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Semiclassical theory of quantum stochastic resistors
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We devise a semiclassical model to describe the transport properties of low-dimensional fermionic lattices
under the influence of external quantum stochastic noise. These systems behave as quantum stochastic resistors,
where the bulk particle transport is diffusive and obeys the Ohm/Fick’s law. Here, we extend previous exact
studies beyond the one-dimensional limit to ladder geometries and explore different dephasing mechanisms
that are relevant to different physical systems, from solid-state to cold atoms. We show how the semiclassical
description is useful to explain the nontrivial dependence of the conductance of these systems on the chemical
potential of the reservoirs. This description provides an intuitive and simpler interpretation of transport in
quantum stochastic resistors in good quantitative agreement with the exact numerical solution. Moreover, we
find that the conductance of quantum ladders is insensitive to the coherence of the dephasing process along the
direction transverse to transport, despite the fact that the system reaches different stationary states.
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I. INTRODUCTION

Diffusion is the most common type of transport encoun-
tered in many-body systems, both in the classical and in the
quantum world. In condensed matter setups, it is observed
whenever the resistance of a metallic conductor is measured.
The emergence of resistive behavior is commonly attributed
to the diffusive propagation of charge carriers caused by scat-
tering with disorder, impurities or particles of the same or
different nature (electrons, holes, phonons, magnons, etc.) [1].
Despite the clarity of these physical mechanisms, describing
the emergence of diffusive transport from a full quantum
perspective remains an open issue in theoretical physics [2–8].

In recent years, the study of open quantum systems has
opened new exciting venues to understand the emergence of
diffusion. The Markovian description of leads [9–16], losses
[17–20] or external time-dependent noises [15,21–31] has
provided valuable numerical and analytic insight into the
problem. In this context, dephasing has been in the spotlight
for being an analytically tractable process of physical impor-
tance. It is capable of describing the emergence of diffusion
in quantum coherent systems [15,32–34], which behave as
quantum stochastic resistors [35].

Despite these exact derivations of classical diffusive trans-
port in the quantum realm, it remains an open question to
which extent a classical description can account for the co-
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herent transport properties and with which accuracy [36–38].
If successful, a classical description could provide additional
insight on transport phenomena outside the framework of
open quantum systems.

Moreover, most of the studies mentioned above are
restricted to one dimension, often exploiting integrable struc-
tures in some fine tuned cases [8,22,32,39]. It is thus important
to investigate the extension of exact solutions to higher dimen-
sions and their richer behavior [40]. This understanding is also
relevant to open new perspectives in the context of quantum
matter simulators, where controlled dissipative dynamics is
under study in both bosonic [41–43] and fermionic systems
[44,45].

In this paper, we devise a semiclassical model, which ac-
curately describes the transport properties of one-dimensional
quantum stochastic resistors. We then derive a set of condi-
tions under which the result for the 1D conductance can be
extended to 2D systems. We focus on the quantum ladders
geometries sketched in Fig. 1 (top), where a current is driven
by a difference of chemical potential δμ between thermal
leads. The lattice is under the influence of dephasing pro-
cesses and the working principle of the semiclassical model
is illustrated in Fig. 1 (bottom), in the one-dimensional limit.
Semiclassically, dephasing is conceived as a stochastic reset
of single particle velocities, which mimics a series of random
quantum measurements of the particle position.

To characterize the transport properties of a dephased
chain, we consider their conductance at a weak bias δμ. We
show that, in the presence of dephasing, the conductance is
suppressed with the longitudinal extent of the system—the
number of sites N in Fig. 1 (top)—revealing the emergence
of bulk resistivity. We also observe that dephasing triggers
a nontrivial dependence of the conductance on the chemical
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FIG. 1. (Top) Schematic representation of the system under
study. An M-leg square ladder is attached at the edges to two leads
prepared at the same temperature with distinct chemical potentials
μL,R. The bias δμ in the chemical potential drives a particle current
J that can depend on the noise. Noises differ on the spatial corre-
lation along the y direction ranging from uniformly correlated dH I

t

to uncorrelated dH II
t . (Bottom) Semiclassical interpretation of a 1D

diffusive channel. A particle leaves a lead with a velocity determined
by the band dispersion. A reset of a particle’s velocity occurs at
random times until it escapes to one of the leads. The distance
between leads is � = Na with a the lattice spacing.

potential μ of the reservoirs. In particular, the conductance
vanishes when the chemical potential approaches the band
edges, reflecting a suppression with the velocity of particles
injected by the reservoirs. This dependence is absent in the
ballistic case and is particularly intriguing as it is also absent
in the bulk diffusion constant of the system. We show then
how the semiclassical model is able to accurately reproduce
the emergent μ dependence of the conductance, providing at
the same time a simple physical picture connecting boundary
and bulk diffusive effects.

We then extend these considerations to ladder systems.
The presence of an additional degree of freedom along the
y direction, transverse to the current flow along x, allows
different dephasing processes. These processes can be either
coherent or incoherent along the y direction, see Fig. 1 (top).
The coherent case is for instance relevant to cold atom systems
with a synthetic y dimension [46–49]. Even though these
different noises drive the system towards totally different sta-
tionary states, we find that they carry exactly the same current.
We explain this remarkable coincidence as a manifestation of
the fact that the correlations of these different noises obey
identical isotropy conditions, that we derive and discuss in
detail.

This paper is structured as follows. In Sec. II, we discuss
the Keldysh approach for the exact self-consistent derivation
of currents in quantum stochastic ladder resistors. Sec-
tion III introduces the semiclassical approach and illustrates
its ability to reproduce exact results. Section IV discusses
the extension to ladders and Sec. V discusses results and
conclusions.

II. MODEL AND METHODS

We study the transport properties of spinless fermions on
the discrete square lattice geometry sketched in Fig. 1 (top).
We consider an infinite lattice along the longitudinal direction

(x axis), with M sites in the transverse direction (y axis). The
corresponding Hamiltonian reads

H = −
∑
j,m

[txc†
j+1,mc j,m + tyc†

j,m+1c j,m + H.c] , (1)

where the sum over j runs between ±∞ and the second index
between 1 and M. The operators c j,m annihilate fermions on
site ( j, m) and tx/y control the hopping amplitude along the
x/y directions. We further divide the sum over the longitudinal
direction into three regions: the system (S) for j ∈ [1, N],
the left (L) lead for j < 1 and the right (R) lead for j > N ,
see Fig. 1 (top). It is useful to introduce the basis diago-
nalizing the transverse hopping term in Eq. (1), given by

the unitary transformation aj,p = ∑M
m=1

√
2

M+1 sin( πmp
M+1 )c j,m.

This transformation uncouples the M transverse modes and
the corresponding Hamiltonian reads

H =
∑

j,p

[−tx(a†
j+1,pa j,p + H.c) + εpa†

j,pa j,p] , (2)

with εp = −2ty cos(pπ/(M + 1)) and p ∈ [1, M]. If the sys-
tem is translational invariant along the x direction, the
transverse modes have nondegenerate dispersion relations
εp,k = −2tx cos(k) + εp, with k ∈ [−π, π ] the quasimomen-
tum in the first Brillouin zone, see sketches in Fig. 3 for an
illustration in the M = 2 case. We reserve the indexes j, m for
the physical sites in the x and y direction, and the indexes k, p
label respectively longitudinal quasi-momenta and transverse
modes.

In addition to the coherent Hamiltonian dynamics, we
introduce a noise term modelled by a quantum stochastic
Hamiltonian (QSH) that leads to various dephasing mecha-
nisms that we are going to detail. The QSH is defined by the
infinitesimal generator dHt such that the total unitary operator
U (t ) is evolved as

U (t + dt ) = e−i(Hdt+dHt )U (t ) . (3)

In this paper, we are interested in QSHs, which conserve
the total particle number and lead to dephasing. They are
described by

dHt =
√

2γ
∑
j,p,p′

a†
j,pa j,p′dW j,p,p′

t , (4)

where γ controls the overall dephasing rate and the dWt are
increments of stochastic processes defined within the Itō pre-
scription [50]. The noise have a 0 mean, E[dWt = 0] and their
Itō rules are defined to be

dW
j1,p1,p′

1
t dW

j2,p2,p′
2

t ′ = δ j1, j2Cp1,p′
1,p2,p′

2
dt for t = t ′,

dW
j1,p1,p′

1
t dW

j2,p2,p′
2

t ′ = 0 for t �= t ′. (5)

By construction, the noise is thus uncorrelated in time and in
the longitudinal x direction, j index, but not necessarily on
the transverse y direction, p index. Correlations of the noise
in the y direction are taken into account by the function C,
which can be adapted to describe different physical scenarios,
as we are going to illustrate in the context of ladder geometries
in Sec. IV. Since the dWt commute with one another, we
have Cp1,p′

1,p2,p′
2
= Cp2,p′

2,p1,p′
1
. Hermiticity also imposes that

dW j,p,p′
t = (dW j,p′,p

t )∗. Qualitatively speaking, each term in
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the sum of Eq. (4) describes transitions from a state indexed
by p′ to a state indexed by p with a random complex amplitude
given by dW j,p,p′

t . Since the Cs are arbitrary, Eq. (4) consti-
tutes the most general way of writing noisy quadratic jump
processes between different transverse propagation modes. In
one dimension, discussed in Sec. III, Eq. (4) reduces to an
on-site stochastic fluctuation of potential, leading to standard
dephasing, see also Eqs. (13) and (14). In Sec. IV, we will
specify different noise-correlations on ladders and discuss
their implication on transport.

