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Dynamic information transfer in stochastic biochemical networks
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We develop numerical and analytical approaches to calculate mutual information between complete paths of
two molecular components embedded into a larger reaction network. In particular, we focus on a continuous-time
Markov chain formalism, frequently used to describe intracellular processes involving lowly abundant molecular
species. Previously, we have shown how the path mutual information can be calculated for such systems when
two molecular components interact directly with one another with no intermediate molecular components being
present. In this paper, we generalize this approach to biochemical networks involving an arbitrary number of
molecular components. We present an efficient Monte Carlo method as well as an analytical approximation to
calculate the path mutual information and show how it can be decomposed into a pair of transfer entropies that
capture the directed flow of information between two network components. We apply our methodology to study
information transfer in a simple three-node feedforward network, as well as a more complex positive-feedback
system that switches stochastically between two metastable modes.
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I. INTRODUCTION

Information theory provides a powerful mathematical
framework to study information transfer in complex dynam-
ical systems. Originating from man-made communication
systems [1], information theory has made its way into the
biological sciences, where it has helped in the understanding
of diverse biological processes, ranging from tissue patterning
[2] to signal transduction [3].

A central concept in information theory is that of mutual in-
formation, a quantity that captures the amount of information
that is shared between two random objects X and Y [4]. As an
example, X could correspond to the input of a system which
is transformed into a corresponding output Y through a set
of mathematical operations. In this case, mutual information
provides a quantitative measure of how efficiently the system
propagates information from input X to output Y . In most
biological systems, both X and Y as well as the system that
relates the two are inherently dynamic. Prime examples can
be found, for instance, in gene regulation, where different
time-varying transcription factor profiles are converted into
distinct gene expression patterns through specific promoter
activation and transcription dynamics [5,6]. In these situa-
tions, X and Y denote complete trajectories of the input and
output processes on a considered time interval [0, t], and the
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corresponding mutual information quantifies the cumulative
amount of information exchanged along these trajectories.

While trajectory variants of mutual information are well
established for Gaussian processes [7,8], they remain very
difficult to calculate for continuous-time Markov chains
(CTMCs), which are used to describe biochemical processes
involving low-copy-number molecules [9]. Recently, some
progress has been made towards addressing this challenge.
In Ref. [10], for instance, the authors derive exact expres-
sions for the trajectory-level mutual information and channel
capacity for a simple Markov chain model of transcription.
For more complex systems, however, analytical solutions are
generally not available, and one has to resort to approximation
techniques. We have previously proposed one such technique,
which estimates the mutual information between complete
trajectories of two molecular species by combining stochas-
tic simulations with a moment-closure approximation of a
stochastic filtering problem [11]. While this approach is com-
putationally efficient, it is so far limited to two-component
systems with no additional intermediate molecular species. A
related approach has been proposed in Ref. [12], where the
authors use a generic Hawkes process approximation to solve
the underlying filtering problem.

An orthogonal method, referred to as path weight sam-
pling (PWS), has been developed [13]. The key advantages
of PWS are that the resulting estimates are exact up to sam-
pling variance and that it applies also to networks involving
intermediate components. On the downside, however, it is
challenging to apply PWS when the information flow between
the two components X and Y is bidirectional (e.g., due to
feedback between output and input).

The goal of the present work is to develop an efficient
and general approach to quantify mutual information between
complete trajectories of any two molecular components of a
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FIG. 1. (a) Schematic representation of a reaction network through which two molecular components X and Y exchange information.
The path mutual information quantifies the cumulative amount of information exchanged between X and Y on a time interval [0, t]. (b) and
(c) Example trajectories of the path mutual information IXY

t (b) and the corresponding path mutual information rate iXY
t (c). Calculations were

performed using reaction network (7) considering X = A and Y = C and using parameters {k1, k2, k3, k4, k5, k6} = {1, 0.1, 1, 0.1, 1, 0.1}.
Mutual information rates were estimated as iXY

t ≈ IXY
t /t . Thick solid lines denote averages calculated over n = 10 000 samples, and shaded

areas mark one standard deviation above and below the mean.

chemical reaction network. To this end, we build on our pre-
viously proposed theoretical approach but, importantly, lift the
assumption that no intermediate components are present. We
present two Monte Carlo schemes to estimate mutual informa-
tion, an exact but computationally demanding one and a much
more efficient one that employs moment-closure approxima-
tions to solve the underlying filtering problem. Additionally,
we propose an analytical approximation, which provides di-
rect insight into how information transfer depends on the
underlying system parameters. We use our methodology to
study information processing in two archetypical network
motifs, a feedforward three-component system and a positive-
feedback system that switches between two metastable states.
Our analyses demonstrate the utility of our approach and
reveal insights into how information propagates through net-
works of chemical reactions.

II. STOCHASTIC REACTION NETWORKS

We consider a well-mixed reaction network consisting of
M chemical species Z1, . . . , ZM and K reaction channels.
Each reaction k is defined by a stoichiometric equation

M∑
l=1

αk,l Zl →
M∑

l=1

βk,l Zl (1)

with αk,l and βk,l as reactant and product multiplicities. We
denote the stochastic state vector of the system by (Z (t ))t�0,
which tracks the copy numbers of all species over time.
Each reaction channel is associated with a rate function
λk (Z (t )), which defines how likely a reaction fires within a
small amount of time given the current state of the system.
Typically, λk (Z (t )) is given by the law of mass action, but
nonelementary rate laws such as Michaelis-Menten kinetics
could also be considered. When a reaction of type k happens
at time t∗, the system state changes instantaneously from Z (t∗)
to Z (t∗) + νk , where νk = (βk,l − αk,l )l=1,...,M . The dynamics
of Z (t ) satisfies a Markov jump process, which can be de-

scribed at the level of individual trajectories using the random
time-change representation [14]

Z (t ) = Z (0) +
K∑

k=1

Nk

(∫ t

0
λk (Z (s))ds

)
νk (2)

with N1(t ), . . . , NK (t ) being independent unit Poisson pro-
cesses and Z (0) being the initial state of the system. We denote
by Zt

0 a complete trajectory of Z (t ), collecting all reaction
times and types within the time interval [0, t].

III. PATH MUTUAL INFORMATION

We are interested in the dynamic exchange of information
between two arbitrary chemical species X = Zl and Y = Z j

that are part of system (2) [Fig. 1(a)]. To this end, we de-
fine trajectories X t

0 ⊂ Zt
0 and Y t

0 ⊂ Zt
0 which contain only the

reaction times and types that modify X and Y, respectively.
For simplicity, we exclude reactions that change X and Y
simultaneously such as X → Y. In this case, the two sub-
trajectories X t

0 and Y t
0 are disjoint sets, which simplifies the

notation required in what follows. We remark, however, that
the overall approach applies analogously to the more general
case, where X and Y can change simultaneously.

The cumulative amount of information transfer on the in-
terval [0, t] can be quantified by the path mutual information

IXY
t = E

[
ln

dPXY

d (PX × PY )

]
(3)

with PXY being the joint path measure associated with the
combined trajectory {X t

0,Y t
0 } and PX and PY being marginal

path measures corresponding to X t
0 and Y t

0 , respectively. Note
that also PXY is technically a marginal measure because
all chemical species apart from X and Y have been inte-
grated out. The term inside the logarithm of (3) denotes the
Radon-Nikodym derivative [15] between PXY and PX × PY .
Evaluating the latter for paths satisfying (2) [15,16], taking
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the logarithm, and simplifying (Appendix A) leads to

IXY
t =

∑
k∈RX

∫ t

0
E
[
λXY

k (s) ln
[
λXY

k (s)
]−λX

k (s) ln
[
λX

k (s)
]]

ds

+
∑
k∈RY

∫ t

0
E
[
λXY

k (s) ln
[
λXY

k (s)
]−λY

k(s) ln
[
λY

k (s)
]]

ds. (4)

In (4), the sets RX and RY comprise all reactions that modify
X [or Y], except those whose propensity depends exclusively
on X (t ) [or Y (t )]. Only these reactions lead ultimately to an
exchange of information between X and Y, which will be
illustrated more concretely later in our case studies. The func-
tions λXY

k (t ), λX
k (t ), and λY

k (t ) denote marginal propensities
[17,18], that is, the rate functions with which (X (t ),Y (t )),
X (t ), and Y (t ) evolve if the states of all other species are
unknown. A marginal propensity is defined as a conditional
expectation λA

k (t ) = E[λk (Z (t )) | At
0], corresponding to the

optimal causal estimate of λk (Z (t )) given some partial path
At

0 ⊂ Zt
0. This demonstrates that the amount of information

transferred between sender and receiver depends on how well
the sender’s signal can be reconstructed from measurements
taken by the receiver (and vice versa in the presence of
feedback) [19,20]. We remark that while only the reactions
in RX and RY show up explicitly in (4), the other reactions
also contribute implicitly to IXY

t through the inner and outer
expectations in (4).

Note that the first and second lines on the right-hand side
of Eq. (4) can be identified as transfer entropies HY →X

t and

HX→Y
t , which correspond to the fraction of information that

is transferred from X to Y and from Y to X, respectively.
In contrast to the mutual information, which by definition is
symmetric in X and Y, the transfer entropy provides useful
insights into the directed flow of information in dynamical
systems [21].

