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Dissipative dynamics of an impurity with spin-orbit coupling
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Brownian motion of a mobile impurity in a bath is affected by spin-orbit coupling (SOC). Here, we discuss
a Caldeira-Leggett-type model that can be used to propose and interpret quantum simulators of this problem in
cold Bose gases. First, we derive a master equation that describes the model and explore it in a one-dimensional
(1D) setting. To validate the standard assumptions needed for our derivation, we analyze available experimental
data without SOC; as a byproduct, this analysis suggests that the quench dynamics of the impurity is beyond
the 1D Bose-polaron approach at temperatures currently accessible in a cold-atom laboratory—motion of the
impurity is mainly driven by dissipation. For systems with SOC, we demonstrate that 1D spin-orbit coupling
can be gauged out even in the presence of dissipation—the information about SOC is incorporated in the initial
conditions. Observables sensitive to this information (such as spin densities) can be used to study formation of
steady spin polarization domains during quench dynamics.
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I. INTRODUCTION

Dissipation of energy occurs naturally when a particle
with finite momentum moves through a medium. This phe-
nomenon is typically studied assuming that the momentum
of the particle is decoupled from its spin degree of freedom.
This is, however, not the case for many condensed matter
systems with strong spin-orbit coupling (SOC), in particular,
for externally driven setups with nontrivial topological charac-
ter, such as bosonic Kitaev-Majorana chains [1,2], Majorana
wires [3,4], as well as systems featuring optical spin-Hall
effect [5,6]. SOC is also key for explaining transport of elec-
trons through a layer of chiral molecules [7,8]. To understand
equilibration processes in these systems and promote their
use in technologies, studies of dissipative dynamics with SOC
are needed. Cold-atom-based quantum simulators provide a
natural test bed for such studies [9,10]—they complement
the existing research of out-of-equilibrium time evolution,
see, e.g., Refs. [11–13], and SOC engineering using laser
fields [14,15].

To enjoy the potential of quantum simulators, one requires
theoretical models that can be used to propose new experi-
ments and analyze the existing data [16]. In this paper, we
present one such model designed to study an impurity with
SOC (see also recent Ref. [17] for a discussion of a relevant
Langevin-type equation). The impurity is in contact with the
bath that we model as a collection of harmonic oscillators.
Using the Born and Markov approximations, we derive a
master equation, which extends the result of Caldeira and
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Leggett [18,19] to a spin-orbit-coupled impurity. To illustrate
this equation, we focus on one-dimensional (1D) systems.
First, we test it using the experimental data of Ref. [20],
whose full theoretical understanding is lacking, see, e.g.,
Ref. [21]. We find that the Caldeira-Leggett model contains
all ingredients to describe the observed breathing dynamics of
the impurity assuming that the initial condition is the (only)
tunable parameter. The calculations are analytical, which sim-
plifies the analysis and allows us to gain insight into the
system: relevant timescales, short- and long-time dynamics.
Finally, we explore the dynamics of the system with SOC.
Without magnetic fields, the 1D SOC can be gauged out
so the system can be described using the Caldeira-Leggett
equation with SOC-dependent initial conditions. We present
observables that are sensitive to these initial conditions and
can be used to study the effect of SOC on time dynamics, for
example, formation of regions with steady spin polarization.
Our findings provide a convenient theoretical model that can
be used to propose and benchmark quantum simulators of
dissipative dynamics with SOC.

II. THE PARTICLE-BATH HAMILTONIAN

The Hamiltonian of the system is given by Htot = HS +
HB + HC . The three terms account for, correspondingly, the
(quantum) impurity, the harmonic bath, and the bath-impurity
coupling. We assume that HS has the form

HS = p2

2m
+ VSO(p, σ ) + Vext(q) + q2

N∑
j=1

c2
j

2mjω
2
j

, (1)

where m and q are the mass and the position of the impurity,
respectively. Vext is an external potential. VSO(p, σ ) is the
potential that describes SOC; it depends on the Pauli vector,
σ , and the momentum of the impurity, p. A particular form of
VSO is specified below, see also Appendix A 6. The last term in
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Eq. (1) is a standard harmonic counterterm, which makes Htot

translationally invariant for Vext = 0 [22]. The parameters ω j

and mj are taken from the bath Hamiltonian,

HB =
∑

j

[
p2

j

2mj
+ 1

2
mjω

2
j x

2
j

]
, (2)

whereas c j enters the bath-impurity interaction

HC = −q ·
∑

j

c jx j . (3)

For microscopic derivations that validate the form of HB and
HC for weakly interacting Bose gases and Luttinger liquids,
see, correspondingly, Refs. [23,24].

To summarize, we consider a single particle (impurity)
linearly coupled to an environment made of noninteracting
harmonic oscillators using the standard procedure [18,25],
briefly outlined below; this well-studied problem is extended
here by subjecting the impurity to SOC.