The mean evolution generated by the stochastic Hamilto-
nian (4), with the prescription (5), is described by the Lindblad
generator acting on the reduced density matrix of the system
ρ,

L(ρ) = γ
∑

j,p1,p2,p′
1,p′

2

Cp1,p′
1,p2,p′

2

(
2a†

j,p1
a j,p′

1
ρa†

j,p2
a j,p′

2

− {
a†

j,p2
a j,p′

2
a†

j,p1
a j,p′

1
, ρ

})
(6)

where {, } denotes anticommutation; see Appendix B.

A. Keldysh approach and exact self-consistent solution
of transport in quantum stochastic resistors

As we will be dealing with systems under the effect of
dephasing noise and biased leads, the dynamics of the sys-
tem is intrinsically out of equilibrium. The natural language
to describe these systems is the Keldysh formalism [51],
detailed in Appendix A. The central objects of the theory
are the retarded (R), advanced (A), and Keldysh (K) compo-
nents of the single-particle Green’s functions GR/A/K . They are
defined in time representation as GR

j,m;i,n(t − t ′) = −iθ (t −
t ′)〈{c j,m(t ), c†

i,n(t ′)}〉, GA
j,m;i,n(t − t ′) = [GR

i,n; j,m(t ′ − t )]∗ and

GK
j,m;i,n(t − t ′) = −i〈[c j,m(t ), c†

i,n(t ′)]〉 [52]. By adopting the
notation by Larkin and Ovchinnikov [53], these three compo-
nents are collected in a unique matrix, which obeys the Dyson
equation

G =
(
GR GK

0 GA

)
, G−1 = g−1 − �, (7)

where g corresponds to the Green’s function of the system
disconnected from the leads and unaffected by noise. The
matrix � corresponds to the self-energy, which has the same
matrix structure as G.

In the path integral formalism, the fermionic degrees of
freedom of the leads can be integrated out. Their integration
gives a contribution to the self-energy of the system �L/R,
which has nonzero components only at the system edges
j = 1, N . The general procedure of this integration is detailed
in Appendix A. To give a more explicit idea of the result
of this procedure, we report here the result for the simplest
one-dimensional case (M = 1). The edge contributions then
read in frequency space

	
R/A
L,i, j = t2

x gR/A
0,0 δi, jδi,1,

	
R/A
R,i, j = t2

x gR/A
N+1,N+1δi, jδi,N ,

	K
L,i, j = 2it2

x FLIm
(
gR

0,0

)
δi, jδi,1,

	K
R,i, j = 2it2

x FRIm
(
gR

N+1,N+1

)
δi, jδi,N , (8)

where Im(·) gives the imaginary part. The retarded and ad-
vanced components of the self-energy are renormalized by the
corresponding reservoir Green functions, which are calculated
at the site closest to the system. See Eq. (A7) for the explicit
expression of gR/A

0,0 (ω) and gR/A
N+1,N+1(ω) in the case of leads

identical to the system. The Keldysh components describe
the tendency of the edges of the system to equilibrate to
the attached reservoirs. The functions FL,R(ω) describe the
state of the leads, and the self-energies obey a local equilib-
rium fluctuation-dissipation relation [51]. In the absence of
noise, the leads are considered in thermal equilibrium with a
well-defined chemical potential μL,R and shared temperature
T . In frequency representation, this situation is described by
FL,R(ω) = tanh[(ω − μL,R)/2T ]. The fact that the system is
out of equilibrium can be read in Eq. (8) via the fact that
different functions F affect the self-energy of the system at
its borders.

The Keldysh formulation of the problem is advantageous
because it allows to deal exactly with the dephasing dynamics
caused by the presence of the noise described by Eq. (4). De-
spite the quartic nature of Eq. (6), the stochastic formulation
of the dephasing (4) allows for a closed exact solution of the
self-energy [24,34,35]. Indeed, the latter can be expressed in
terms of the Green’s function via the relation

�γ (t, t ′)( j,p1 ),( j′,p′
2 )

= γ δ(t − t ′)δ j, j′
∑
p′

1 p2

Cp1,p′
1,p2,p′

2
G ( j,p′

1 )( j,p2 )(t, t ) , (9)

which, inserted in Eq. (7), has to be solved self-consistently,
see Appendix B. To summarize, we derive an explicit expres-
sion of the self-energies in the Dyson equation (7), which
reads

G−1 = g−1 − �L − �R − �γ , (10)

where the expression of G is obtained numerically.
Equipped with the formal expression of the single-particle

Green’s functions, we can directly and exactly inspect the
transport properties of quantum systems under the influence
of dephasing noise. By imposing a finite bias, μL/R = μ ± δμ

2 ,
between the right and left leads, a uniform longitudinal current
J flows through the system. By construction, the noise (4) pre-
serves the total density n j,tot = ∑

p a†
j,pa j,p at a fixed position

j on the x axis, i.e., [dHt , n j,tot] = 0. Thus, the definition of
the total longitudinal current operator is unchanged by the
noise term, and the current can be evaluated at any site j,
namely

J = itx

M∑
m=1

〈c†
j+1,mc j,m − c†

j,mc j+1,m〉

= tx

M∑
m=1

Re
[
GK

j,m; j+1,m(t = 0)
]
. (11)

In the following, we will explicitly derive this expression from
the exact self-consistent solution of Dyson’s equation (9).
Additionally, we rely on the linear expansion of Eq. (11) in
the chemical potential difference δμ to study the conductance
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of the system, which is defined as

G = lim
δμ→0

2π
J

δμ
. (12)

Notice that we rescaled the conductance by 2π in order to
have the quantum of conductance equal to 1 and adopt the
convention e = kB = h̄ = 1. In the following sections, we
devise a semiclassical model, which can capture the results
from Eqs. (10), (11), and (12) in the presence of dephasing. In
particular, we will inspect the conductance dependence on the
chemical potential of the leads μ.

III. CONDUCTANCE OF A 1D QUANTUM
STOCHASTIC RESISTOR

In this section, we focus on a strictly one-dimensional
geometry to showcase the effectiveness of the semiclassical
approach in describing the emergent diffusive transport prop-
erties of quantum stochastic resistors.

A. Exact derivation

We begin by deriving the dependence of the conductance G
on the chemical potential of the leads μ, via the exact solution
of a single chain subjected to on-site dephasing noise. In one
dimension, the noise term in Eq. (4) reduces to

dHt =
√

2γ
∑

j

c†
j c jdW j

t , (13)

with the corresponding Lindblad operator

L(ρ) = γ
∑

j

(2n jρn j − {n j, ρ}). (14)

For a QSH described by Eq. (4), the conductance of the
system can be written

Gγ (μ) =
∫

dω
Tγ (ω)

4T cosh2
(

ω−μ

2T

) . (15)

Two equivalent expressions of Tγ (ω) are derived in
Appendix B, one relying on the expansion in δμ of Eq. (11),
and the other on the expansion of the Meir-Wingreen for-
mula as devised in Refs. [14,35]. The expression (15) for the
conductance reproduces Landauer-Büttiker’s formula, valid
for noninteracting ballistic systems [54]. As such, Tγ (ω) is
interpreted as the transmittance of the channel at energy ω

for a fixed γ , a quantity independent of the temperature T
and chemical potential μ of the leads. An explicit expression
of Tγ (ω) was computed in Ref. [35] in similar settings. We
stress that the extension of Landauer-Büttiker’s formula (15)
to dephased systems is highly nontrivial, given the fact that
dephasing triggers inelastic scattering events in the conduct-
ing region.