In many situations, it is helpful to study information trans-
fer at stationary states. Since IXY

t , HY →X
t , and HX→Y

t generally
increase with time [e.g., Fig. 1(b)], they typically diverge as
t → ∞. In these cases, one can resort to the corresponding
information rates, which for the quantities of interest can be
defined as iXY = limt→∞ IXY

t /t , hX→Y = limt→∞ HX→Y
t /t ,

and hY →X = limt→∞ HY →X
t /t [e.g., Fig. 1(c)].

IV. STOCHASTIC FILTERING

The central step in evaluating (4) is the calculation of
the conditional expectations that are required for determining
the marginal propensities. In the case of λX

k (t ), for instance,
we have to average λk (Z (t )) = λk (z̄, X (t )) with respect to
the conditional probability distribution πX (z̄, t ) = P(Z̄ (t ) =
z̄ | X t

0 ), where Z̄ (t ) is a vector containing all copy numbers
of Z (t ) except X (t ). It can be shown that such a conditional
probability distribution satisfies a stochastic differential equa-
tion termed a filtering equation [22]. In the case of πX (z̄, t ),
this equation reads

dπX (z̄, t ) =
⎡
⎣AZ̄|X πX (z̄, t ) −

∑
k∈RX̄

[
λk (z̄, X (t )) − λX

k (t )
]
πX (z̄, t )

⎤
⎦dt

+
∑
k∈RX̄

[
λk
(
z̄ − vZ̄

k , X (t )
)

λX
k (t )

πX
(
z̄ − vZ̄

k , t
)− πX (z̄, t )

]
dNk (t ), (5)

where AZ̄|X is an operator that is related to the generator of
the original, unconditional process [see Appendix B, Eq. (B2),
for more details], vZ̄

k is the part of the state change vector of
reaction k acting upon Z̄ , and RX̄ collects all reactions that
modify X . Note that in the two sums of Eq. (5), only reactions
in RX̄ that involve species in Z̄ (as reactants and/or products)
will have a nonzero contribution.

There are two major challenges in evaluating Eq. (4) in
practice. First, analytical solutions of Eq. (5) and the cor-
responding conditional expectations are available only in
exceptional cases. Second, the outer expectation in (4) is taken
with respect to a distribution that is generally not known
analytically. Even if that were the case, expectations over the
x ln x terms in (4) are most likely intractable in practice. To ad-
dress these problems, we propose three different approaches
which differ in scope and computational efficiency.

A. Quasiexact method

The quasiexact approach numerically integrates Eq. (5)
on a finite grid. This is analogous to the finite-state pro-
jection algorithm that is commonly applied to numerically
solve conventional (unconditional) master equations [23]. The
outer expectation of (4) is calculated as a Monte Carlo av-
erage over n independent path realizations generated using
Gillespie’s stochastic simulation algorithm [24]. The main
advantage of this approach is that its error is fully controllable
and negligible when the grid size and sample size are suffi-
ciently large. As with other finite-state projection approaches,
however, the efficiency of this approach suffers from the
combinatorial explosion of states in larger reaction networks.
We will use this technique to calculate ground-truth solutions
for comparison with our approximate techniques described
below.
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FIG. 2. Information transfer in a three-node feedforward network. (a) Schematic illustration of the considered network. (b) Stationary path
mutual information rate between species A and C (iAC) as a function of the relative reaction velocity v�, � ∈ {A, B,C} calculated via the
analytical approximation (Analyt. Approx.; solid lines) and the moment-approximation method (dots). (c) Stationary path mutual information
rate iAC as a function of the relative reaction velocity vA as in (b) and comparison with Gaussian process theory [8] (red). (d) Stationary path
mutual information rate iAC as a function of the relative reaction velocity vC as in (b) (solid lines) and comparison with the mutual information
rate between nodes A and B, iAB, calculated via the analytical approximation (dashed green line), the quasiexact method (dashed blue line),
and Gaussian process theory (dashed red line). Simulations were performed with parameters {k1, k2, k3, k4, k5, k6} = {1, 0.1, 0.1, 0.1, 1, 0.1},
whereas individual pairs of parameters were varied as described in the main text. Monte Carlo averages were calculated using n = 10 000
samples. Error bars and shaded areas correspond to 2.5 times the standard error.

B. Moment-approximation method

In principle, we can derive an equation for the marginal
propensity λX

k (t ) by multiplying Eq. (5) with λk (z̄, X (t )) and
summing over all z̄. If all propensity functions are polynomial
(as is the case for mass-action kinetics), this leads to a system
of moment differential equations, which in general, however,
is infinite dimensional. This problem can be addressed by
imposing distributional assumptions on the conditional dis-
tribution which can then be used to express moments higher
than a certain order as functions of lower-order moments [25].
While moment-closure approximations are generally ad hoc,
we found that the conditional distribution (5) is typically very
well approximated by those techniques. Throughout our case
studies, we found the multivariate Gamma closure proposed
in Ref. [26] to yield excellent results. We remark that while
the moment-approximation method requires polynomial rate
functions, it may also be applied to more complex (e.g., ra-
tional) rate laws if suitable polynomial approximations are
available (see Sec. V, Case Study II).

C. Analytical approximation

Once we have obtained a closed system of conditional
moment equations, we can approximate the outer expecta-
tion in (4) by employing a second-order Taylor expansion.
In particular, if we perform an expansion around the
respective expectations E[λXY

k (t )] = E[λX
k (t )] = E[λY

k (t )] =
E[λk (Z (t ))], we obtain

IXY
t ≈

∑
k∈RX

∫ t

0

Var
[
λXY

k (t )
]− Var

[
λX

k (t )
]

2E[λk (Z (t ))]
ds

+
∑
k∈RY

∫ t

0

Var
[
λXY

k (t )
]− Var

[
λY

k (t )
]

2E[λk (Z (t ))]
ds. (6)

This equation involves variances of the marginal propensities
for which approximate differential equations can be derived
(see Appendix B 2). Solving these equations provides a direct
way to calculate the path mutual information and its rate.

V. CASE STUDIES

Case study I: Three-node feedforward network. The first
system we want to study is a simple feedforward reaction
network

∅ k1−⇀ A, A
k2A(t )−−−⇀ ∅,

A
k3A(t )−−−⇀ A + B, B

k4B(t )−−−⇀ ∅,

B
k5B(t )−−−⇀ B + C, C

k6C(t )−−−⇀ ∅ (7)

with k1, . . . , k6 as rate constants. We have chosen this network
because it resembles an elementary motif where an input
(species A) transmits information to an output (species C)
through an intermediate component (species B). Moreover,
all first- and second-order moments are analytically tractable,
which will be useful to compare our results with predictions
obtained from Gaussian process theory [8]. Using Eq. (4),
the mutual information between paths At

0 and Ct
0 is given

by

IAC
t =

∫ t

0
E
[
k5E
[
B(s)
∣∣At

0,Ct
0

]
ln
(
k5E
[
B(s)
∣∣At

0,Ct
0

])]
ds

−
∫ t

0
E
[
k5E
[
B(s)
∣∣Ct

0

]
ln
(
k5E
[
B(s)
∣∣Ct

0

])]
ds. (8)

Note that (8) involves terms associated with reaction B →
B + C only. This is because only through this reaction does
component C ultimately receive information about component
B and, hence, A. As mentioned previously, however, other
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reactions contribute implicitly to IAC
t through the expectation

values in (8).
To study information transmission in the considered net-

work, we calculate the stationary path mutual information rate
iAC for different parameter regimes. To this end, we introduce
reaction velocities vA, vB, and vC that set the time scales of
production and degradation of A, B, and C without changing
their average abundance. In the case of A, for instance, we set
k1 = k̃1vA and k2 = k̃2vA such that E[A(t )] = k̃1/k̃2 for any
value of vA. To verify the accuracy of our approach, we com-
pared the moment-approximation method with the analytical
and quasiexact methods and found good agreement between
all three approaches [Fig. 2(b) and Appendix C, Fig. 5].

Our analysis shows that while the mutual information rate
iAC increases monotonically with both vB and vC , it scales
nonmonotonically with vA, exhibiting a maximum at an in-
termediate value of vA. Intuitively, this is because for small
vA, species B is fast enough to track changes in A but, at
the same time, A produces little information per unit time.
Correspondingly, increasing vA will initially increase iAC be-
cause more information is generated by A. However, when
A becomes fast in comparison to B, a substantial amount of
information is lost between A and B, causing iAC to decrease
for large vA. In other words, there exists an optimal time scale
of A that strikes a balance between the amount of information
produced by A and the fraction of it that can be transferred to
C via intermediate species B as has been similarly observed
in other types of systems [13,27]. In contrast, varying either
vB or vC does not affect the information content in A but only
how effectively this information can be propagated forward,
leading to a simple monotonic relationship between iAC and
vB and vC , respectively.

We next use the same three-node network motif to study
whether and to what extent discrete-state biochemical sys-
tems differ from Gaussian processes in terms of information
transfer. To this end, we consider a continuous variant of net-
work (7) where the abundances of A, B, and C are described
by a three-dimensional Gaussian process with identical first-
and second-order statistics. The corresponding path mutual
information rate iAC

G can be obtained from Gaussian chan-
nel theory (see Appendix C1 and Refs. [7,8]). As can be
proven analytically, Gaussian theory provides a lower bound
on mutual information for non-Gaussian scenarios as long as
the first- and second-order statistics are known [28]. This is
reflected also by our analysis, which compares the path mutual
information rate iAC with iAC

G across different vA [Fig. 2(c)].
While Gaussian theory predicts a very similar scaling and
optimum of iAC

G with respect to vA, it generally underestimates
the information transfer between A and C.