Before analyzing Htot , we remark that there are a number
of theoretical methods [26–30] that can be used for interpret-
ing experiments with impurities in Fermi [31–34] and Bose
gases [20,35–39]. Time evolution of an impurity in a Bose
gas—the focus of this paper—has been studied using vari-
ational wave functions, T -matrix approximations, and exact
solutions in 3D at zero [40–42] and finite temperatures [43].
Many more methods exist to address the 1D world. For exam-
ple, experimentally relevant trapped systems can be studied
using numerically exact approaches [44,45], for a review, see
Ref. [46]. In cases when those methods do not work (e.g.,
large energy exchange or high temperature), it has been sug-
gested to connect a cold-atom impurity to quantum Brownian
motion [23,47–49]. Our work provides an example of when
this idea leads to an accurate description of experimental data,
setting the stage for testing assumptions behind theoretical
models of relaxation [19,22] in a cold-atom laboratory.

III. BORN-MARKOV MASTER EQUATION WITH SOC

Time evolution of the impurity-bath ensemble, defined by
Htot, obeys the von Neumann equation: ih̄ρ̇tot = [Htot, ρtot].
To extract dynamics of the impurity from ρtot, we rely
on the Born-Markov approximation [19,50,51], which leads
to the equation for the (reduced) density matrix that describes
the impurity, ρS:

dρS

dt
= − i

h̄
[HS, ρS] − 1

h̄2

∫ +∞

0
ds C(s)[q, [Q(−s), ρS]]

+ i

h̄2

∫ +∞

0
ds χ (s)[q, {Q(−s), ρS}]. (4)

We write Eq. (4) in the form standard for a Brownian particle;
the contribution of SOC is conveniently hidden in Q(t ), which
is defined as

Q(t ) = i

h̄
[HS, q] = q −

( p
m

+ vSO(σ )
)

t, (5)

where vSO = ∂pVSO is the contribution to the velocity of the
particle due to SOC. Equation (4) contains the bath autocorre-
lation functions C(t ) and χ (t ) in Eq. (4),

C(t ) = h̄
∫ +∞

0
dω J (ω) coth

(
β h̄ω

2

)
cos(ωt ),

χ (t ) = h̄
∫ +∞

0
dω J (ω) sin(ωt ), (6)

where β = 1/kBT (T for temperature and kB is the Boltzmann
constant). These functions assume that all relevant micro-
scopic information is encoded in the spectral function J (ω),
formally defined as J (ω) = ∑

j c2
jδ(ω − ω j )/(2mjω j ). We

choose

J (ω) = 2mγ

π

ω�2
c

�2
c + ω2

, (7)

recovering Ohmic dissipation at ω → 0. The phenomeno-
logical parameter �c defines the high-frequency behavior of
Eq. (7).

The Ohmic spectral density is a standard choice in meso-
scopic [19,52,53] and in cold-atom physics [24,54,55]. We
employ it here because it leads to a local-in-time damping
that agrees with the experimental data used below to validate
the model (see also Refs. [24,56] for additional details about
Ohmic dissipation in 1D based upon long-wavelength approx-
imations for superfluids). Super-Ohmic dissipation whose
relevance for Bose polarons is highlighted in Refs. [23,48]
leads to strong memory effects (nonlocal-in-time damping),
thus, we do not consider it here.

Using Eqs. (5) and (6), we derive the master equation

dρS

dt
= − i

h̄
[HS, ρS] − iγ

h̄
[q, {p, ρS}] − 2mγ

β h̄2 [q, [q, ρS]]

− imγ [q, {vSO, ρS}], (8)

where γ defines the strength of dissipation. Technical details
behind the derivation of Eq. (8) are discussed in Appendix A.
As expected, dissipative dynamics is affected by SOC, see
the last term in Eq. (8). Finally, a proper Lindblad form for
Eq. (8) can be achieved by adding a minimally invasive term:
−γ β[p[p, ρS]]/(8m) [19,57]; we employ this term in our
calculations.

To illustrate the master equation, we choose to consider a
1D setting parameterized by the coordinate y. Without loss
of generality, we write the SOC term as VSO = ασx py. In this
case, the master equation reads as

dρ

dt
= dρ

dt

∣∣∣∣
α=0

− αF[ρ], (9)

where F[ρ] = σx∂yρ + ∂y′ρσx + imγ

h̄ (y − y′)(σxρ + ρσx )
with ρ ≡ 〈y|ρS|y′〉, and dρ

dt |α=0 describes time evolution of the
system without SOC, see Appendix A 7. The effect of SOC is
encoded in αF[ρ].