If we consider leads, which are identical to the system, see
Eq. (1), no reflection occurs at the interface and Tγ=0(ω) = 1
for ω ∈ [−2tx, 2tx] and 0 elsewhere. At zero temperature,
this implies the usual quantized conductance G = 1 when the
chemical potential of the leads lies within the dispersion rela-
tion of the reservoirs, μ ∈ [−2tx, 2tx] [1,55–57]; see Fig. 2.

The presence of any finite dephasing rate leads to diffusive
transport in the thermodynamic limit [15,33–35,58]. In these

FIG. 2. (Top) Conductance as a function of chemical potential
for increasing dephasing rates γ at T = 0 (left) and increasing
temperature (right) at a fixed system size N = 50. The dots are
derived relying on the exact quantum calculation (Sec. III A), while
the dashed lines correspond to the semiclassical approximation
(Sec. III B). (Bottom) Scaling of the conductance with the parameter
γ N when T = 0, μ = 0. (Inset) Relative error of the semiclassical
conductance at μ = 0, εr = |Gcl − Gγ |/Gγ .

studies, it was shown that the bulk transport properties are
described by Fick’s law

J = −D∇n , (16)

where D is the diffusion constant and ∇n the particle density
gradient along the chain. In particular, for fixed boundary
conditions, Fick’s law implies the 1/N suppression of the
current with the system size and

D = 2t2
x

γ
. (17)

This suppression reveals the emergence of a resistive behav-
ior, compatible with Ohm’s law. This relation holds in the bulk
regardless of the average chemical potential μ and temper-
ature T of the biased leads. This fact can be understood as
follows: at equilibrium, the effect of the noise term is to drive
the system towards an infinite temperature state with a fixed
number of particle [59]. Here the situation is more intricate
since we are out-of-equilibrium. Nevertheless, we show nu-
merically in Appendix D that, deep in the bulk, there exist
a well-defined notion of local equilibrium, where the system
does reach an infinite temperature state. Thus, in the bulk, the
information about the energy scales of the leads is erased,
and one expects that bulk transport properties, such as the
diffusion constant, will be independent of the temperature and
the chemical potentials of the boundaries. This point will be
further emphasized in Sec. IV.

In contrast to the diffusion constant D, the conductance
strongly depends on the temperature and chemical poten-
tial of the attached leads; see Fig. 2 (top) [60]. For a finite
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dephasing rate γ , Gγ develops a clear dome-like dependence
on the chemical potential [61] This shape persists even in the
diffusive regime N � tx/γ where the conductance vanishes
as 1/N ; see Fig. 2 (bottom) and Fig. 7 in Appendix C. At
T = 0, the dome is restricted to energies within the bandwidth
[−2tx, 2tx] and the differential conductance ∂μG diverges
whenever the chemical potential touches the edges of the
band, even when γ > 0. This behavior is reminiscent of the
“staircase” behavior of the conductance for noninteracting
systems and γ = 0. The main difference is that for γ > 0 the
conductance G is not quantized and acquires a μ dependence
in the [−2tx, 2tx] interval. As expected, increasing the temper-
ature of the leads smears the dependence of the conductance
with respect to the chemical potential, as illustrated in Fig. 2
(top).

The dome-like dependence of the conductance ultimately
originates from its connection to the leads but it is independent
of the microscopic details of the latter. Reservoirs with a linear
band dispersion (i.e., not a cosine dispersion) would equally
lead to a maximum of the conductance near the band center.
Despite its usefulness, the numerical exact solution relies on
relatively involved technical tools (Keldysh field theory and
full diagrammatic ressummation), which somehow prevent a
transparent interpretation of the phenomenology at work (e.g.,
the dome-shaped dependence of the conductance on μ). It is
thus important to have a simpler description of transport that
can simultaneously explain a constant diffusion constant, as
well as the quantitative dependence of the conductance with
the chemical potential.

In the next section, we show that a semiclassical model
allows to build an intuitive physical explanation of the depen-
dence of Gγ on the chemical potential and to connect it with
the bulk behavior of transport.

B. Semiclassical approach

The Lindblad operator (14) can actually describe the aver-
age evolution of a system under different stochastic processes,
which differ from the stochastic fluctuations of potential
considered in Eq. (13). Indeed, the most natural way to de-
vise a semiclassical description of the Lindblad dynamics of
Eq. (14) is to “unravel” it to a projective measurement process,
where the densities at each site are measured independently
with rate γ [62,63]. Notice that for single realizations of
the stochastic process, the projective dynamics fundamentally
differs from the quantum stochastic dynamics described by
Eq. (13). For instance, a density measurement on site j would
project the system in a state with 1 or 0 particles on that site
in a nonunitary fashion. On the contrary, the random potential
fluctuations described by Eq. (13) are always unitary at the
level of a single realization. Nevertheless, the projective and
QSH dynamics coincide in average and are described by the
same effective Lindblad operator (14).

In the projective case, at each time step �t , a measurement
at site j occurs with probability γ�t . After a measurement,
depending on whether the local particle number is measured
to be zero or one, the density matrix is updated as follows:

ρ → ρ0 = (1 − n j )ρ(1 − n j )

Tr[ρ(1 − n j )]
, ρ1 = n jρn j

Tr[ρn j]
, (18)

with respective probabilities

Pρ0 = Tr[ρ(1 − nj )], Pρ1 = Tr[ρn j]. (19)

Averaging over the possible outcomes for a small time step
dt yields the average evolution of the density matrix dρt =
ρt+dt − ρt ,

dρt =γ dt
∑

j

(2n jρt n j − {n j, ρ}) , (20)

which is equivalent to the Lindblad evolution described by
Eq. (14).

This alternative point of view is the natural one to devise
a semiclassical description of transport in systems affected by
dephasing. If we consider a single-particle traveling through
the chain, the effect of a measurement is to localize it at a
given site j. When the particle is localized, it is in a superpo-
sition of all possible momentum states.

We thus propose the analogous classical model in the
continuum limit: consider a single particle of initial velocity
v0(ω) coming from the left lead into the system of length
� = Na, where a is the lattice spacing. Its velocity is set by
its energy ω, v0(ω) = ∂εk/∂k|ω, where εk is the dispersion
relation of the lead, see Fig. 1 (bottom). At a random time t ,
determined by the Poissonian probability distribution p(t ) =
γ e−γ t , its velocity is reinitialized by drawing a momentum k
sampled from a uniform probability distribution on the inter-
val [−π, π ]. For a dispersion relation εk = −2tx cos(k), the
probability distribution of the velocity v reads

p(v) = 1

2πtx
√

1 − (
v

2tx
)
)2

, v ∈ [−2tx, 2tx]. (21)

Once the velocity has been reset, the process is restarted.
Whenever the particle reaches one boundary located at x = 0
or x = �, it exits the system. The problem of computing the
semiclassical transmittance Tcl can be reduced to compute
the probability of exiting the system by touching the right
boundary. Note that this problem differs from a usual random
walk, as in this case the length of the steps are not uniform in
time.

Once a measurement occurs, the velocity of a particle in-
jected by a reservoir gets totally randomized according to the
probability distribution (21). Thus the object of interest be-
comes the probability P(x) of exiting the system once a given
measurement has taken place at some position x ∈ [0, �]. The
first measurement takes place at position x and time t =
x/v0(ω) with Poissonian probability distribution γ e−γ t . Thus,
the semiclassical transmittance Tcl, for a particle injected from
the left lead with velocity v0(ω), is given by

Tcl(ω) =
∫ ∞

0
P(x)

γ

v0(ω)
e−γ x

v0 (ω) dx . (22)

We recall that, because of the specific dispersion of the leads
under consideration, Tcl(|ω| > 2tx ) = 0.