We next considered the limit vC → ∞ such that informa-
tion in B is expected to propagate to C in a “perfect” manner.
In this case, Gaussian theory predicts that

lim
vC→∞ iAC

G = −k2

2
+ 1

2

√
k2(k2 + k3), (9)

which coincides with the Gaussian mutual information rate
between A and B, iAB

G . In other words, the three-node net-
work reduces to a two-node network for Gaussian processes
when vC → ∞, as might be expected intuitively. To compare
these results with the discrete-state network, we determined

limvC→∞ iAC analytically based on (6), which happens to co-
incide exactly with (9) (see Appendix C 1 for a derivation). In
the case of a discrete-state system, however, this asymptotic
limit is lower than the mutual information rate between A and
B, which based on (6) is approximated as

iAB ≈ −k2

2
+ 1

2

√
k2(k2 + 2k3). (10)

Numerical simulations show that both iAB and iAC are ap-
proximated accurately through (6) [Fig. 2(d) and Appendix C,
Fig. 5(c)]. Calculating the ratio between iAB and iAC and taking
the respective limits with respect to k2 suggests that iAC , and
correspondingly iAB

G , are lower than iAB by a factor of at least√
2 (k2 → 0) and at most 2 (k2 → ∞) for any k3 > 0. In other

words, the amount of information transferred between A and
B is systematically larger in the discrete-state case, but this
additional amount of information is inevitably lost between B
and C, even when vC → ∞. This is in contrast to the Gaussian
scenario where the information transfer between A and B is
lower to begin with, but the additional loss of information
through intermediate species B can be made arbitrarily small
by increasing vC . This discrepancy seems to originate from
the fact that for discrete-state biochemical networks, fluctua-
tions in the copy number of B can be uniquely attributed to
either the birth or death reactions, whereas only the former
carry information about the dynamics of A. In the Gaus-
sian approximation, by contrast, birth and death reactions are
coarse grained into an effective continuous process, where
information about individual events is lost. In summary, our
results show that discrete biochemical systems can exhibit not
only quantitative but also even qualitative differences when
compared with equivalent Gaussian approximations.

Case study II: Bistable switch. As a second example, we
consider a variant of the previous network that exhibits more
complex nonlinear dynamics. In particular, we introduce pos-
itive feedback between species C and A by replacing the
constant production rate of A with one that increases with
the abundance of C [Fig. 3(a)]. More precisely, we choose a
Hill-type rate law of the form

k1(C(t )) = μ
C(t )nH

KnH + C(t )nH
+ ε (11)

with μ, nH , K , and ε being positive constants. For certain
parameter regimes, this system is bistable where individual
trajectories switch stochastically between two modes (see
caption of Fig. 3 for specific parameter values). The goal
of this case study is to understand how such bistability af-
fects information transfer in biochemical systems. To this
end, we applied our approach to estimate stationary mutual
information rates between species A and C. Note that due to
the nonpolynomial form of the rate k1, an additional Taylor
expansion had to be used to make our moment-approximation
method applicable (see Appendix C 2 for more details).

We first analyzed how the mutual information rate changes
for varying feedback strengths μ. For low and high values
of μ, the system exhibits a single mode, while intermediate
values of μ lead to bimodal behavior [Fig. 3(b)]. This is
resembled qualitatively by a corresponding mean-field model
(Appendix C, Fig. 6). Figure 3(c) shows that, the mutual
information rate first increases with μ until it reaches a certain
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FIG. 3. Information transfer in a bistable system. (a) Schematic illustration of the considered network. (b) Stationary copy number
distributions of species C for parameters μ = 0.05, μ = 0.7, and μ = 1. (c) Stationary path mutual information rate iAC between species A and
C. The dashed gray line indicates the bifurcation point predicted from mean-field theory. (d) Decomposition of the path mutual information rate
into forward and backward transfer entropies hA→C (green) and hC→A (magenta), respectively. Simulations were performed with the parameters
{k2, k3, k4, k5, k6} = {0.1, 1, 0.1, 0.1, 0.1} and {K, nH , ε} = {30, 3, 0.03}. The system was simulated for T = 10 000 time units to reach steady
state, whereas only the last 1500 time units were used to estimate stationary information rates. Ensemble averages were calculated using
n = 5000 samples. Error bars correspond to 2.5 times the standard error.

maximum. At this point, the system fluctuates between two
equilibrium points as can be seen from the copy numbers of
the species being bimodally distributed [Fig. 3(b)]. Beyond
this maximum, the bimodality becomes less pronounced, and
iAC decreases again. Interestingly, this suggests that informa-
tion transfer is most effective in regimes where the system as
a whole is very noisy.

To understand this better, we decomposed the mutual in-
formation rate into the transfer entropy rates hA→C and hC→A,
quantifying the directed flow of information from A to C and
from C to A, respectively [Fig. 3(d)]. Interestingly, this shows
that the forward contribution hA→C is more or less the same for
all considered feedback strengths μ, regardless of whether the
system exhibits one or two modes. By contrast, the backward
contribution hC→A is approximately zero for very small μ but
then shows a peak that is located within the bimodal regime.
From this point on, the second equilibrium becomes more
and more populated, and the backward contribution hC→A

decreases again. For very large μ, the rate k1 is strongly satu-

rated, such that the system effectively reduces to the simpler
feedforward motif discussed in the previous section, where no
information flows along the backward direction C → A.

In summary, this shows that information transfer between
two molecular species can be significantly enhanced by posi-
tive feedback. This is the case when the feedback strength is
in a regime where it generates multiple metastable equilibria
that the system can attain. In this situation, both the forward
contribution and the backward contribution to the mutual
information are significantly different from zero, leading to
large values overall. More generally, this analysis illustrates
information processing in a complex and strongly nonlinear
dynamical system that is beyond Gaussian theory.

VI. CONCLUSIONS

In this paper we have developed a general method to quan-
tify information transmission in biochemical networks via the
path mutual information. This method exploits a fundamental
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relationship between mutual information and filtering theory
[19,20]. We have first introduced a quasiexact Monte Carlo
scheme that combines conventional stochastic simulations
with a brute-force numerical solution of the underlying filter-
ing equations. While this approach was needed to calculate
ground-truth solutions, it quickly becomes computationally
infeasible as the system size grows. As we have shown in
our earlier work [11], this problem can be addressed using
moment-closure approximations that project the filtering dis-
tribution onto a finite set of (approximate) moments, which
are obtained by solving a system of differential equations. In
our numerical experiments, we found the approximate Monte
Carlo method based on the Gamma closure to be in very good
agreement with the exact path mutual information, although
different closures may be required for other types of systems.

We have further shown how the outer expectation in the
calculation of the path mutual information can be approxi-
mated analytically. In this way, Monte Carlo sampling can be
avoided entirely, and the path mutual information becomes
analytically accessible. Although the proposed approxima-
tion appears relatively coarse, it was in surprisingly close
agreement with Monte Carlo estimation. Deriving similar
approximations in a more principled manner will be an in-
teresting avenue for future research.

When applied to our case studies, the path mutual in-
formation revealed interesting insights into how information
propagates across cascades of chemical reactions. For in-
stance, we found that discrete biochemical processes exhibit
quantitative and even qualitative differences in informa-
tion transmission when compared with equivalent Gaussian
processes with identical first- and second-order statistics.
Fundamentally, these differences appear to result from a dif-
ferent notion of path in each of these two situations: For
discrete-state systems, a path contains detailed information
about reaction types and time points. In the Gaussian process
approximation, fluctuations in a species’ copy number are
coarse grained into effective stochastic increments to which
multiple reactions contribute. Since individual events can no
longer be resolved, this introduces additional uncertainty and,
correspondingly, a loss of information. Gaining a deeper un-
derstanding of these discrepancies and their implications for
cellular information processing is an important goal for the
future.

In our second case study, we have studied informa-
tion transfer in a nonlinear, positive-feedback system. Our
analysis revealed that positive feedback—and the resulting
bistability—can enhance information transmission between
input and output. By decomposing the mutual information
into the respective transfer entropies, we found that this en-
hancement is due to an increased backward contribution to
the mutual information (i.e., from output to input) while the
forward contribution remains largely unaffected by the pres-
ence of feedback. Interestingly, the backward contribution is
maximal in the bimodal regime, when the system switches
randomly and evenly between the two modes.

In summary, our results highlight the need for information
theoretical concepts that are compatible with the discrete and
nonlinear dynamics of biochemical networks. The method-
ology outlined in this paper aims to fill this gap, and we
envision several interesting applications in the future. For

instance, it could be used to identify network architectures
and parameter regimes that are optimal in terms of infor-
mation transfer and understand how those compare with
evolved intracellular systems. Along those lines, it may be
possible to derive bounds on mutual information in small
networks embedded into larger ones, and how those limit
the precision of biochemical pathways [29]. Beyond this,
mutual information and transfer entropy rates play an im-
portant role in the context of stochastic thermodynamics, for
instance, to derive second-law-like inequalities for feedback-
controlled systems [30]. Understanding how the information
processing capabilities of biochemical systems are limited by
thermodynamic constraints will be an interesting subject for
future work.