While the technical details leading to Eq. (4) are presented
in Appendix A, we recall here the standard assumptions
behind the Born-Markov approximation. First, the impurity-
bath density matrix is separable throughout time evolution,
such that ρtot(t ) � ρS (t ) ⊗ ρB(t ). Second, the bath is not
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FIG. 1. (a)–(d) The width of the impurity (potassium) cloud ȳ as a function of time for different values of the parameter η. The dots with
error bars show the experimental data of Ref. [20]. The curves are the fits to Eq. (9). Panel (e) shows the values of l0 used in the fit as a function
of η. The panel also shows a linear fit to these values (red line). The green curve shows the effective mass of the polaron calculated using the
analytical methods outlined in Refs. [58,59] (no fitting parameters).

affected by the impurity motion, namely, ρB(t ) � ρ
eq
B . This

assumption is natural if the decay of bath correlations has
the fastest timescale τB; it implies that dynamical fea-
tures ∼τB are not resolved by our approach [19,50]. To
validate these approximations, we shall demonstrate that
the master equation is capable of describing experimental
data of Ref. [20] that provide a benchmark point for us
at α = 0.

IV. DYNAMICS WITHOUT SOC

First, we briefly outline the main features and findings
of the experiment of Ref. [20]. In that paper, a potassium
atom was used to model an impurity in a gas of rubidium
atoms. At t = 0, the impurity was trapped in a tight trap
created by a species-selective dipole potential (SSDP) with
ωSSDP/(2π ) = 1kHz. At t > 0, the dynamics was initiated by
an abrupt removal of the SSDP; the impurity was still confined
by a shallow parabolic potential, i.e., Vext (y) = h̄2y2/2ml4,
where l = √

h̄/mω and ω = (87 × 2π )Hz is the frequency
of the oscillator. The experiment recorded the size of the
impurity cloud ȳ =

√
〈y2〉, and found that it can be fit using

the expression

ȳ = ȳ0 + A1t − A2e−��t cos[
√

1 − �2�(t − t0)], (10)

where A1,A2,�, �, ȳ0, t0 are fitting parameters. The key ex-
perimental findings of Ref. [20] were (a) � (almost) does
not depend on the impurity-boson interaction parametrized
by η; (b) by increasing η one decreases the amplitude of
the first oscillation; and (c) at long times, ȳ equilibrates to
about the same value, which is independent of η. Point (b)
was attributed to renormalization of the mass of the impurity,
i.e., to a polaron formation [60]. However, this posed several
theoretical problems. In particular, the breathing frequency
of the polaron cloud should depend on η, which contradicts
observation (a), see also discussions in Refs. [20,21,58,61].
Our results below suggest that one can understand the
data of Ref. [20] from the perspective of dissipative
dynamics.

Equation (9) leads naturally to the dynamics observed in
the experiment. To show this, we assume that the initial den-
sity matrix of the impurity corresponds to a Gaussian wave

packet

ρ(y, y′, t = 0) = 1√
π l0

e
− y2+y′2

2l20 , (11)

where l0 is the parameter that determines the initial dis-
tribution of the impurity momenta; Eq. (11) is standard
for particles whose initial state is not precisely known.
We calculate the time dynamics for this initial condition
analytically using the method of characteristics (see Ap-
pendix B 1 and Ref. [62]), which discovers characteristic
curves where the master equation can be written as a family
of ordinary differential equations [63]. The computed func-
tional dependence resembles Eq. (10) with �� = 2γ , see
Appendix B 2. Note that our calculations have only two phe-
nomenological parameters, γ and l0. All other parameters
that appear in Eq. (10), i.e., A1,A2, ȳ0, t0, and �, can be
extracted from our results. For example, � � 2ω as in the
experiment.

We present analytical results of the master equation to-
gether with the experimental data in Fig. 1. The value of
γ is restricted to be within the error bars of the experi-
mentally measured value of �� (so γ ∼ 40 Hz) [64]. The
temperature is set to the value reported in the experiment,
i.e., T = 350 nK [65]. The quality of the fits in Fig. 1 is
comparable to what can be obtained with Eq. (10), allowing
us to conclude that the master equation provides a valu-
able tool for analyzing these data, and cold-atom systems in
general.

Let us briefly discuss implications of our results for in-
terpretation of the experiment of Ref. [20]. First, the weak
dependence of � on η is natural in our model: the renormal-
ization of the frequency is given by ωeff � ω(1 − γ 2/(2ω2)),
where γ /ω is a small parameter as in the experiment. Second,
the parameter ȳ for t → ∞ is independent of γ assuming that
the thermal de Broglie wavelength is small. Indeed, in this
case, we derive ȳ � √

kBT/(h̄ω)l ≈ 15.42 µm in agreement
with the measurement.