It remains to determine P(x). It is useful to introduce the
probability Pv (x) for a particle to exit on the right when it
starts at x with velocity v. The probability P(x) is thus the
integral of this probability over all possible velocities, P(x) =∫

dv p(v)Pv (x). As we assume that no measurement process
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occurs in the leads, P(x) has to fulfill the boundary conditions

P(x < 0) = 0, P(x > �) = 1. (23)

In the system, where the measurement processes occur, Pv (x)
is expressed in the closed form

Pv (x) = θ (v)

[
e−γ �−x

v +
∫ �−x

v

0
dtγ e−γ t P(x + vt )

]

+ θ (−v)
∫ − x

v

0
dt γ e−γ t P(x + vt ) (24)

where θ (v) is the usual Heaviside step function. The first term
corresponds to the probability that the particle goes through
the system without the occurrence of any measurement. The
second term is the probability that a right mover resets at time
t multiplied by the probability to exit if the particle starts
again from this position. The last term corresponds to the
same process but for a left mover. By integrating over the
distribution of velocities (21), we get an implicit equation for
P(x) for x ∈ [0, �],

P(x) = ϕ(� − x) −
∫ �−x

0
dy ϕ′(y) P(x + y)

−
∫ x

0
dy ϕ′(y) P(x − y) (25)

where we have introduced the function

ϕ(y) =
∫ ∞

0
dv p(v) e−γ

y
v =

∫ 1

0
dx

e− γ y
2tx x

π
√

1 − x2
, (26)

and ϕ′(y) = ∂ϕ/∂y. From Eq. (25), the probability P(x)
can be in principle derived iteratively in the number of
measurement-induced resets of velocity. This solution would
consist in writing

P(x) =
∞∑

n=0

Pn(x) , (27)

where Pn(x) is the probability of exiting on the left after n
resets starting from x. This leads to

P0(x) = ϕ(� − x) , (28)

Pn+1(x) = −
∫ �−x

0
dy ϕ′(y) Pn(x + y)

−
∫ x

0
dy ϕ′(y) Pn(x − y) . (29)

Nevertheless, we have found empirically that solving Eq. (25)
self-consistently provides faster convergence and numerical
stability [64] in comparison to the recursive solution (27). We
use the derived solution in Eq. (22), to obtain the semiclassical
expression of the transmittance.

Using the newly found transmittance in formula (15), we
compute the associated semiclassical conductance Gcl. In
Fig. 2, we compare Gcl (solid lines) with the exact quantum
calculation Gγ (dots) and find an excellent agreement for all
chemical potentials and temperatures.

Deep in the diffusive region, N � tx/γ , the semiclassical
model has some deviations with respect to the quantum solu-
tion. In the inset of Fig. 2 (bottom), we depict the relative error

εr = |Gcl − Gγ |/Gγ in the middle of the spectrum and verify
it does not increase above 10%. One possible explanation
for this discrepancy could be that the semiclassical model
assumes that at each reset event the new momentum is drawn
uniformly in the interval [−π, π ] and the particle has ballistic
propagation at the corresponding velocity. In principle, we
have to take into account the mode occupation of the fermions
in the system. Indeed, the exclusion principle should prevent
the particle to acquire a momentum corresponding to an al-
ready occupied mode. Taking these effects into account is,
however, beyond the scope of this paper. We also stress that
within this approach, we have considered leads and systems
described by the same Hamiltonian in absence of dephasing.
This assumption ensures that we do not need to take into
account any additional reflection phenomena that might occur
when the particle is transferred from the leads to the system.

The semiclassical picture provides an intuitive explanation
of the conductance drop observed close to the band edges,
μedge = ±2tx. Close to these points, the velocity of incoming
particles is the lowest. It is then more likely that a measure-
ment process will occur and reset its speed, increasing its
chance to backscatter into the original lead, and thus reducing
the conductance. Additionally, the first measurement process
resets the single-particle velocity, leading to a uniform distri-
bution of the particle over all the accessible states. Thus, after
the measurement the particle attains an infinite temperature
state, which is reservoir-independent and is the one related to
the bulk transport properties described by the diffusion con-
stant (17). Remark that this picture is consistent with the fact
that the diffusion constant evaluated in the bulk is independent
of the boundary chemical potentials and temperatures. In con-
clusion, this simple semiclassical physical picture connects
bulk and boundary effects on the transport properties of this
system, which are revealed by the diffusion constant and the
conductance respectively.

IV. DEPHASED LADDER

We now extend the result for the conductivity of a 1D
system to a ladder made of M legs in the transverse direction,
as described by the Hamiltonian (1), see also Fig. 1. In this
section, we consider noises that are site-to-site independent
along the x axis, but without a fixed structure in the y di-
rection. Even though a natural choice is to consider noise
processes, which are uncorrelated along the y direction (as we
will do), considering also correlated structures is motivated
from synthetic dimensions setups. These setups make use of
coupling between nonspatial degrees of freedom to simulate
motion along additional dimensions [46–49]. In our setup,
the x direction would correspond to the physical dimension
while the synthetic dimension is mapped to the transverse y
direction. With this mapping, the QSH studied here could be
realized from randomly oscillating potentials that are spatially
resolved in the physical direction; see also Sec. V.

We recall the generic expression for the QSH Eq. (4),

dHt =
√

2γ
∑
j,p,p′

a†
j,pa j,p′dW j,p,p′

t , (30)
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with the covariance of the noise dW
j1,p1,p′

1
t dW

j2,p2,p′
2

t =
δ j1, j2Cp1,p′

1,p2,p′
2
dt . Each term of the sum describes a transition

from a state indexed by p′ to a state indexed by p with a
random complex amplitude given by dW j,p,p′

t . It is the most
general way of writing noisy quadratic jump processes be-
tween different states in the y direction.

In what follows, we will investigate the transport for dif-
ferent geometries of the noise by specifying the covariance
tensor C.

A. Noise I

We start with the simplest case, that we label Noise I. It
involves a single uniform noise acting on a given vertical
section of the system, see also Fig. 1 (top). It is described by

CI
p1,p2,p′

1,p′
2
= δp1,p2δp2,p′

1
δp′

1,p′
2
, (31)

which corresponds to a QSH of the form

dH I
t =

√
2γ

∑
j,m

c†
j,mc j,mdB j

t =
√

2γ
∑

j,p

a†
j,pa j,pdB j

t , (32)

with {B j
t } independent Brownian processes (recall that m in-

dexes the spatial degrees of freedom in the y direction while
p indexes the transverse modes). This kind of noise can be
naturally implemented in synthetic ladders generated from
internal spin degrees of freedoms of ultracold atoms [46–49].
Equation (31) would correspond to a randomly fluctuating
potential that acts independently on each atom and uniformly
shifts the energy levels of each spin state by

√
2γ .

The noise dH I
t commutes at fixed j with the occupation

number operator of every mode p, a†
j,pa j,p, and therefore does

not couple different modes. As a consequence, all the results
that we have derived for the conductance of a 1D system can
be trivially extended to the present case since the system is
then equivalent to a collection of uncoupled 1D bands. The
dispersion associated to each band εp(k) is the same than for
the 1D case with an overall energy shift given by εp(π/2).
Thus, the total conductance is the sum of the contribution of
each mode, namely,

GI(μ) =
∑

p

Gγ

[
μ − εp

(π

2

)]
, (33)

where Gγ is given by Eq. (15), extensively studied in the
purely 1D case.

In the absence of dephasing and at zero temperature (γ =
T = 0), the conductance shows the usual staircase quantiza-
tion with respect to the chemical potential. As it is shown in
Fig. 3 for a two-leg ladder, the jumps in conductance take
place whenever the number of bands crossed by the chem-
ical potential changes. For a finite rate γ , the action of the
dephasing noise is the same for each individual band and, as
a consequence, the total conductance decays as 1/N for larger
systems.

We stress that since Noise I does not mix the different
modes, it cannot change the value of their occupation number,
which is set by the chemical potential in the reservoirs. For
instance, if a given mode was initially empty, it will remain
so in the steady state. However, at fixed p, within a single
band, the dephasing noise (13) drives the density matrix to

FIG. 3. Conductance profiles for different correlations of the
noise (30) and increasing values of γ N . For increasing shades
of blue: γ = 0; γ = 0.1 tx, N = 5; γ = 0.5 tx, N = 10 and γ =
0.5 tx, N = 50 and ty = tx . Noise I and II share the same conduc-
tance profile, while Noise III features the coexistence of ballistic
and diffusive transport, see main text. The sketches on top of the
conductance plots depict the stationary state reached in the bulk.
These states may or may not depend on the position of the chemical
potential μ in the reservoirs (horizontal-grey lines), with respect to
the dispersion relations of the different conduction modes in the
system (black lines). The red halo on top of the dispersion relations
indicates the occupation probability of the modes. Noise I distributes
particle uniformly within each band separately, while Noise II dis-
tributes the states in all bands isotropically. Noise III is a special
case, which preserves the shape of the zero temperature distribution
of the reservoirs in the bulk only in the upper band.

a state proportional to the identity [59], which is reminiscent
of the infinite temperature state discussed in the 1D case, see
also Appendix D. We therefore say that Noise I is maximally
mixing the modes k in the x direction but not mixing at all
the modes p in the y direction. As a consequence, it does not
drive the system to a genuine infinite temperature state, this
only happens within each individual band. A picture of this
stationary state for increasing chemical potentials is sketched
in Fig. 3.