The PYTHON code underlying all our simulations is avail-
able [31].
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APPENDIX A: DERIVATION OF THE PATH
MUTUAL INFORMATION

The following derivation is based on our previous work
[11]. As discussed in the main text, the mutual information
between two trajectories X t

0 ⊂ Zt
0 and Y t

0 ⊂ Zt
0 can be defined

as

IXY
t = E

[
ln

dPXY

d (PX × PY )

]
, (A1)

where dPXY /d (PX×PY ) is the Radon-Nikodym derivative be-
tween the joint path measure PXY and the product of the
marginal path measures PX and PY . Intuitively, the Radon-
Nikodym derivative corresponds to a likelihood ratio between
two competing probability laws, in this case PXY and PX×PY ,
respectively. In other words, it assesses how much more likely
a joint path {X t

0,Y t
0 } originates from the (true) joint probability

measure PXY than from the product measure PX×PY , in which
X t

0 and Y t
0 are considered to be independent.

We remark that all three probability measures, PXY , PX , and
PY , are marginal measures because all remaining components
are “integrated out.” In other words, they are the probability
laws that capture how (X (t ),Y (t )), X (t ), and Y (t ) evolve if
no knowledge about all other components in Z (t ) is available.
We and others have previously shown how the dynamics of
such marginal processes can be obtained using the theory of
stochastic filtering [17,18,32]. To illustrate this, we focus on
the case of Y (t ), but (X (t ),Y (t )) and X (t ) can be handled
analogously. If knowledge about the whole state Z (t ) is avail-
able, the dynamics of Y (t ) satisfies

Y (t ) = Y (0) +
∑
k∈RȲ

Nk

(∫ t

0
λk (Z (t ))

)
vY

k , (A2)
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where vY
k is the element of the stoichiometric change vector

vk that acts upon Y (t ). With RȲ and RX̄ we denote the set of
reactions that modify Y (t ) and X (t ), respectively. Note that
we focus here on the case where there are no reactions
that change X (t ) and Y (t ) simultaneously (e.g., X → Y),
such that RX̄ and RȲ are disjoint sets. Reactions that change
more than one Zi(t ) /∈ {X (t ),Y (t )} at the same time and re-
actions that change Zi(t ) simultaneously with X (t ) or Y (t )
are included. As can be seen from (A2), the dynamics of
Y (t ) depends on the complete state Z (t ) and as such is not
self-contained. In more technical terms, (A2) describes the
dynamics of Y (t ) relative to the natural filtration of Z (t ), that
is, the complete history of events Zt

0 that brought the full
system from Z (0) to Z (t ). To derive the marginal dynamics
of Y (t ), one then requires Y (t ) to depend no longer on the
complete history Zt

0, but only on its own history Y t
0 ⊂ Zt

0. The
latter contains information about all reactions RȲ that modify
species Y (t ). The innovation theorem [33] then states that the
dynamics of Y (t ) relative to Y t

0 satisfies

Y (t ) = Y (0) +
∑
k∈RȲ

Nk

(∫ t

0
λY

k (t )

)
vY

k , (A3)

with λY
k (t ) = E[λk (Z (t )) | Y t

0 ]. In other words, the original
propensities are replaced by their expectation conditionally

on Y t
0 , which we refer to as marginal propensity. Importantly,

Eq. (A3) is now self-contained because the dependency on
all components except Y (t ) has been integrated out through
the conditional expectation. We remark that (A3) is exact:
Solving (A3)—for instance, through stochastic simulation—
will generate paths Y t

0 consistent with the marginal probability
measure PY . Analogous constructions can be performed for
PXY and PX , respectively.

To determine the Radon-Nikodym derivative in (A1), we
focus on the joint trajectories {X t

0,Y t
0 }, which contain infor-

mation about all reactions that modify X (t ) and Y (t ). We
can now employ Jacod’s formula for the Radon-Nikodym
derivative [16], which for a counting process 
(t ) con-
sisting of K counting processes [e.g., such as Eq. (2) in
the main text] and with known initial state 
(0) takes the
form

dW

dQ
=
∏

k∈K

(∏Nk (t )
j=1 φk (τk, j )

)
exp
[− ∫ t

0 φk (s)ds
]

∏
k∈K

(∏Nk (t )
j=1 φ̃k (τk, j )

)
exp
[− ∫ t

0 φ̃k (s)ds
] , (A4)

where W and Q are the measures under which the process has
propensity functions φk and φ̃k , respectively. Note that φk and
φ̃k can in general depend on the state of 
(t ) or even the whole
process history 
t

0. The symbol τk, j denotes the time point
right before the jth reaction of type k happens. Instantiating
(A4) for the derived marginal processes [e.g., Eq. (A3) in the
case of Y (t )] yields

dPXY

d (PX × PY )
=

∏
k∈RX̃ ∪RỸ

(∏Nk (t )
j=1 λXY

k (τk, j )
)

exp
[− ∫ t

0 λXY
k (s)ds

]
∏

k∈RX̃

(∏Nk (t )
j=1 λX

k (τk, j )
)

exp
[− ∫ t

0 λX
k (s)ds

]×∏k∈RỸ

(∏Nk (t )
j=1 λY

k (τk, j )
)

exp
[− ∫ t

0 λY
k (s)ds

] (A5)

with λXY
k (t ) = E[λk (Z (t )) | X t

0,Y t
0 ], λX

k (t ) = E[λk (Z (t )) | X t
0], and λY

k (t ) = E[λk (Z (t )) | Y t
0 ] being the marginal propensities

of processes (X (t ),Y (t )), X (t ), and Y (t ). Equation (A5) can be further simplified by realizing that reactions in RX̄ for which
λXY

k (t ) = λX
k (t ) cancel out (and equivalently for RȲ ). This is the case for reactions whose propensity function depends exclusively

on X (t ) [or Y (t )]. Therefore we only have to consider reactions in RX̄ (or RȲ ) that depend on species other than X (t ) [or
Y (t )] such as Zk → Zk + X. We refer to these reactions as RX and RY , respectively. With these definitions, and realizing that∏Nk (t )

j=1 f (τk, j ) = exp[
∫ t

0 ln f (s)dNk (s)] yields for the path mutual information

IXY
t = E

[∑
k∈RX

(∫ t

0

(
ln
[
λXY

k (s)
]− ln

[
λX

k (s)
])

dNk (s) −
∫ t

0

(
λXY

k (s) − λX
k (s)
)
ds

)

+
∑
k∈RY

(∫ t

0

(
ln
[
λXY

k (s)
]− ln

[
λY

k (s)
])

dNk (s) −
∫ t

0

(
λXY

k (s) − λY
k (s)
)
ds

)]
. (A6)

Moreover, we can decompose the reaction counters Nk (t ) into a predictable part and a martingale such that dNk (t ) = λXY
k (t )dt +

dÑk (t ), where dÑk (t ) is a centered process which is zero on average. In addition, we observe that

E
[
λX

k (t )
] = E

[
E
[
λk (Z (t ))

∣∣X t
0

]] = E[λk (Z (t ))]. (A7)

Then, by changing the order of integration and expectation, we further obtain

IXY
t =

∑
k∈RX

∫ t

0
E
[(

ln
[
λXY

k (s)
]− ln

[
λX

k (s)
])(

λXY
k (s)ds + dÑ (s)

)]− ∫ t

0
E
[
λXY

k (s) − λX
k (s)
]
ds

+
∑
k∈RY

∫ t

0
E
[(

ln
[
λXY

k (s)
]− ln

[
λY

k (s)
])(

λXY
k (s)ds + dÑ (s)

)]− ∫ t

0
E
[
λXY

k (s) − λY
k (s)
]
ds
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=
∑
k∈RX

∫ t

0
E
[(

ln
[
λXY

k (s)
]− ln

[
λX

k (s)
])

λXY
k (s)

]
ds

+
∑
k∈RY

∫ t

0
E
[(

ln
[
λXY

k (s)
]− ln

[
λY

k (s)
])

λXY
k (s)

]
ds, (A8)

where the second equality follows from the martingality of Ñk (t ) and from E[λXY
k (t )] = E[λX

k (t )] = E[λk (Z (t ))] [see Eq. (A7)].
Finally, by realizing that

E[λXY (t ) ln (λX (t ))] = E
[
E
[
λXY (t ) ln[λX (t )]

∣∣X t
0

]]
= E
[
E
[
λXY (t )

∣∣X t
0

]︸ ︷︷ ︸
λX

k (t )

ln[λX (t )]
]

= E
[
λX

k (t ) ln
[
λX

k (t )
]]

, (A9)

we arrive at

IXY
t =

∑
k∈RX

∫ t

0
E
[
λXY

k (s) ln
[
λXY

k (s)
]− λX

k (s) ln
[
λX

k (s)
]]

ds

+
∑
k∈RY

∫ t

0
E
[
λXY

k (s) ln
[
λXY

k (s)
]− λY

k (s) ln
[
λY

k (s)
]]

ds. (A10)

Note that even though Eq. (A10) is compact and beneficial for
analytical purposes, it is numerically more difficult to handle
than Eq. (A6). In particular, it would require evaluating the
marginal propensities, calculating Monte Carlo averages over
the corresponding x ln x terms and numerically integrating the
resulting averages over time. Using (A6), by contrast, one
first calculates the time integral (for which effective numerical
solvers can be used) and subsequently averages over many
Monte Carlo samples. We therefore use Eq. (A6) instead for
all our numerical simulations.