The amplitude of the first oscillation is determined in our
analysis by the initial condition, i.e., l0. To explain values of l0
obtained in our fit, one can speculate that the impurity forms a
polaron state at t < 0 and that at t > 0 the dynamics is dom-
inated by finite-temperature effects. In this picture, the mass
of the impurity is renormalized (i.e., m → mp) only before
the quench dynamics [66]; this might explain why theoretical
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FIG. 2. The spin polarization along the y axis as a function of position and time in the presence of SOC. The SOC amplitude is α =
40 Hz · µm. l0 for (a), (b) case corresponds to ω0/2π = 30 kHz, while l is given by ω/2π = 87 Hz. All other parameters are as in Ref. [20], in
particular, T = 350 nK.

calculations can produce features of the amplitude but not of
the frequency [20,21,61]. Renormalization of the mass im-
plies that the energy scale at t = 0 is given by h̄ωSSDP

√
m/mp,

which is incorporated into Eq. (11) if [67]

l2
0 ∼ h̄

mωSSDP

√
mp

m
. (12)

This expression agrees qualitatively with the outcome of our
fit, see Fig. 1(e). The linear increase of (mωSSDPl2

0 /h̄)2, how-
ever, quantitatively disagrees with calculations of the effective
mass [21,58,68,69]. The agreement improves if we disregard
the point with η = 30, which (as suggested in Ref. [20]) is
already beyond a simple 1D treatment [70]. In any case, a
further analysis of the experimental data (beyond the scope
of this paper) is needed in light of our results.

Finally, we note that the inhomogeneity of the bath as well
as non-Markovian physics do not appear to be important to
describe dynamics discussed here. This stands in contrast to
what is known about properties of the corresponding ground
state [71] and low-energy dynamics [58,61,72], and results
from a high temperature and large energy (∼1/l2

0 ) associated
with the initial impurity state.

V. DYNAMICS WITH SOC

We use the experimental protocol of Ref. [20] also to
illustrate the master equation with SOC. The peculiarity of 1D
is that the α-dependent term can be gauged out from Eq. (9)

via the transformation (in the position space)

ρ(y, y′, t ) = e− imασx y
h̄ f (y, y′, t )e

imασx y′
h̄ . (13)

The function f (y, y′, t ) then satisfies the standard Caldeira-
Leggett equation and can be solved exactly as without SOC,
see Appendix B 3. Note that the equation for f is spin in-
dependent. The initial condition of the problem, ρ(y, y′, t =
0), defines the full spin structure of the problem and time
dependence of spin observables, as we illustrate below for
σ̄y(y, t ) ≡ Trspin(σy).

For the sake of discussion, as the initial condition we con-
sider the state that is spin polarized along the z axis,

ρ(y, y′, 0) = 1

2
√

π l0
e
− y2+y′2

2l20 |↑〉〈↑|; (14)

other parameters of the system are taken from Ref. [20]. We
use γ = 40 Hz, which was typical in that experiment. The
strength of SOC, α, can be tuned in cold-atom setups, see,
e.g., Refs. [73–75]. We assume that αȳ/(ωl2) � 1 to demon-
strate that even weak SOC can lead to an observable effect in
dynamics.

Time evolution of σ̄y(y, t ) is shown in Fig. 2. Note that
Eq. (14) is not an eigenstate of the system with SOC—
dynamics occurs even without a change of the trap, i.e., l0 = l
[see Figs. 2(c) and 2(d)]. Without dissipation (γ = 0), we
observe oscillation of the spin density with σ̄y > 0 for y > 0
and σ̄y < 0 for y < 0 [see Figs. 2(a) and 2(c)]. This effect
is solely due to SOC, and can be easily understood from a
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FIG. 3. The same as in Fig. 2 but with an additional magnetic field along the y direction. The amplitude of the magnetic field
is μBB/h̄ = 100 Hz.

one-body Schrödinger equation. Effects of temperature and
dissipation are most visible in Fig. 2(d): the impurity is heated
by the presence of the bath, which creates regions with steady
spin polarization along the y direction. Spatial extension of
these regions is determined by the temperature; the timescale
for their formation is given by 1/γ (similarly to the dynamics
without SOC, see Fig. 1). This effect can be observed in
cold-atom systems by analyzing populations of the involved
hyperfine states.

Finally, we remark that Eq. (8) allows us to include
Zeeman-type terms, which naturally appear in ultracold atoms
with synthetic SOC [14,15]. To this end, we add the term
μBB · σ to HS . Its presence strongly modifies the spin dynam-
ics because SOC cannot be gauged out. Theoretical analysis
also becomes more involved, since we cannot solve the sys-
tem analytically for all values of α and B. Still, we obtain
closed-form expressions using tools of perturbation theory
for α → 0, see Appendix B 4. The effect of the magnetic
field is illustrated in Fig. 3. Initially, the dynamics with the
magnetic field is similar to the dynamics presented in Fig. 2.
However, at later times we observe spin precession possible
only in the presence of both SOC and the magnetic field. Spin
precession leads to an exchange of domains with positive and
negative values of σ̄y, and can be used for engineering the spin
structure.