We now show that the conductance profile illustrated in
Fig. 3 is not unique to the uncorrelated Noise I (31), and also
describes other types of geometries.

B. Noise II

In this section, we consider an isotropic case, where the
noise is uncorrelated both in the x and y directions. In this

013033-7



TONY JIN et al. PHYSICAL REVIEW RESEARCH 5, 013033 (2023)

case, that we label Noise II, the QSH in position basis reads

dH II
t =

√
2γ

∑
j,m

c†
j,mc j,mdB j,m

t , (34)

with dB j1,m1
t dB j2,m2

t = δ j1, j2δm1,m2 dt . After performing the
unitary transformation that diagonalizes the nonstochastic
problem (1) in the form (2), we find the noise correlation
function

CII
p1,p′1 ,

p2 ,p′2

=
(

2

M + 1

)2 M∑
m=1

∏
a=p1,

p′1,p2 ,p′2

sin

(
πam

M + 1

)
. (35)

Contrary to the previous case, Noise II is maximally mixing
for the modes k in the x direction and for the modes p in the
y direction. As a consequence, this noise drives the system
to a genuine infinite temperature state in the bulk; see also
sketches in Fig. 3. The mixing of the modes in the transverse
direction renders the task of computing the conductance an a
priori nontrivial one.

Nevertheless, as we show in Appendix E, for any noise
satisfying the condition∑

p

Cp1,p,p,p2 = N δp1,p2 , (36)

the equations of motion of the total current J coincide to
those generated by Noise I up to a renormalization of γ by
a constant N . As shown in the Appendix E, this condition
corresponds ∀p to (a†

j,p, a j,p) being eigenvectors of the dual
Lindbladian L∗ with the same eigenvalue N . The fact that L∗
act the same way on the transverse modes can be seen as an
isotropy condition for the noise term, i.e., this term cannot
discriminate between longitudinal modes and hence, cannot
change the value of the total current.

Using that δa,a′ = 2
M+1

∑
j sin( πa j

M+1 ) sin( πa′ j
M+1 ), one can

verify that CII satisfies condition (36) with N = 1. Thus we
find that

GI(μ) = GII(μ) . (37)

This result may sound surprising as, even though Noise II
drives the system towards the maximally mixed, infinite tem-
perature state, the staircase behavior of G is preserved, i.e.,
there is a discontinuity of ∂μG every time the chemical poten-
tial touches a band.

The remarkable equality (37) can be intuitively understood
within the semiclassical picture. All that matters for the con-
ductance is the number of modes that can contribute to the
current. This number is fixed by the chemical potential, which
in turn controls the staircase behavior of the conductance.
Once a particle has entered the system, different scattering
events may switch it from one channel to the other isotrop-
ically, as expressed mathematically by the condition (36).
Nevertheless, all the channels carry the current in the same
fashion, since the dispersion relations of all the transverse
modes coincide in quasi-momentum k, except for an irrele-
vant energy shift. As a consequence, the total conductance is
insensitive to whether the noise is coherent (or not) along the
transverse direction.

C. Noise III

Finally, we illustrate how breaking the condition (36) may
lead to exotic transport. We introduce the case of Noise III,
where the correlations CIII of Noise III are designed such that
they only couple pairs of transverse modes,

CIII
p1,p′

1,p2,p′
2
= fp1,p2δp1,p′

2
δp′

1,p2 , (38)

for which ∑
p

CIII
p1,p,p,p2

= δp1 p2

∑
p

fp1,p . (39)

This qualitatively corresponds to the case where, for any noisy
process that transfers a particle from the band p1 to p2, there
is the reverse process that transfers a particle from p2 to p1

with the same rate fp1,p2 .
The isotropy condition (36) is fulfilled if, for example, we

impose fp1,p2 to be equal to a constant c for every (p1, p2) in
which case we have that N = Mc.

Breaking the isotropy condition can lead to a hybrid type
of transport. For instance, let us consider the case where

fp1,p2 = δp1,p2θ (p − p0) , (40)

with the convention θ (0) = 0 for the Heaviside step function.
This noise imposes diffusive transport to the lowest transverse
modes (p � p0) while the highest modes (p > p0) remain
ballistic. Since this noise does not couple the different trans-
verse modes, the conductance has both ballistic and diffusive
contributions,

GIII(μ) =
∑
p�p0

Gγ (μ − εy,p) +
∑
p>p0

Gγ=0(μ − εy,p). (41)

We plot an example of such situation on Fig. 3 (bottom) for
a two-leg ladder and p0 = 1. The overall current has diffusive
behavior until the chemical potential reaches the bottom of the
upper band at μ0 = −2tx − 2ty cos( p0π

M+1 ). For μ � μ0 the bal-
listic mode starts contributing and dominates the conductance
in the thermodynamic limit N → ∞

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have studied the current flowing through
M-leg ladders subject to external dephasing noises with differ-
ent correlations along the direction y transverse to transport.
Starting from the purely one-dimensional case, M = 1, we
have devised a semiclassical model to compute the con-
ductance as a function of the chemical potential and found
excellent agreement with numerical solutions obtained from
exact self-consistent calculations of Dyson’s equation.

Showing the effectiveness of this semiclassical model is
important as it allows to build a simple and intuitive physical
picture of the emergence of bulk resistive behavior in quantum
stochastic resistors. As extensively discussed in the core of
this paper, the bulk transport properties of these systems, such
as the diffusion constant or the resistivity, are insensitive to
the temperature and chemical potential of the connected reser-
voirs. We showed that this is not the case for their conductance
and that we could rely on the semiclassical approach to bridge
between boundary and bulk effects. It could be interesting to
understand the deeper connections between our semiclassical
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model and the quasiparticle picture recently introduced to
describe entanglement growth [65,66].

The effectiveness of the semiclassical approach may also
hint to a potential connection to Drude models of impurity
scattering. As in Drude models, the dependence of the conduc-
tance on the chemical potential shown in Fig. 2 is somehow
directly related to the inverse of the density of states of the
system. Even though the semiclassical approach in our case
strongly relies on the unraveling of the Lindblad operator
to a measurement process, we can also understand the lo-
cal dephasing as induced by a local phonon bath at infinite
temperature. Whether such unraveling is possible/relevant for
more generic scattering problems, also in higher dimensions,
remains to be understood.

We have also shown that these nontrivial results in one
dimension could be also extended to M-leg ladder systems.
In particular, we have shown that the results valid in 1D
could be immediately applied to the case where the noise
term preserves the coherence in the vertical direction, this
case being particularly relevant to systems featuring synthetic
dimensions [46–49]. In this case, the total conductance is just
the sum of the contributions of independent 1D channels and
its diffusion constant remains unchanged.

We then demonstrated that the coherence properties of the
noise along the y direction do not play a role on the conduc-
tance of a ladder system when the noise fulfills the condition
(36). We also showed that breaking this condition for the
correlations of the noise allows to engineer exotic transport.
We gave an example (Noise III) where the longitudinal current
switches between a diffusive or ballistic behavior depending
on the chemical potential.

The isotropy condition (36) can be understood as the con-
dition under which each transverse mode contributes to the
total longitudinal current in the same manner. This raises
the natural question of understanding what would happen if
this degeneracy were to be lifted. A particularly interesting
problem would be to understand the effect of density-density
interactions in the transverse direction to the transport. In
the two-leg ladder, numerical studies relying on DMRG
techniques could be supported by the infinite system size
perturbation technique recently introduced in Ref. [35].