APPENDIX B: STOCHASTIC FILTERING

To calculate mutual information between paths X t
0 and Y t

0 ,
we require the marginal propensities λXY

k (t ), λX
k (t ), and λY

k (t )

as we have seen in Appendix A. We will from now on focus on
the calculation of λX

k (t ), but we remark that λXY
k (t ) and λY

k (t )
can be obtained analogously. Recall that a marginal propensity
is defined as

λX
k (t ) = E

[
λk (Z (t ))

∣∣X t
0

] = E
[
λk (Z̄ (t ), X (t ))

∣∣X t
0

]
=
∑

z̄

λk (z̄, X (t ))πX (z̄, t ), (B1)

where Z̄ (t ) is a vector collecting all molecular abundances
except X (t ). The average is taken with respect to a con-
ditional probability distribution πX (z̄, t ) := P(Z̄ (t ) = z̄ | X t

0 ),
also referred to as a filtering distribution. As derived in detail
in Ref. [17] the distribution πX (z̄, t ) satisfies the stochastic
differential equation

dπX (z̄, t ) =
∑
k∈RZ̄

[
λk
(
z̄ − vZ̄

k , X (t )
)
πX
(
z̄ − vZ̄

k , t
)− λk (z̄, X (t ))πX (z̄, t )

]
︸ ︷︷ ︸

AZ̄|X πX (z̄,t )

dt

−
∑
k∈RX̄

[
λk (z̄, X (t )) − λX

k (t )
]
πX (z̄, t )dt +

∑
k∈RX̄

[
λk
(
z̄ − vZ̄

k , X (t )
)

λX
k (t )

πX
(
z̄ − vZ̄

k , t
)− πX (z̄, t )

]
dNk (t ), (B2)

where vZ̄
k is the part of the stoichiometric change vector vk

that acts on Z̄ (t ) and dNk (t ) is the differential version of the
counting process Nk (t ), which is 1 exactly at the time points
where reaction k happens and zero otherwise. The reaction
set RZ̄ contains all reaction indices that modify exclusively
components in Z̄ (t ). Note that in the second sum of Eq. (B2),
only reactions in RX̄ that involve species in Z̄ as reactants
will have a nonzero contribution and, in the third sum, re-
actions involving Z̄ as reactants and/or products will have a

nonzero contribution. In all other cases, we have that vZ̄
k = 0

and, furthermore, λk (z̄, X (t )) = λk (X (t )) = λX
k (t ) such that

the respective summands cancel out.
The terms in the first row of (B2) can be summarized

as AZ̄|X πX (z̄, t ), where AZ̄|X is a forward operator acting
on πX (z̄, t ). This part is essentially the same as what we
encounter on the right-hand side of a conventional master
equation with state z̄ and rates λk (z̄, X (t )) for all k ∈ RZ̄ that
depend not only on the internal state z̄, but also on some
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external process X (t ). More specifically, it describes how the
components Z̄ (t ) would evolve if the reactions in RX̄ were
switched off. The second row accounts for the knowledge
about Z̄ (t ) that is gained through observing (or not observing)
reactions in RX̄ . Concrete examples will be given later in this
Appendix.

1. Moment approximations

A direct numerical solution of (B2) is computationally
demanding due to the combinatorial explosion of states in
larger reaction networks. More effective solutions of (B2)
can be obtained using moment-closure techniques as we have
also shown previously [11,17,18]. This technique is suitable
when the reaction propensities are of polynomial form such
as encountered with mass-action kinetics. If this is the case,
Eq. (B2) can be readily transformed into an equivalent sys-
tem of moment equations, which is subsequently truncated to
obtain a finite-dimensional moment hierarchy. The first step
can be achieved by multiplying (B2) with a polynomial in
z̄ (corresponding to a certain desired moment) and summing
over all possible values of z̄. This generally leads to an infinite-
dimensional system of moment equations which needs to be
truncated at a certain order. This can be achieved by assuming
the underlying distribution πX (z̄, t ) to belong to a certain
family of probability distributions, which can be described by
a finite (and small) number of degrees of freedom (e.g., mean
μ and standard deviation σ in the case of a univariate Gaussian
distribution). This can then be exploited to express higher-
order moments as a function of lower-order moments, leading
to a closed system of differential equations. In our previous
works [11,18], we have used a third-order Gamma closure
to approximate conditional moments of a one-dimensional
filtering equation and have found very good accuracy. Since
we consider multidimensional filtering equations in this paper,
we analogously use a multivariate extension of the third-order
Gamma closure [26], for which

E
[
Z̄2

j Z̄l

∣∣X t
0

] = 2
E
[
Z̄2

j

∣∣X t
0

]
E
[
Z̄ j Z̄l

∣∣X t
0

]
E
[
Z̄ j

∣∣X t
0

] − E
[
Z̄2

j

∣∣X t
0

]
E
[
Z̄l

∣∣X t
0

]
.

(B3)

Note that (B3) agrees with the univariate Gamma closure
if j = l . A concrete application of the multivariate Gamma
closure will be presented later in Appendix C 1.

Figure 4 shows example trajectories of the first and second
conditional moments obtained by direct numerical integration
of (B2) and the Gamma closure.

2. Analytical approximation

In this section, we derive a simple analytical approximation
of the path mutual information as shown in Eq. (6) in the
main text. For that purpose, we focus on a simplified sce-
nario where all reactions have linear propensities (i.e., they
are unimolecular in the case of mass-action kinetics) and
where no other species change simultaneously with X or Y.
As can be seen from Eq. (A10), the path mutual informa-
tion involves inner expectations that are conditional on paths
X t

0 , Y t
0 , and {X t

0,Y t
0 }, as well as an outer expectation that

integrates over different realizations of these paths. In our
moment approximation, the inner expectations are handled
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FIG. 4. Solution of the filtering equation obtained by direct in-
tegration on a finite grid (quasiexact method) and moment closure
(moment-approximation method). The considered example is a two-
node feedforward network, for which we calculated P(A(t ) = a | Bt

0)
(see Appendix C 1). Shown are means (solid lines) and stan-
dard deviations (dashed lines) as well as the underlying realization
of A(t ) (blue stair plot). Parameters were set to {k1, k2, k3, k4} =
{1, 0.1, 0.1, 0.1} and [A0, B0] = {10, 10}. Mom. Approx. moment-
approximation; SSA, stochastic simulation algorithm.

by finding approximate moments of the underlying filtering
distribution, whereas the outer expectations are obtained by
averaging over many (exact) stochastic simulations. To ob-
tain analytical results, we further expand the x ln x terms
inside the outer expectations into a Taylor series. In particular,
we obtain

λ ln(λ) = λ̃ ln(λ̃) + (ln(λ̃) + 1)(λ − λ̃)

+ (λ − λ̃)2

2λ̃
+ O(λ3), (B4)

where λ̃ is the point at which we perform the expansion. If
we now consider λ to be a random variable, set λ̃ = E[λ], and
take the expectation, we find

E[λ ln(λ)] ≈E[λ] ln(E[λ])

+ (ln(E[λ]) + 1)(E[λ] − E[λ])

+ E[(λ − E[λ])2]
2E[λ]

, (B5)

which simplifies to

E[λ ln(λ)] ≈ E[λ] ln(E[λ]) + Var[λ]

2E[λ]
. (B6)

Applying this approximation to (A10) for the considered sce-
nario, we finally obtain

IXY
t ≈

∑
k∈RX

∫ t

0

Var
[
λXY

k (t )
]− Var

[
λX

k (t )
]

2E
[
λk (Z (t ))

] ds

+
∑
k∈RY

∫ t

0

Var
[
λXY

k (t )
]− Var

[
λY

k (t )
]

2E[λk (Z (t ))]
ds. (B7)
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This shows that up to second order, the path mutual
information can be approximated by the variances
of the marginal propensities such as Var[λXY

k (t )] =
Var[E[λk (Z (t )) | X t

0,Y t
0 ]]. The general idea is then to derive

ordinary differential equations for these variances from the
previously obtained conditional moment equations. In the
following, we show how such equations can be derived.
Concrete examples will be given later in Appendix C 1.

For the sake of illustration, we consider the variance of
the marginal propensity λX

k (t ) = E[λk (Z (t )) | X t
0]. Since all

reactions have linear rates, we have λk (Z (t )) = ckZ̄ j(k)(t )
with Z̄ j(k)(t ) being the copy number of the particular species
in Z̄ that drives reaction k and ck being a constant. As a
consequence of the linear propensity functions, finding the
marginal propensity λX

k (t ) is equivalent to finding the first
conditional moment of Z̄ j(k)(t ), which for compactness we
denote by Mk (t ) = E[Z̄ j(k)(t ) | X t

0] in the following. Note that
Mk (t ) is a functional of the path X t

0 and as such is stochas-
tic. The goal is now to find the variance of this stochastic
process Var[Mk (t )] = Var[E[Z̄ j(k)(t ) | X t

0]] from which we
subsequently obtain Var[λX

k (t )] = c2
kVar[Mk (t )].