VI. CONCLUSIONS

We analyzed Brownian-type motion of a spin-orbit coupled
impurity with the goal to develop a simple theoretical tool
that can be used to propose and analyze cold-atom-based

quantum simulators. We introduced a master equation suitable
for the problem. We tested it and illustrated its useful-
ness by interpreting available experimental data without
SOC [20]. Our results suggested that the impurity does
not experience any mass renormalization during quench dy-
namics at experimentally accessible temperatures. Finally,
we demonstrated that systems with SOC can be stud-
ied analytically, and calculated observables that measure
changes in population of the hyperfine states of the impurity
atom.

A comparison between results of our theoretical study and
experimental data (when available) can be used to understand
the limits of applicability of a set of assumptions standard
for studies of Brownian motion, such as the Markov approx-
imation. In addition, our findings pave the way for studies of
various condensed matter systems where SOC and dissipation
play a role. For example, models of the chirality induced
spin selectivity (CISS) effect [7,8] are typically based upon
nonunitary time evolution (e.g., due to dissipation) and SOC,
see, e.g., Refs. [76–81]. These effects are included in our
model, hence, it can be developed into a testbed for studying
CISS [82].
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APPENDIX A: TECHNICAL DETAILS FOR DERIVATIONS OF THE MASTER EQUATION

1. Preliminaries

We start by writing HB and HC as

HB =
N∑

j=1

[
p2

j

2mj
+ 1

2
mjω

2
j x

2
j

]
=

N∑
j=1

h̄ω jb
†
jb j (A1)

and

HC = −q ·
N∑

j=1

c jx j = −q ·
N∑

j=1

c j

√
h̄

2mjω j
(b†

j + b j ), (A2)

where b†
j and b j are the standard bosonic creation and annihilation operators, respectively. For convenience, we define the

operator

B =
N∑

j=1

c j

√
h̄

2mjω j
(b†

j + b j ). (A3)

To derive the Born-Markov equation of motion for the impurity, we work in the interaction representation, where q and B are
written as

q(t ) = eiHSt/h̄ q e−iHS t/h̄, B(t ) = eiHBt/h̄ B e−iHB t/h̄ =
N∑

j=1

c j

√
h̄

2mjω j
(b je

−iω j t + b†
j e

iω j t ). (A4)

Here and in what follows, we write explicitly the time dependence [e.g., B → B(t )] to designate the operators in the interaction
representation. The equation of motion for ρtot, namely, ih̄ρ̇tot = [Htot, ρtot], is formally solved (in the interaction representation)
by

ρtot(t ) = ρtot(0) − i

h̄

∫ t

0
dt ′[HC (t ′), ρtot(t

′)]. (A5)

Equation (A5) can be iterated one more time, leading to

ρtot(t ) = ρtot(0) − i

h̄

∫ t

0
dt ′[HC (t ′), ρtot(0)] − 1

h̄2

∫ t

0
dt ′

∫ t ′

0
dt ′′[HC (t ′), [HC (t ′′), ρtot(t

′′)]]. (A6)

A time derivative of this equation reads

dρtot(t )

dt
= − i

h̄
[HC (t ), ρtot(0)] − 1

h̄2

∫ t

0
dt ′[HC (t ), [HC (t ′), ρtot(t

′)]]. (A7)

2. Initial conditions

Let us specify the initial conditions for Eq. (A7). For quench dynamics considered in the main text, we assume that the system
is put in contact with the environment at t = 0 such that

ρtot(0) = ρS (0) ⊗ ρB(0), (A8)

where ρB(0) is the equilibrium distribution for the bath and ρS (0) is the density matrix of the impurity. Under this condition, the
first term on the right-hand side of Eq. (A7) vanishes when we trace over the degrees of freedom of the bath:

TrB[HC, ρS (0) ⊗ ρB(0)] = TrB[−qB, ρS (0) ⊗ ρB(0)] = [−q, ρS (0)]TrB[B, ρB(0)] = [−q, ρS (0)]〈B〉bath = 0. (A9)

By taking the partial trace, TrB, over Eq. (A7), we derive

dρS (t )

dt
= − 1

h̄2

∫ t

0
dt ′ TrB[HC (t ), [HC (t ′), ρtot(t

′)]]. (A10)

3. The Born-Markov approximation

To deal with ρtot(t ) in Eq. (A10), we employ the Born approximation, which assumes that the system-environment coupling
is so weak that the bath is (almost) not affected by the dynamical evolution of the system. Technically speaking, it means

ρtot(t ) � ρS (t ) ⊗ ρ
eq
B , (A11)

with ρ
eq
B being the bath density matrix at thermal equilibrium.
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To further simplify the model, we adopt the coarse-grained perspective on the time axis. In this Markovian picture, the decay
of bath correlations provides the shortest timescale (τB); we cannot resolve dynamical features with a comparable characteristic
time. This means that we replace t ′ → t − t ′ and then let