We briefly comment on the prospect of experimental re-
alizations. The noise discussed here is specially suitable for
implementation in synthetic dimensions setups such as ul-
tracold atoms in shaken constricted optical channels [67] or
with synthetic spin dimension [46–49,68], or even photonic
systems with ring resonator arrays [69,70]. In these systems,
the synthetic dimension plays the role of transverse direction
in our model while the physical dimension encodes the longi-
tudinal direction. A dephasing noise in the physical dimension
would thus affect in the same manner all the synthetic sites,
giving a natural realization of Noise I described by Eq. (31).
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APPENDIX A: GREEN’S FUNCTION
OF THE FREE SYSTEM

To compute the current operator (11), one first needs to
compute the Green’s function of the lead alone and of the
system in presence of the leads. For simplicity, we treat here
the 1D channel but generalization to M legs will be straight-
forward. For a single left lead, the Hamiltonian (1) can be
divided as

H = HS + HL − tx(c†
0c1 + c†

1c0). (A1)

We suppose the lead (L) and the system (S) to be noninter-
acting so that HL,S is a quadratic Hamiltonian. The associated
action in the Keldysh formalism, using Larkin notation [53]
for the fermionic fields,

S = SS +
∫

dω

2π
([ψ̄L]g−1

L [ψL])

+ tx
(
ψ̄1

0 ψ1
1 + ψ̄2

0 ψ2
1 + ψ̄1

1 ψ1
0 + ψ̄2

1 ψ2
0

)
(A2)

where SS is the action of the system, [ψL] is a vector contain-
ing all Grassman variables associated to the left lead and g is
the Green’s function before coupling, with the same matrix
structure as G in Eq. (7), g := (gR gK

0 gA ). Integrating out the
lead’s degrees of freedom, one finds

S = SS −
∫

dω

2π

(
ψ̄1

1 ψ̄2
1

)(	R 	K

0 	A

)(
ψ1

1

ψ2
1

)
,

	R/A/K = t2
x gR/A/K

0,0 . (A3)

For an infinite-size lead made of n discrete sites with
a tight-binding Hamiltonian coinciding with Eq. (1), the
spectrum is given by εk = −2tx cos( kπ

n+1 ), k ∈ [1, n]. The
associated retarded Green’s function in momentum space is
given by (the tilde designates momentum space)

g̃R
k,k′ (ω) = δk,k′

ω + 2tx cos
(

kπ
n+1

) + i0+ . (A4)

In position space, this yields

gR
j, j′ = 2

n + 1

∑
k

sin

(
k( j + 1)π

n + 1

)
sin

(
k( j′ + 1)π

n + 1

)

× 1

ω + 2tx cos
(

kπ
n+1

) + i0+ . (A5)

We are interested in the j = j′ = 0 term in the semi-infinite
limit, i.e., we take n → ∞. Introducing p = kπ

n+1 , we get

gR
0,0 = 2

π

∫ π

0
d p

sin2 p

(ω + 2tx cos p + i0+)
, (A6)

which can be computed by contour integral in the complex
plane to be

gR
0,0 = 1

2t2
x

(ω + i0+ − i
√

(2tx )2 − (ω + i0+)2). (A7)

The advanced component is just the complex conjugate of
the retarded one. To obtain the Keldysh component, we will
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suppose that the lead is at thermal equilibrium so that

gK
0,0(ω) = tanh

(
ω − μ

2T

)
2iIm

(
gR

0,0

)

= − θ (2tx − |ω|) i

t2
x

tanh

(
ω − μ

2T

)√
(2tx )2 − ω2 ,

(A8)

which is enough to compute the Green’s function of the sys-
tem in presence of the leads [71]. In the absence of noise,
the Green’s function of the system is easily computed by
noticing that the system with both leads constitutes a discrete
tight-binding chain of infinite size. In this case, the Green’s
function in momentum space is given by

G̃R(p, p′) = δ(p − p′)
ω + 2tx cos p + i0+ . (A9)

By doing the inverse Fourier transform we get it in position
space

GR
j,k =

∫ π

−π

d p

2π

e−ip( j−k)

ω + 2tx cos p + i0+ , (A10)

which can be again computed by contour integral to be

GR
j,k = zk− j

+
tx(z+ − z−)

, (A11)

for j � k with z± = −( ω+i0+
2tx

) ± i
√

1 − ( ω+i0+
2tx

)2. Using the

symmetry property GR
j,k = GR

k, j we have the full Green’s func-
tion in position space.

APPENDIX B: DERIVATION OF THE EXACT
SELF-CONSISTENT EQUATION AND OF THE

TRANSMITTANCE OF QUANTUM
STOCHASTIC RESISTORS

In this section, we summarize the derivation of the
self-consistent condition (9) as obtained in previous papers
[24,35]. We also explain the factorization of the current in
the form of Eq. (15). We also derive the Linbdlad equa-
tion describing the dynamics of QHS averaged over the noise
realizations.

1. Self-consistent equation

In full generality and to improve readability, we consider
a more compact formulation of the noise than in Eq. (4),
where dHt = ∑

i, j

√
2γ c†

i c jdW i, j
t and i, j are indices labeling

generic lattice sites on an arbitrary lattice and dW i, j
t dW k,l

t ′ =
Ci jkl dt when t = t ′ and 0 elsewhere.

The action associated to this noise reads

Sγ = −
∑
i, j

∫ √
2γ

(
ψ̄1

i,tψ
1
j,t + ψ̄2

i,tψ
2
j,t

)
dW i, j

t . (B1)

We consider the diagrammatic representation of the Green’s
function in Fig. 4. Full lines represent the retarded propagator,
dashed lines the advanced one and mixed lines the Keldysh
propagator. We represent with wiggly lines the two vertex
associated to the noise action (B1), one connecting only solid
lines and the other only dashed ones. The first contributions

FIG. 4. Diagrammatic representation of the retarded (R), ad-
vanced (A), and Keldysh (K) Green’s function. Time flows from right
to left. On the bottom, we add the diagrammatic representation of the
vertex provided by the action (B1), which preserves dashed and solid
lines.

to the diagrams of GR,A,K are depicted in Fig. 5. One readily
realizes that in the diagrammatic expansion of the retarded
(advanced) propagators only retarded (advanced) propagators
appear. For the Keldysh component, one can switch only once
from dashed to solid lines through the insertion of a Keldysh
propagator.

The average over different noise realizations is computed
using the Itō rules, which impose an equal time index when
connecting wiggly lines, dWt dWt ′ �= 0 ⇒ t ′ = t . Diagram-
matically, wiggly lines merge as shown in Fig. 6. The key
insight is that after noise-averaging the diagrams, those with
crossing wiggly lines do not contribute to the action. In
Fig. 5, we show a diagram with crossing wiggly lines arising
from the diagrammatic expansion of the Keldysh component.
In that example, after averaging, two retarded propagators
(labeled A and B) have opposite directions. In our rep-
resentation, this implies the multiplication of two retarded
functions with opposite time dependence, which equals 0.
Similar considerations apply for all crossing diagrams, and we
direct the interested reader to Refs. [24,35] for the complete
demonstration. Since the crossing diagrams vanish, the Born
noncrossing approximation is exact, and all the remaining
rainbow diagrams can be exactly resummed, leading to the

FIG. 5. Diagrammatic expansion of the retarded, advanced, and
Keldysh propagators in the quantum stochastic action (B1). At a
given order n in the expansion, the retarded/advanced component
of the self energy only has one diagram whereas the Keldysh com-
ponent has n + 1 diagrams, corresponding to the insertion of the
Keldysh bare component at different times.
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FIG. 6. Example of a crossing diagram for the Keldysh com-
ponent. The red lines highlight the part of the diagram violating
the causality structure and are responsible for making the diagram
vanish.

following self-consistent equation for the self-energy

�γ ,i j (t, t ′) = γ δ(t − t ′)
∑

kl

Cikl jGkl (t, t ) , (B2)

which is equivalent to Eq. (9) in the main text.

2. Transmittance of a quantum stochastic resistor

We derive now two explicit and equivalent expressions
of the transmittance Tγ (ω) used to derive the conductance
in Eq. (15). To do this, we rely first on the Meir-Wingreen
expression of the current flowing from the reservoirs to the
system [14,72],

J = i

2

∫
dω

2π
Tr{[�L(ω) − �R(ω)]GK (ω)

− [FL(ω)�L(ω) − FR(ω)�R(ω)][GR(ω) − GA(ω)]} ,

(B3)

where the trace is performed over spatial indices, FL/R(ω) =
tanh[β(ω − μL/R)/2] gives the equilibrium state of the right
(R) and left (L) reservoirs, and �L/R(ω) = −Im(	L/R)/π are
the frequency-dependent hybridization functions describing
the coupling of the system with its left and right reservoirs.
In the idealized case of Sec. III, where system and reservoirs
are identical, the explicit expression of these hybridization
functions can be derived from Eq. (8) and (A7), so that
�i, j;L/R(ω) = δi, jδi,1/N�(ω) in the interval ω ∈ [−2tx, 2tx],
with �(ω) = (

√
4t2

x − ω2)/2π . Outside of the interval ω ∈
[−2tx, 2tx], �(ω) = 0. Remind that we take j = 1 and N as the
leftmost and rightmost sites of the one-dimensional system.