The variance of Mk (t ) can be written as Var[Mk (t )] =
E[Mk (t )2] − E[Mk (t )]2 = E[Mk (t )2] − E[Z̄ j(k)(t )]2. There-
fore, since the average E[Z̄ j(k)(t )] is straightforward to obtain
for linear networks, the calculation of the variance boils down
to finding the second noncentral moment of Mk (t ). To this end,
we consider the differential equation of Mk (t ), which can be
obtained by multiplying (B2) with z̄ j(k) and summing over all
z̄:

dMk (t ) =
⎛
⎝Dk (t ) −

∑
i∈RX

ci(Mi,k (t ) − Mi(t )Mk (t ))

⎞
⎠dt

+
∑
i∈RX

Mi,k (t ) − Mi(t )Mk (t )

Mi(t )
dNi(t )

=
⎛
⎝Dk (t ) −

∑
i∈RX

ciCi,k (t )

⎞
⎠dt +

∑
i∈RX

Ci,k (t )

Mi(t )
dNi(t ),

(B8)

where Dk (t ) =∑z j (k) AZ̄|X πX (z̄, t )z j(k) summarizes the

fluxes originating from the forward operator AZ̄|X and
where we have defined the second noncentral conditional
moment Mi,k (t ) := E[Zj(i)(t )Zj(k)(t ) | X t

0] as well as the
conditional covariance Ci,k (t ) := Cov[Zj(i)(t ), Zj(k)(t ) |
X t

0] = Mi,k (t ) − Mi(t )Mk (t ). To obtain an equation for the
second moment of Mk (t ), we first derive an equation for
Mk (t )2 using Ito’s rule for counting processes [34], i.e.,

d (Mk (t )2) = 2Mk (t )dMk (t ) +
∑
i∈RX

Ci,k (t )2

Mi(t )2
dNi(t ). (B9)

Decomposing the reaction counters dNi(t ) into a predictable
part and a martingale, i.e., dNi(t ) = ciMi(t )dt + dÑi(t ), and

inserting Eq. (B8), we further obtain

d (Mk (t )2) = 2Mk (t )Dk (t )dt −
∑
i∈RX

2ciMk (t )Ci,k (t )dt

+
∑
i∈RX

2ciMk (t )Ci,k (t )dt

+
∑
i∈RX

2Mk (t )
Ci,k (t )

Mi(t )
dÑi(t )

+
∑
i∈RX

ci
Ci,k (t )2

Mi(t )
dt +

∑
i∈RX

Ci,k (t )2

Mi(t )2
dÑi(t )

= 2Mk (t )Dk (t )dt +
∑
i∈RX

2Mk (t )
Ci,k (t )

Mi(t )
dÑi(t )

+
∑
i∈RX

ci
Ci,k (t )2

Mi(t )
dt +

∑
i∈RX

Ci,k (t )2

Mi(t )2
dÑi(t ).

(B10)

By taking the expectation, all terms involving the martingale
increments dÑi(t ) vanish, which after some simplifications
leads to

dE[Mk (t )2] = 2E[Mk (t )Dk (t )]dt +
∑
i∈RX

ciE

[
Ci,k (t )2

Mi(t )

]
dt .

(B11)

Since the considered network architecture has linear propen-
sities, the first term on the right-hand side of (B11) will result
in moments of at most order 2, regardless of the specific form
of Dk (t ). However, the second term involves a more complex
expectation that is in general difficult to calculate. This ex-
pectation can be approximated when the underlying filtering
distribution is one dimensional (i.e., z̄ is a scalar that drives
a single reaction Z̄ → Z̄ + X) and assumed to be a Gamma
distribution. In this case, the sum in (B11) involves only a
single term of the form E[Ci,i(t )2/Mi(t )], whereas Ci,i(t ) is a
conditional variance. Based on the assumption of a Gamma
distribution, we have previously suggested an approximation
of the form E[Ci,i(t )2/Mi(t )] ≈ E[Ci,i(t )]2/E[Mi(t )] [18]. In-
spired by this, and in line with the multivariate Gamma closure
(B3), we thus use the approximation E[Ci,k (t )2/Mi(t )] ≈
E[Ci,k (t )]2/E[Mi(t )] to close Eq. (B11). While this approx-
imation is so far heuristic, it yielded accurate results in the
case studies we considered.

APPENDIX C: CASE STUDIES

1. Case study I

Path mutual information. We consider a three-node feed-
forward network as presented in the main text. To obtain an
expression for the path mutual information between species A
and C, we realize that species C receives information about
species A only through reaction RC = {5}, which depends
on intermediate species B. Using Eq. (A10), the path mutual

013032-11



ANNE-LENA MOOR AND CHRISTOPH ZECHNER PHYSICAL REVIEW RESEARCH 5, 013032 (2023)

information takes the form

IAC
t = E

[ ∫ t

0
k5
(
E
[
B(s)
∣∣As

0,Cs
0

]
ln
[
k5E
[
B(s)
∣∣As

0,Cs
0

]]
− E
[
B(s)
∣∣Cs

0

]
ln
[
k5E
[
B(s)
∣∣Cs

0

]])
ds

]
. (C1)

In this case, two filtering equations are required, one that de-
scribes B(t ) conditionally on At

0 and Ct
0 and one that describes

(A(t ), B(t )) conditionally on Ct
0. Based on Eq. (B2) these two

filtering equations are given by

dπAC (b, t ) = k3A(t )(πAC (b − 1, t ) − πAC (b, t ))dt

+ k4((b + 1)πAC (b + 1, t ) − bπAC (b, t ))dt

− k5(b − E
[
B(t )
∣∣At

0,Ct
0

]
)πAC (b, t )dt

+ b − E
[
B(t )
∣∣At

0,Ct
0

]
E
[
B(t )
∣∣At

0,Ct
0

] πAC (b, t )dN5(t ) (C2)

and

dπC (a, b, t )

= k1(πC (a − 1, b, t ) − πC (a, b, t ))dt

+ k2((a + 1)πC (a + 1, b, t ) − aπC (a, b, t ))dt

+ k3a(πC (a, b − 1, t ) − πC (a, b, t ))dt

+ k4((b + 1)πC (a, b + 1, t ) − bπC (a, b, t ))dt

− k5
(
b − E

[
B(t )
∣∣Ct

0

])
πC (a, b, t )dt

+ b − E
[
B(t )
∣∣Ct

0

]
E
[
B(t )
∣∣Ct

0

] πC (a, b, t )dN5(t ), (C3)

which in principle can be solved numerically on a finite grid
using the quasiexact method. Moreover, differential equa-
tions can be obtained from these equations for the conditional
means E[B(t ) | At

0,Ct
0] and E[B(t ) | Ct

0] which will, however,
depend on moments of higher order. In the case of Eq. (C2),
for instance, we obtain for the first two conditional moments

dE
[
B(t )
∣∣At

0,Ct
0

] = k3A(t )dt − k4E
[
B(t )
∣∣At

0,Ct
0

]
dt − k5E

[
B(t )2

∣∣At
0,Ct

0

]
dt + k5E

[
B(t )
∣∣At

0,Ct
0

]2
dt

+ E
[
B(t )2

∣∣At
0,Ct

0

]− E
[
B(t )
∣∣At

0,Ct
0

]2
E
[
B(t )
∣∣At

0,Ct
0

] dN5(t ),

dE
[
B(t )2

∣∣At
0,Ct

0

] = 2k3A(t )E
[
B(t )
∣∣At

0,Ct
0

]
dt + k3A(t )dt − 2k4E

[
B(t )2

∣∣At
0,Ct

0

]
dt + k4E

[
B(t )
∣∣At

0,Ct
0

]
dt

− k5E
[
B(t )3

∣∣At
0,Ct

0

]
dt + k5E

[
B(t )2

∣∣At
0,Ct

0

]
E
[
B(t )
∣∣At

0,Ct
0

]
dt

+ E
[
B(t )3

∣∣At
0,Ct

0

]− E
[
B(t )2

∣∣At
0,Ct

0

]
E
[
B(t )
∣∣At

0,Ct
0

]
E
[
B(t )
∣∣At

0,Ct
0

] dN5(t ). (C4)

This implies that one would need an infinite amount of differential equations in order to calculate the moment dynamics.
Applying a third-order Gamma closure allows us replace the third conditional moment E[B(t )3|At

0,Ct
0] by moments of order

1 and 2 using (B3). Then, the closed equation for the second moment becomes

dE
[
B(t )2

∣∣At
0,Ct

0

] = 2k3A(t )E
[
B(t )
∣∣At

0,Ct
0

]
dt + k3A(t )dt − 2k4E

[
B(t )2

∣∣At
0,Ct

0

]
dt + k4E

[
B(t )
∣∣At

0,Ct
0

]
dt

− 2k5
E
[
B(t )2

∣∣At
0,Ct

0

]2
E
[
B(t )
∣∣At

0,Ct
0

] dt + 2k5E
[
B(t )
∣∣At

0,Ct
0

]
E
[
B(t )2

∣∣At
0,Ct

0

]
dt

+ 2
E
[
B(t )2

∣∣At
0,Ct

0

]2
E
[
B(t )
∣∣At

0,Ct
0

]2 dN5(t ) − 2E
[
B(t )2

∣∣At
0,Ct

0

]
dN5(t ). (C5)