∫ t
0 dt ′ → ∫ +∞

0 dt ′. With these assumptions, Eq. (A10) leads to

dρS (t )

dt
= − 1

h̄2

∫ +∞

0
dt ′TrB

[
HC (t ),

[
HC (t − t ′), ρS (t ) ⊗ ρ

eq
B

]]
. (A12)

In the Schrödinger representation, the Born-Markov master equation is written as

dρS

dt
= − i

h̄
[HS, ρS] − 1

h̄2

∫ +∞

0
dt ′ TrB

[
HC,

[
HC (−t ′), ρS (t ) ⊗ ρ

eq
B

]]

= − i

h̄
[HS, ρS] − 1

h̄2

∫ +∞

0
dt ′ C(t ′)[q, [Q(−t ′), ρS]] + i

h̄2

∫ +∞

0
dt ′ χ (t ′)[q, {Q(−t ′), ρS}], (A13)

where Q(t ) is defined according to Eq. (5) in the main text.

4. Autocorrelation functions

The key quantities in Eq. (A13) are the bath autocorrelation functions C(t ) and χ (t ) defined as

C(t ) = 1

2

N∑
j=1

c2
j 〈{x j (t ), x j (0)}〉B = h̄

∫ +∞

0
dω J (ω) coth

(
β h̄ω

2

)
cos(ωt ),

χ (t ) = i

2

N∑
j=1

c2
j 〈[x j (t ), x j (0)]〉B = h̄

∫ +∞

0
dω J (ω) sin(ωt ) ; (A14)

they are related to noise and dissipation, respectively. The relation becomes clear by looking at Eq. (A13) and by considering
the corrections beyond the (closed-system) Schrödinger dynamics. These corrections are encoded in a superoperator whose real
part is proportional to [q, [Q(−t ), ρS]] with coefficient C(t ); the imaginary part is determined to χ (t )[q, {Q(−t ), ρS}].

The spectral function, J (ω), that enters in the autocorrelation functions is formally defined as

J (ω) =
N∑

j=1

c2
j

2mjω j
δ(ω − ω j ). (A15)

However, as mentioned in the main text, it is worth moving to the frequency continuum and devise a reasonable, phenomeno-
logical choice for J (ω). One possibility (employed in our paper) is

J (ω) = 2mγ

π
ω

�2
c

�2
c + ω2

. (A16)

It leads to the standard Ohmic dissipation (J (ω) ∼ ω) at low frequencies. Equation (A16) does not have any abnormal behavior
(i.e., J (ω) does not diverge) at high frequencies thanks to the high-frequency cutoff determined by the phenomenological
parameter �c. This leads to meaningful theoretical results. Using the autocorrelation functions in Eq. (A13), we derive Eq. (8)
of the main text.

5. Calculation of integrals

Below we give an example of how the frequency integrals leading to Eq. (8) are computed. By recalling the definition of Q(t )
in Eq. (5) of the main text, we typically have to deal with

− i

2mh̄2

∫ +∞

0
dt ′ t ′χ (t ′)[q, {p/m + vSO, ρS}] = − i

h̄m

∫ +∞

0
dω J (ω)

∫ +∞

0
dt ′ t ′ sin(ωt ′)[q, {p/m + vSO, ρS}]. (A17)

Now, we notice that the integral over time can be interpreted as a derivative of the Dirac delta function. More precisely,

∫ +∞

0
dt t sin(ωt ) = 1

2

∫ +∞

−∞
dt t sin(ωt ) = −π

∂

∂ω

∫ +∞

−∞

dt

2π
cos(ωt ) = −πδ′(ω). (A18)
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Therefore, we can write Eq. (A17) as

− i

h̄m

∫ +∞

0
dω J (ω)

∫ +∞

0
dt ′ t ′ sin(ωt ′)[q, {p/m + vSO, ρS}] = − iπ

2h̄m

∫ +∞

−∞
dω δ(ω)∂ωJ (ω)[q, {p/m + vSO, ρS}]

= − iπ

2h̄m
[ lim
ω→0+

J ′(ω)][q, {p/m + vSO, ρS}]

= − iγ

h̄
[q, {p/m + vSO, ρS}]. (A19)

6. Spin-orbit coupling

Depending on the form of the SOC, the velocity operator, defined as vSO = ∂t Q, with Q as in Eq. (5) in the main text, is given
by

vSO,1D = p

m
+ α s (A20)

for a strictly 1D setup (VSO = sαp, p being the particle momentum operator), or

vSO,2D = p
m

σ0 − α

h̄
σy ex + α

h̄
σx ey, (A21)

for a two-dimensional Rashba-like coupling, namely, VSO = α( − σy px + σx py)/h̄. The first terms on the right-hand sides of
Eqs. (A20) and (A21) represent the standard relation between the momentum and the velocity. The other terms enter due to the
presence of SOC.