We focus on the case of identical reservoirs exchanging
particles with the system only at one site and that the Meir-
Wingreen formula (B3) thus simplifies to

J =
∫

dω�(ω)

[
i

2

GK
1 (ω) − GK

N (ω)

2π

+ FR(ω) − FL(ω)

2
A(ω)

]
, (B4)

where we have introduced the shorthand notation GR/A/K
i =

GR/A/K
ii and assumed a mirror symmetric system, so that the

spectral functions at the system edges, A(ω) = A1/N (ω) =
−Im[GR

1/N (ω)]/π , is the same at both edges. The above
expression requires the derivation of the Keldysh Green’s

functions GK
i (ω), which are derived by solving the self-

consistent equation

GK
i j (ω) = −GR

il (ω)
[
g−1,K (ω) − 	K

γ (ω)
]

lmG
A
m j (ω) , (B5)

where we use the convention of the summation of repeated
indices and where 	K

γ is given by the Keldysh component of
Eq. (B2).

For the specific case of the on-site dephasing of Sec. III,
Ci jkl = δi jδikδkl and the self-consistent equation (B2) can be
cast in the form

[δi j − Mi j]GK
j (t, t ) = Di, (B6)

where we have introduced the matrix and vector notations

Mi j = γ

∫
dω

2π
Mi j (ω), Mi j (ω) = ∣∣GR

i j (ω)
∣∣2

, (B7)

Di j = −
∫

dω

2π
GR

i j (ω)g−1,K
jk (ω)GA

k j (ω), Di = Dii , (B8)

where we also exploited the property GA
i j (ω) = [GR

ji(ω)]∗.
Generalized forms of Eqs. (A3) and (A8) lead to

g−1K (ω) = 2π i[FL(ω)�L(ω) + FR(ω)�R(ω)] , (B9)

which, in the specific case of Sec. III, reads

g−1K
i j (ω) = 2π iδi j�(ω)[FL(ω)δi,1 + FR(ω)δi,N ] . (B10)

Given the explicit dependence of the above expression on
the distribution functions of the reservoirs FL/R, we can now
perform the expansion in linear order in the chemical potential
difference δμ = μL − μR to obtain the transmittance. We first
show the linear expansion of the Keldysh component from
Eq. (B5), whose diagonal terms read

i
GK

i (ω)

2π
= �(ω)Ui(ω) + γMi j (ω)

[
1

I − M

]
jk

×
∫

dω′

2π
�(ω′)Uk (ω′), (B11)

Ui(ω) = F (ω)Vi(ω) − δμ

4T cosh2
(

ω−μ

2T

)Wi(ω) , (B12)

where we introduced the N dimensional vectors Vi(ω) =
|GR

i1(ω)|2 + |GR
iN (ω)|2, Wi(ω) = |GR

i1(ω)|2 − |GR
iN (ω)|2 and

F (ω) = tanh[(ω − μ)/2T ]. Thanks to the mirror symmetry
of the problem in Sec. III, the first term in Eq. (B12),
proportional to the equilibrium distribution function F ,
does not contribute to the current given by the MW
formula in Eq. (B4) and can be discarded. Assuming also
A(ω) = AL/R(ω), we thus find the following compact form
for the transmittance in Eq. (15)

Tγ (ω) = 2π�(ω)[A(ω) − �K (ω)] (B13)

with

�K (ω) = [P(ω)W (ω)]1 − [P(ω)W (ω)]N , (B14)

and

P(ω) = �(ω)

2
+ γ

2

∫
dω′

2π
�(ω′)M(ω′)

1

I − M
, (B15)
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with the matrix M defined in Eq. (B7). In the case of a reser-
voir with a constant density of state, �(ω) = � and expression
Eq. (B13) coincides with the one derived in Ref. [35].

Despite the general character of Eq. (B13), we note that,
in purely one-dimensional systems, the current in the system
equals the one flowing from the reservoirs to the system.
As a consequence, we can extract a different, but equivalent,
expression of the transmittance from performing similar ma-
nipulations as the ones described to derive Eq. (B13), but
taking the local current expression Eq. (11) as a starting point.
For this, the off-diagonal elements of GK

i j (t = 0) are needed,
that can be readily obtained by injecting the solution (B6)
for the diagonal elements into the Dyson equation (B5). Once
taking the Fourier transform one finds

GK
i j (t = 0) = iDi j + iγ

∫
dω

2π
GR

il (ω)

[
1

I − M

]
lm

DmGA
l j (ω).

(B16)

And the expression for the transmittance can be found from
expanding D in the bias. The zeroth-order term in δμ does not
contribute to the current, since without the bias the system is
mirror symmetric and the current must be zero. Replacing the
linear-order term of Eq. (B16) in Eq. (11) gives

Tγ (ω) = 2πtx�(ω)Im

[
GR

i1(ω)GA
1,i+1(ω) − GR

iN (ω)GA
N,i+1(ω)

+γ

[
1

I − M

]
lm

Wm(ω)
∫

dω′

2π
GR

il (ω′)GA
l,i+1(ω′)

]
.

(B17)

The index i originates from computing the local current at site
i but since the latter does not depend on the position, neither
does the transmittance.

3. Average Lindblad description of the QSH dynamics

Lastly, we show how averaging a QSH over different noise
realizations maps to a Lindblad evolution. Under the quantum
stochastic evolution, the density matrix evolves as follows:

ρt+dt = e−i(Hdt+dHt )ρt e
−i(Hdt+dHt )

= ρt − i[Hdt + dHt , ρt ]

+ dHtρt dHt − 1

2

{
dH2

t , ρt
} + O(dt3/2),

≈ ρt − i[Hdt + dHt , ρt ]

+ γ
∑
i jkl

(2c†
i c jρt c

†
kcl − {c†

kclc
†
i c j, ρt })Ci jkl dt,

(B18)

where we used the Itō rules and discarded terms of higher
order than dt . The Lindblad equation is obtained by taking the
noise-average of Eq. (B18), which sets the term proportional
to dHt to 0 in the Itō convention,

d

dt
ρt = −i[H, ρt ] + γ

∑
i jkl

Ci jkl (2c†
i c jρc†

kcl − {c†
kclc

†
i c j, ρ}).

(B19)

FIG. 7. Rescaled conductance profiles G′
γ (μ, N ) :=

Gγ (μ, N )/Gγ (0, N ) for different values of γ N with γ = [0, 2]tx and
N = [5, 200]. The rescaled conductance converges in the diffusive
limit γ N/tx � 1 to a curve qualitatively similar to the semiclassical
expectations in the same limit.

APPENDIX C: RESCALED CONDUCTANCE PROFILES

In this section, we present further numerical data on the
conductance profiles in the diffusive regime. In this regime,
the conductance decays with the inverse system size G ∝
1/N thus, to focus on the chemical potential dependence,
we depict in Fig. 7 the rescaled conductance G′

γ (μ, N ) :=
Gγ (μ, N )/Gγ (0, N ) profiles for different values of γ N and
compare with the semiclassical rescaled value G′

γ ,cl (μ, N ) =
Gγ ,cl (μ, N )/Gγ (0, N ). The dependence of Gγ (μ = 0) on the
system size N is plotted in Fig. 2. As we transition to the diffu-
sive limit, the rescaled curves converge to a dome-like shape,
which follows the qualitative dependence of the semiclassical
approach, see black line for G′

cl(N → ∞). The deviations
between the exact and semiclassical approach are more sig-
nificant in the center of the band but never exceed 10%.

We note that such strong dependence on the ther-
modynamic properties of the leads is not present in
the diffusion constant and is a unique property of the
conductance.

APPENDIX D: MIXING EFFECTS
WITH DEPHASING NOISE

In this Appendix, we discuss the stationary state induced
by dephasing noise on a one-dimensional tight-binding chain.
We will qualitatively describe the out-of-equilibrium state
reached by the dephased chain and show numerically on Fig. 8
that this qualitative intuition is correct. In the absence of
dephasing, the whole chain will be in thermal equilibrium
with a chemical potential and temperature matching the lead.
Locally, it implies that the Green’s functions satisfy the fluc-
tuation dissipation relation

GK
i,i(ω) = (1 − 2ni(ω))

(
GR

i,i(ω) − GA
i,i(ω)

)
(D1)

with ni(ω) the local Fermi distribution with parameters μ, T .
Beyond thermal equilibrium, we can still use Eq. (D1) as

an ad hoc definition of ni(ω) to characterize local deviations
from equilibrium.