In the same way, we can get equations for the set of differential equations conditionally on Ct
0 to evaluate E[B(t )|Ct

0].
In this example, we also made use of the analytical approximation of the path mutual information [i.e., Eq. (B7)], by which

we obtain

IAC
t ≈

∫ t

0

k5

2

Var
[
E
[
B(s)
∣∣As

0,Cs
0

]]− Var
[
E
[
B(s)
∣∣Cs

0

]]
E[B(s)]

ds. (C6)

In order to demonstrate how to obtain the variances of the respective conditional means, we derive Var[E[B(s)|As
0,Cs

0]] as
discussed in Appendix B 2. We start with defining the differential

dVar
[
E
[
B(t )
∣∣At

0,Ct
0

]] = dE
[
E
[
B(t )
∣∣At

0,Ct
0

]2]− dE
[
E
[
B(t )
∣∣At

0,Ct
0

]]2 = dE
[
E
[
B(t )
∣∣At

0,Ct
0

]2]− 2E[B(t )]dE[B(t )].
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The dynamics of E[B(t )] can be derived from a conventional master equation and is given by

dE[B(t )] = (k3E[A(t )] − k4E[B(t )])dt . (C7)

Using Eq. (B11) and realizing that

E
[
A(t )E

[
B(t )
∣∣At

0,Ct
0

]] = E
[
E
[
A(t )B(t )

∣∣At
0,Ct

0

]] = E[A(t )B(t )], (C8)

we get an approximate expression for the differential of the squared moment

d

dt
E
[
E
[
B(t )
∣∣At

0,Ct
0

]2] = 2k3E[A(t )B(t )] − 2k4E
[
E
[
B(t )
∣∣At

0,Ct
0

]2]+ k5
E
[
Var
[
B(t )
∣∣At

0,Ct
0

]]2
E
[
B(t )
] , (C9)

where we have used the approximation E[Var[B(t )|At
0,Ct

0]
2
/E[B(t )|At

0,Ct
0]] ≈ E[Var[B(t )|At

0,Ct
0]]

2
/E[B(t )]. Now, we can

combine Eqs. (C7) and (C9) and by subtracting 2E[B(t )]dE[B(t )]/dt = 2E[E[B(t )|At
0,Ct

0]]dE[E[B(t )|At
0,Ct

0]]/dt , we find
that the requested variance satisfies the differential equation

d

dt
Var
[
E
[
B(t )
∣∣At

0,Ct
0

]] = 2k3Cov[A(t ), B(t )] − 2k4Var
[
E
[
B(t )
∣∣At

0,Ct
0

]]+ k5
E
[
Var
[
B(t )
∣∣At

0,Ct
0

]]2
E[B(t )]

. (C10)

Equation (C10) involves additional moments, for which equations can be obtained in a similar way. In total, this leads to a system
of differential equations

d

dt
Var
[
E
[
B(t )
∣∣At

0,Ct
0

]] = 2k3Cov[A(t ), B(t )] − 2k4Var
[
E
[
B(t )
∣∣At

0,Ct
0

]]+ k5
E
[
Var
[
B(t )
∣∣At

0,Ct
0

]]2
E[B(t )]

,

d

dt
E[A(t )] = k1 − k2E[A(t )],

d

dt
E[B(t )] = k3E[A(t )] − k4E[B(t )],

d

dt
E
[
Var
[
B(t )
∣∣At

0,Ct
0

]] = k3E[A(t )] + k4E[B(t )] − 2k4E
[
Var
[
B(t )
∣∣At

0,Ct
0

]]− k5
E
[
Var
[
B(t )
∣∣At

0,Ct
0

]]2
E[B(t )]

,

d

dt
Cov[A(t ), B(t )] = − (k2 + k4)Cov[A(t ), B(t )] + k3Var[A(t )],

d

dt
Var[A(t )] = k1 + k2E[A(t )] − 2k2Var[A(t )], (C11)

whose steady state can be found by setting the left-hand side
to zero. The same procedure can be followed for calculating
the variance Var[E[B(t ) | Ct

0]], which in combination with
Var[E[B(t ) | At

0,Ct
0]] allows us to approximate the path mu-

tual information via Eq. (C6) at steady state. Note that for
stationary systems, the path mutual information rate can be
obtained simply by dropping the time integral in (C6). Doing
so, and considering the limit vc → ∞ (or equivalently k5),
leads to the steady-state mutual information rate shown in
Eq. (9) in the main text.

In Fig. 2 in the main text, we compared the analytical
approximation with the moment-approximation method and
found very good agreement. However, since the moment-
approximation method is also approximate, we carried out a
similar comparison with the quasiexact method (Fig. 5). Also
in this case, we found very good agreement between the two
approaches. Note that due to the computational complexity of
the quasiexact method, this analysis was restricted to a smaller
parameter region than the one considered in Fig. 2 in the main
text.

In the main text, we compared the mutual information
rate between species A and C with the mutual information
rate between A and B. According to Eq. (A10), the latter is
given by

IAB
t = E

[ ∫ t

0
k3
(
A(s) ln[k3A(s)]

− E
[
A(s)
∣∣Bs

0

]
ln
[
k3E
[
A(s)
∣∣Bs

0

]])
ds

]
, (C12)

where information transfer is mediated through reaction RB =
{3}. Note that the conditional expectations vanish in the first
term on the right-hand side of (C12), because conditioning
on {At

0, Bt
0} provides complete knowledge about the history

of the network (i.e., E[A(t ) | At
0, Bt

0] = A(t )). The analytical
approximation of the path mutual information then becomes

IAB
t ≈

∫ t

0

k3

2

Var[A(s)] − Var
[
E
[
A(s)
∣∣Bs

0

]]
E[A(s)]

ds. (C13)
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FIG. 5. (a) Analytical approximation of the path mutual information rate iAC as a function of the relative reaction velocity v�, � ∈ [A, B,C]
and comparison with the quasiexact solution (purple points). (b) Path mutual information rate iAC as a function of vA. The quasiexact solution
is given by the green points. (c) Path mutual information rate iAC as a function of vC for the network consisting of three nodes and the network
consisting of two nodes. The simulations are performed with the same set of parameters as for Fig. 2 in the main text. The quasiexact calculation
is performed with a sample size of n = 600. Results obtained by the moment-approximation method (n = 10 000) are shown as points in the
same color as the corresponding analytical approximation. The grid sizes for the quasiexact method for πAC and πC were chosen to be 50 and
50×50, respectively.

At stationarity, the path mutual information rate is then given
by the integrand of Eq. (C13). Moreover, by the law of
total variance, it holds that Var[A(s)] − Var[E[A(s) | Bs

0]] =
E[Var[A(t ) | Bt

0]], such that we obtain

lim
t→∞ iAB

t = iAB = k3

2

E
[
Var
[
A(t )
∣∣Bt

0

]]
E[A(t )]

. (C14)

The steady state of E[A(t )] can be obtained directly from the
underlying master equation and is given by limt→∞ E[A(t )] =
k1/k2. Therefore the only term that needs to be determined
is the expected conditional variance E[Var[A(t ) | Bt

0]] that
satisfies the differential equation

d

dt
E
[
Var
[
A(t )
∣∣Bt

0

]]=k1 + k2E[A(t )]−2k2E
[
Var
[
A(t )
∣∣Bt

0

]]
− k3E

[
Var
[
A(t )
∣∣Bt

0

]2
E
[
A(t )
∣∣Bt

0

]
]
, (C15)

which can be derived using Ito’s rule for counting processes
as demonstrated before. Making use of the approximation
E[Var[A(t ) | Bt

0]2/E[A(t ) | Bt
0]]≈E[Var[A(t ) | Bt

0]]2/E[A(t )],
solving for the stationary solution, and inserting it into (C14)
finally yields

iAB = −k2

2
+ 1

2

√
k2(k2 + 2k3). (C16)

Gaussian approximations. For comparison, we calculated
stationary mutual information rates using Gaussian theory as
proposed by Tostevin and ten Wolde [8]. To this end, we
employ the relationship

iXY
G = − 1

4π

∫ ∞

−∞
ln

[
1 − |SXY (ω)|2

SXX (ω)SYY (ω)

]
dω, (C17)

where SXY (ω) is the cross power spectral density of signals
X (t ) and Y (t ) and SXX (ω) and SYY (ω) are the power spectral
densities of X (t ) and Y (t ), respectively. Since all propensities
in the considered two- and three-node networks are linear,
SXY (ω), SXX (ω), and SYY (ω) can be calculated in closed form
by first deriving the respective cross covariance and autoco-
variance functions and calculating their Fourier transforms.

For the considered two-node network, we obtain

dCov[A(0), A(t )]

dt
= −k2Cov[A(0), A(t )],

dCov[A(0), B(t )]

dt
= k3Cov[A(0), A(t )] − k4Cov[A(0), B(t )],

dCov[B(0), B(t )]

dt
= k3Cov[B(0), A(t )] − k4Cov[B(0), B(t )],

dCov[B(0), A(t )]

dt
= −k2Cov[B(0), A(t )]. (C18)

For the three-node network, we obtain

dCov[A(0), A(t )]

dt
=−k2Cov[A(0), A(t )],

dCov[A(0), B(t )]

dt
=k3Cov[A(0), A(t )] − k4Cov[A(0), B(t )],

dCov[A(0),C(t )]

dt
=k5Cov[A(0), B(t )] − k6Cov[A(0),C(t )],

dCov[C(0), A(t )]

dt
=−k2Cov[C(0), A(t )],

dCov[C(0), A(t )]

dt
=k3Cov[C(0), A(t )] − k4Cov[C(0), B(t )],

dCov[C(0),C(t )]

dt
=k5Cov[C(0), B(t )] − k6Cov[C(0),C(t )].