7. Master equation in coordinate space

The general form of the master equation in the presence of SOC is presented in the main text, see Eq. (8). For our calculations,
we use this equation in the position-space representation where a 1D setup is described by the equation

dρ

dt
=

[
ih̄

2m

(
∂2

y − ∂2
y′
) − γ (y − y′) · (∂y − ∂y′ ) − 2mγ

β h̄2 (y − y′)2 − i

h̄
(Vext (y) − Vext (y

′))
]
ρ

− α(σx∂yρ + ∂y′ρσx ) − imγα

h̄
(y − y′)(σxρ + ρσx )

iμBB
h̄

· (σρ − ρσ ) + h̄2γ β

8m

(
∂2

y + ∂2
y′ + 2∂y · ∂y′

)
ρ, (A22)

where ρ ≡ 〈r|ρS|r′〉.
For the sake of completeness, we also present the result for 2D setups:

dρ

dt
=

[
ih̄

2m

(∇2
r − ∇2

r′
) − γ (r − r′) · (∇r − ∇r′ ) − 2mγ

β h̄2 (r − r′)2 − i

h̄
(Vext (r) − Vext (r′))

]
ρ

− α(σx∂yρ + ∂y′ρσx − σy∂xρ − ∂x′ρσy) − imγα

h̄
[(y − y′)(σxρ + ρσx ) − (x − x′)(σyρ + ρσy)]

− iμBB
h̄

· (σρ − ρσ ) + h̄2γ β

8m

(∇2
r + ∇2

r′ + 2∇r · ∇r′
)
ρ. (A23)

APPENDIX B: TECHNICAL DETAILS FOR CALCULATIONS WITH THE MASTER EQUATION

1. Solution of the 1D master equation with α = 0

When α = 0 or B = 0, the master Eq. (A22) can be solved exactly. Let us analyze these limits before moving to the case
when both terms are present. First, we shall concentrate on the system without SOC, i.e., α = 0 and B �= 0. We write the density
matrix as ρ = ρ0σ0 + ρ1σx + ρ2σy + ρ3σz and assume (without loss of generality) that B ‖ y. Converting from ρ1 and ρ3 into
ρ± = ρ1 ± iρ3, we have the equations

dρ j

dt
=

[
ih̄

2m

(
∂2

y − ∂2
y′
) − γ (y − y′)(∂y − ∂y′ ) − 2mγ

β h̄2 (y − y′)2 − ih̄

2ml4
(y2 − y′2) − 2isμBB

h̄
+ h̄2γ β

8m

(
∂2

y + ∂2
y′ + 2∂y∂y′

)]
ρ j,

(B1)

where s = ± for j = ± and zero otherwise. The solution of these equations is obtained using the method of characteristics [62].
To employ this method, we first transform into the center-of-mass and relative coordinates R = (y + y′)/2 and r = y′ − y. Then,
we perform Fourier transform with respect to R:

ρ j (R, r, t ) = 1√
2π

∫ +∞

−∞
dKeiKRρ j (K, r, t ). (B2)
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According to the method of characteristics, the solution for ρ j (K, r, t ) has the form

ρ j (K, r, t ) = ρ j (K
′, r′, 0)eaZ (K,r,t )+bZ ′ (K,r,t )− 2isμBBt

h̄ , (B3)

where ρ j (K ′, r′, 0) is determined from the initial conditions. The other quantities that enter Eq. (B3) are defined as

a = γ

2βm(γ 2 − ω2)
, (B4)

b = γ β h̄2ω2

32m(γ 2 − ω2)
, (B5)

Z (K, r, t ) = 1

γ

(
K − r

λ+

)(
K − r

λ−

)
(1 − e−2γ t ) − mλ+

2h̄

(
K − r

λ+

)2

(1 − e− 2h̄t
mλ+ ) − mλ−

2h̄

(
K − r

λ−

)2

(1 − e− 2h̄t
mλ− ), (B6)

Z ′(K, r, t ) = 1

γ

(
K − r

λ+

)(
K − r

λ−

)
(1 − e−2γ t ) − m3ω2λ3

+
2h̄3

(
K − r

λ+

)2

(1 − e− 2h̄t
mλ+ ) − m3ω2λ3

−
2h̄3

(
K − r

λ−

)2

(1 − e− 2h̄t
mλ− ),

(B7)

λ± = h̄

mω2
(γ ±

√
γ 2 − ω2), (B8)

K ′ = (λ+K − r)e− h̄t
mλ+ − (λ−K − r)e− h̄t

mλ−

λ+ − λ−
, (B9)

r′ = λ−(λ+K − r)e− h̄t
mλ+ − λ+(λ−K − r)e− h̄t

mλ−

λ+ − λ−
. (B10)