The presence of any dephasing rate drives the system out
of equilibrium. As explained in the main text, the dephasing
maximally mixes the longitudinal momentum states. Since
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FIG. 8. Nonequilibrium local occupation distribution extracted
from Eq. (D1) at different positions in a chain of N = 200 sites
with on-site dephasing rate γ = 0.05tx . The chain is coupled on
the first and last site i = 1, 200 to a thermal lead with μ = tx and
T = 0.5tx . The black line corresponds to the Fermi distribution of
the attached reservoirs. (Inset) Same plot but the temperature of the
leads is T = 0.01tx .

these, in 1D, label all the eigenstates of the system the action
of dephasing corresponds to heat the system to infinite tem-
perature. However, since the dephasing terms commute with
the local particle number operator, the attained steady-state
preserves a well defined particle number. In other words, the
local density matrix deep into a dephasing region resembles
a thermal distribution with an effective μ∗ and T ∗ such that
μ∗, T ∗ → ∞ and μ∗/T ∗ tuned in such a way to have in the
system the same spatial averaged particle density than the one
in the attached leads.

This is clear in Fig. 8 where we plot ni(ω) for different
points in a dephasing chain coupled to a thermal lead on
the left and right. By definition, the lead is in local thermal
equilibrium and nL,R(ω) is given by the Fermi distribution,
see black line. Near the lead, ni(ω) deviates strongly from
a thermal distribution indicating that the system is far from
equilibrium. Deep into the chain, that is at distances from the
leads larger than the scattering length (i > tx/γ , in Fig. 8),
n(ω) becomes flat as expected from a state with infinite
μ, T . The exact ratio μ∗/T ∗ is uniquely determined from the
density of the reservoirs but its exact value depends on the
distribution of the system near the edges.

APPENDIX E: PROOF OF THE CONDITION (36)

In this Appendix, we give a proof of the condition Eq. (36)
in the main text. The strategy is to write down the equations of
motion for the total current of different noises and derive a
condition under which they are equivalent (up to a factor) for
different types of noise.

The action of the deterministic part H for the total current
(11) evaluated at site j, is given for any site by

∂t J = i[H, J] = it2
x

∑
p

[(n j+1,p − n j,p)

+ a†
j−1,pa j+1,p − a†

j,pa j+2,p

− a†
j+2,pa j,p + a†

j+1,pa j−1,p] . (E1)

Since H is quadratic, and since it doesn’t mix the different
modes by construction, its further action on quadratic oper-
ators will only generate terms of the type a†

j+k,pa j+k,p′ . By
construction, the QSH (4) conserves the total number of par-
ticles at a given position on the x axis, i.e., [dHt , n j,tot] = 0.
Then, one sufficient but not necessary condition for the equa-
tions of motion to have the same form for all protocols is that
the dual action on operators L∗ for the averaged noise does
not produce any new terms, i.e., we must have for j �= j′

L∗(a†
j,pa j′,p) = −Na†

j,pa j′,p , (E2)

where N is a constant, which depends on the type of noise we
are interested in. Invoking the locality of the noise operator
with respect to the longitudinal direction we have that

L∗(a†
j,pa j′,p) = L∗(a†

j,p)a j′,p + a†
j,pL∗(a j′,p) . (E3)

So the sufficient condition (E2) can be cast into an even
more restrictive one where we impose that ∀p, (a†

j,p, a j,p) are
eigenvectors of the operator L∗.

Recall the explicit expression of L∗

L∗(Ô) = γ
∑

j,p1,2,p′
1,2

Cp1,p′
1,p2,p′

2
(2a†

j,p1
a j,p′

1
Ôa†

j,p2
a j,p′

2

− {a†
j,p1

a j,p′
1
a†

j,p2
a j,p′

2
, Ô}) . (E4)

Using that Cp1,p′
1,p2,p′

2
= Cp′

1,p1,p′
2,p2 , we have that

L∗(a†
j,p) = −γ

∑
p1,p′

Cp1,p′,p′,pa†
j,p1

, (E5)

L∗(a j,p) = −γ
∑
p1,p′

Cp′,p1,p,p′a j,p1 , (E6)

and a sufficient condition for (a†
j,p, a j,p) to be eigenvectors of

L∗ is then ∑
p

Cp1,p,p,p2 = N δp1,p2 , (E7)

which is Eq. (36) of the main text.
For the coherent Noise I, one has N = 1 and the transport

properties of a given protocol model can be deduced from
those of Noise I by rescaling the coefficient γ → Nγ .
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[58] M. Žnidarič and M. Horvat, Transport in a disordered tight-
binding chain with dephasing, Eur. Phys. J. B 86, 67 (2013).

[59] Z. Cai and T. Barthel, Algebraic Versus Exponential Decoher-
ence in Dissipative Many-Particle Systems, Phys. Rev. Lett.
111, 150403 (2013).

[60] Despite the possibility to rely on Eq. (15) to calculate the
conductance for γ > 0, we found more practical to perform
the direct numerical calculation of the current as expressed in
Eq. (11) directly in the linear regime to derive the conductance
(12).

[61] The different scalings of D and G with μ, T indicate that the
contact resistance between bulk and leads is extensive with
the system size. Fig. 8 and previous papers [34] suggest that
thermalization only occurs very deep in the bulk, supporting
this hypothesis.

[62] J. Dalibard, Y. Castin, and K. Mølmer, Wave-Function Ap-
proach to Dissipative Processes in Quantum Optics, Phys. Rev.
Lett. 68, 580 (1992).

[63] V. Belavkin, A quantum stochastic calculus in fock space of
input and output nondemolition processes, J. Sov. Math. v, 99
(1990).

[64] Convergence is exponential with the number of iterations and
independent of the initial guess for P(x), which we take arbi-
trarily.

[65] X. Cao, A. Tilloy, and A. D. Luca, Entanglement in a fermion
chain under continuous monitoring, SciPost Phys. 7, 024
(2019).

[66] X. Turkeshi, M. Dalmonte, R. Fazio, and M. Schirò, Entan-
glement transitions from stochastic resetting of non-Hermitian
quasiparticles, Phys. Rev. B 105, L241114 (2022).

[67] G. Salerno, H. M. Price, M. Lebrat, S. Häusler, T. Esslinger,
L. Corman, J.-P. Brantut, and N. Goldman, Quantized Hall
Conductance of a Single Atomic Wire: A Proposal Based on
Synthetic Dimensions, Phys. Rev. X 9, 041001 (2019).

[68] L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M.
Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, and L.
Fallani, Synthetic Dimensions and Spin-Orbit Coupling with an
Optical Clock Transition, Phys. Rev. Lett. 117, 220401 (2016).

[69] T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, and I.
Carusotto, Synthetic dimensions in integrated photonics: From
optical isolation to four-dimensional quantum hall physics,
Phys. Rev. A 93, 043827 (2016).

[70] S. Mittal, V. V. Orre, D. Leykam, Y. D. Chong, and M. Hafezi,
Photonic Anomalous Quantum Hall Effect, Phys. Rev. Lett.
123, 043201 (2019).

[71] R. A. Usmani, Inversion of a tridiagonal Jacobi matrix, Linear
Algebra Appl. 212-213, 413 (1994).

[72] Y. Meir and N. S. Wingreen, Landauer Formula for the Current
Through an Interacting Electron Region, Phys. Rev. Lett. 68,
2512 (1992).

013033-15

https://doi.org/10.1103/PhysRevLett.128.143602
https://doi.org/10.1103/PhysRevA.100.053605
https://doi.org/10.1103/PhysRevLett.123.193605
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1088/1367-2630/ab165b
https://doi.org/10.1038/s41567-020-0942-5
http://arxiv.org/abs/arXiv:2205.13567
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.3367/UFNe.0181.201110b.1041
https://doi.org/10.1140/epjb/e2012-30730-9
https://doi.org/10.1103/PhysRevLett.111.150403
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.21468/SciPostPhys.7.2.024
https://doi.org/10.1103/PhysRevB.105.L241114
https://doi.org/10.1103/PhysRevX.9.041001
https://doi.org/10.1103/PhysRevLett.117.220401
https://doi.org/10.1103/PhysRevA.93.043827
https://doi.org/10.1103/PhysRevLett.123.043201
https://doi.org/10.1016/0024-3795(94)90414-6
https://doi.org/10.1103/PhysRevLett.68.2512