(C19)

Equations (C18) and (C19) define systems of ordinary differ-
ential equations, which can be Fourier transformed directly,
giving rise to systems of linear algebraic equations. Solv-
ing these equations yields SAB(ω), SAA(ω), and SBB(ω) in
the case of the two-node network and SAC (ω), SAA(ω) and
SCC (ω) in the case of the three-node network, respectively. In
that way, the fraction FXY (ω) = |SXY (ω)|2/(SXX (ω)SYY (ω))
inside (C17) becomes

FAB(ω) = k2k3

ω2 + k2(k2 + k3)
, (C20)
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FIG. 6. Equilibrium points of the positive-feedback system as a
function of μ predicted by mean-field theory. The bifurcation point
is at μ ≈ 0.35.

in the case of the two-node network and

FAC (ω)

= k2k3k4k5

k2k4(k3k5 + k2(k4 + k5)) + (k2
2 + k4(k4 + k5)

)
ω2 + ω4

(C21)

in the case of the three-node network. In the former case, the
remaining integral in (C17) can be solved analytically, leading
to

iAB
G = −k2

2
+ 1

2

√
k2(k2 + k3). (C22)

Taking the limit k5 → ∞ in (C21) directly leads to (C20),
showing that limk5→∞ iAC

G = iAB
G . In other words, the three-

node network reduces to the simpler two-node network in
terms of information transfer as k5 → ∞. Note that in the case
of the three-node network, inserting (C21) into (C17) led to an
integral which could not be solved analytically, which is why
an explicit expression of iAC

G could not be provided. For the
results shown in Figs. 2(b)–2(d) in the main text, this integral
was solved numerically.

2. Case study II

The second system considered in the main text is a bistable
switch. The system is similar to a three-node feedforward net-
work, but contains a positive feedback between species C and
A. This feedback is incorporated by letting k1 depend on the
abundance of C. In particular, we chose a Hill-type propen-
sity of the form k1(C(t )) = μC(t )nH /(KnH + C(t )nH ) + ε with
Hill coefficient nH = 3 and μ and ε being positive constants.
Using Eq. (A10), the path mutual information between A and
C takes the form

IAC
t = E

[ ∫ t

0
k1(C(s)) ln[k1(C(s))]

− E
[
k1(C(s))

∣∣ As
0

]
ln
[
E
[
k1(C(s))

∣∣ As
0

]]
ds

+ k5

∫ t

0
E
[
B(s)
∣∣ As

0,Cs
0

]
ln
[
E
[
B(s)
∣∣ As

0,Cs
0

]]
− E
[
B(s)
∣∣Cs

0

]
ln
[
E
[
B(s)
∣∣Cs

0

]]]
ds. (C23)

In contrast to the previous cases, information transmission is
now bidirectional, mediated through reactions RA = {1} and
RC = {5}. In this case, we require three filtering equations to
calculate the path mutual information:

dπAC (b, t ) = k3A(t )(πAC (b − 1, t ) − πAC (b, t ))dt

+ k4((b + 1)πAC (b + 1, t ) − bπAC (r, t ))dt

− k5
(
b − E

[
B(t )
∣∣ At

0,Ct
0

])
πAC (b, t )dt

+ b − E
[
B(t )
∣∣ At

0,Ct
0

]
E
[
B(t )
∣∣ At

0,Ct
0

] πAC (b, t )dN5(t ),

(C24)

dπA(b, c, t ) = k3A(t )(πA(b − 1, c, t ) − πA(b, c, t ))dt

+ k4((b + 1)πA(b + 1, c, t ) − bπA(b, c, t ))dt

+ k5b(πA(b, c − 1, t ) − πA(b, c, t ))dt

+ k6((c + 1)πA(b, c + 1, t ) − cπA(b, c, t ))dt

− [k1(c) − E
[
k1(C(t ))

∣∣ At
0

]]
πA(b, c, t )dt

+ k1(c) − E
[
k1(C(t ))

∣∣ At
0

]
E
[
k1(C(t ))

∣∣ At
0

] πA(b, c, t )dN1(t ),

(C25)

dπC (a, b, t )

= k1(C(t ))(πC (a − 1, b, t ) − πC (a, b, t ))dt

+ k2((a + 1)πC (a + 1, b, t ) − aπC (a, b, t ))dt

+ k3a(πC (a, b − 1, t ) − πC (a, b, t ))dt

+ k4((b + 1)πC (a, b + 1, t ) − bπC (a, b, t ))dt

− k5
(
b − E

[
B(t )
∣∣Ct

0

])
πC (a, b, t )dt

+ b − E
[
B(t )
∣∣ Ct

0

]
E
[
B(t )
∣∣ Ct

0

] πC (a, b, t )dN5(t ). (C26)

To calculate the path mutual information between species A
and C for various parameter regimes, we made use of the
moment-approximation method. However, since k1(C(t )) is
not of polynomial form, this method is not directly applicable
to the third filtering equation, Eq. (C25), because the right-
hand side of the resulting moment dynamics would involve
expectations of rational functions (and thus no longer depend
on moments only). To address this issue, we linearize k1(C(t ))
around the conditional expectation E[C(t ) | At

0], which yields

k1(C(t )) ≈ μE
[
C(t )
∣∣ At

0

]3
K3 + E

[
C(t )
∣∣ At

0

]3 + ε +
(

3μE
[
C(t )
∣∣ At

0

]2
K3 + E

[
C(t )
∣∣ At

0

]3
− 3μE

[
C(t )
∣∣ At

0

]5(
K3 + E

[
C(t )
∣∣ At

0

]3)2
)(

C(t ) − E
[
C(t )
∣∣ At

0

])
.

(C27)
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FIG. 7. (a)–(f) Comparison of the quasiexact method with the moment-approximation method for individual trajectories. The simulation
was performed for parameters {k2, k3, k4, k5, k6} = {0.1, 1, 0.1, 0.1, 0.1} and {K, nH , ε} = {30, 3, 0.03}. The grid size for the quasiexact
method was chosen to be 70×70. The shaded areas indicate conditional standard deviations obtained by the respective methods.

Moments can then be derived from (C25) as described
before. This approximation is expected to be accurate when
the filtering distribution shows little variation in C(t ) around
its mean E[C(t ) | At

0], which should be the case when reaction
RA = {1} fires frequently [i.e., frequent observation of this
reaction reveals more information about C(t )]. We remark
that this approximation needs to be performed only for (C25)
since the other two equations are conditioned on Ct

0, such that
no averaging over C(t ) has to be performed (which would
otherwise give rise to expectations over rational functions).
In order to simplify the identification of parameter regimes
where this system exhibits two metastable states, we ana-
lyzed the corresponding macroscopic mean-field equations
given by

d

dt
a(t ) = μc(t )3

K3 + c(t )3
+ ε − k2a(t ),

d

dt
b(t ) = k3a(t ) − k4b(t ),

d

dt
c(t ) = k5b(t ) − k6c(t ). (C28)

Figure 6 shows the equilibrium points of this system as
a function of the feedback strength μ for the parameters
ε = 0.03, K = 30, k2 = 0.1, k3 = 1, k4 = 0.1, k5 = 0.1, and

k6 = 0.1. This shows that there are two (stable) equilibrium
points once μ exceeds a threshold (μ ≈ 0.35), and these
points subsequently approach each other when μ increases
further.

Note that the filtering equation (C25) involves a strongly
nonlinear state dependency via rate k1(c), which we linearized
to obtain closed moment dynamics. It is thus not obvious
whether the resulting conditional moments are approximated
accurately by our moment-based approach. To test whether
this is the case, we used the quasiexact method similarly to
the previous case study. However, due to the computational
complexity of the quasiexact method, we found a comprehen-
sive numerical analysis of the stationary mutual information
rate to be exceedingly expensive. Instead, we compared the
moment-approximation method with the quasiexact method
for a few individual trajectories for μ = 0.5, where indi-
vidual trajectories switch between the two metastable states.
We performed this comparison for E[C(t ) | At

0] as well as
E[k1(C(t )) | At

0], whereas the latter is used for calculating the
mutual information. For the quasiexact method, we solved
(C25) on a finite-dimensional grid of size 70×70. The results
show that the conditional moments are approximated well by
the moment-approximation method (Fig. 7). Some degree of
mismatch can be observed when E[C(t ) | At

0] assumes larger
values [Figs. 7(a), 7(c), 7(d), and 7(f)]. This is likely an
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inaccuracy of the quasiexact method, which forces the
probability mass to remain within the grid boundaries. Conse-
quently, E[C(t ) | At

0] and E[k1(C(t )) | At
0] are estimated less

accurately when E[C(t ) | At
0] gets close to the grid bound-

aries. Note that this analysis was performed only for (C25),
because the other two filtering equations are identical to the
previous case study with the only difference that (C26) now
exhibits a time-dependent rate k1.
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