k1 and k»:

Qel K2
d, |~ — .
ldy | 2 4t

We can express the dipole moment perturbation §|d _| due
to the barrier potential energy shift §V required to induce
the resonance frequency shift wy — @’ by substituting the
approximate expressions from Egs. (B5) and (B6), as well as
the expression in Eq. (B8) relating §V to the ratio between
new and original resonance frequencies:

(B10)

q.l 5k
Sldy | =~ 2 %

gel m
~— 1)
dic 2R’k

~——In|—).
4k wo

(B11)
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