Notice that for B = 0 this expression corresponds to the known solution of the Caldeira-Legett equation [62].
The initial condition Eq. (14) reads in K ′ and r′ variables as follows:

ρ0(K ′, r′, 0) = 1

2
√

2π
e
− K ′2 l20

4 − r′2
4l20

−iK ′y0
; (B11)

ρ3(K ′, r′, 0) = pρ0(K ′, r′, 0) and p = 1 for spin polarized case and zero otherwise. For the sake of discussion, here we have also
included y0—the shift of the initial wave packet. The density matrix in real space is cumbersome. We do not present it here since
in this paper we are not interested in spatial correlations. Instead, we focus on local observables for which y = y′, R = y and
r = 0. To calculate them, we note that K ′ = g1(t )K , r′ = g2(t )K , Z (K, 0, t ) = g3(t )K2, Z ′(K, 0, t ) = g4(t )K2, where functions
gi(t ) are defined as

g1(t ) = λ+e− h̄t
mλ+ − λ−e− h̄t

mλ−

λ+ − λ−
, (B12)

g2(t ) = λ+λ−
λ+ − λ−

(e− h̄t
mλ+ − e− h̄t

mλ− ), (B13)

g3(t ) = 1

γ
(1 − e−2γ t ) − mλ+

2h̄
(1 − e− 2h̄t

mλ+ ) − mλ−
2h̄

(1 − e− 2h̄t
mλ− ), (B14)

g4(t ) = 1

γ
(1 − e−2γ t ) − m3ω2λ3

+
2h̄3 (1 − e− 2h̄t

mλ+ ) − m3ω2λ3
−

2h̄3 (1 − e− 2h̄t
mλ− ). (B15)

Now, we can compute the densities from Eq. (B3),

ρ0(y, y, t ) = 1

4
√

πb0(t )
e− (y−y0g1 (t ))2

4b0 (t ) , (B16)

ρ1(y, y, t ) = pρ0(y, y, t ) sin

(
2μBt

h̄

)
, (B17)

ρ2(y, y, t ) = 0, (B18)

ρ3(y, y, t ) = pρ0(y, y, t ) cos

(
2μBt

h̄

)
, (B19)

where b0(t ) = g2
1(t )l2

0 /4 + g2
2(t )/4l2

0 − ag3(t ) − bg4(t ). The typical observables can also be easily calculated:

〈y〉 = y0g1(t ), (B20)

〈y2〉 = y2
0g2

1(t ) + 2b0(t ), (B21)
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〈σx〉 = p sin

(
2μBBt

h̄

)
, (B22)

〈yσx〉 = py0g1(t ) sin

(
2μBBt

h̄

)
, (B23)

〈σy〉 = 0, (B24)

〈yσy〉 = 0, (B25)

〈σz〉 = p cos

(
2μBBt

h̄

)
, (B26)

〈yσz〉 = py0g1(t ) cos

(
2μBBt

h̄

)
. (B27)

2. Comparison with the fit used in the experiment

In this section, we compare the result of Eq. (B21) with Eq. (10) of the main text, which we repeat here for convenience,

ȳ = ȳ0 + A1t − A2e−��t cos[
√

1 − �2�(t − t0)], (B28)

where ȳ =
√

〈y2〉. The functions gi(t ) that enter Eq. (B21) have the form

g1(t ) = γ e−γ t√
ω2 − γ 2

sin(
√

ω2 − γ 2t ) + e−γ t cos(
√

ω2 − γ 2t ), (B29)

g2(t ) = h̄e−γ t

m
√

ω2 − γ 2
sin(

√
ω2 − γ 2t ), (B30)

g3(t ) = ω2 − γ 2

γω2
− 1

γ
e−2γ t −

√
ω2 − γ 2e−2γ t

ω2
sin(2

√
ω2 − γ 2t ) + γ e−2γ t

ω2
cos(2

√
ω2 − γ 2t ), (B31)

g4(t ) = ω4 − 4γ 4 + 3γ 2ω2

γω4
− 1

γ
e−2γ t − (4γ 2 − ω2)

√
ω2 − γ 2e−2γ t

ω4
sin(2

√
ω2 − γ 2t )

+ (4γ 3 − 3γω2)e−2γ t

ω4
cos(2

√
ω2 − γ 2t ). (B32)

In the experiment, y0 = 0, γ � ω, and kBT � h̄ω, thus, we can ignore the effect of the minimally invasive term and approximate
〈y2〉 as

〈y2〉 = 2b0(t ) ≈ 1

2βmω2
+

(
l4
0 + l4

4l2
0

− 1

2βmω2

)
e−2γ t + l4

0 − l4

4l2
0

e−2γ t cos

(
2ωt

√
1 −

(γ

ω

)2
)

. (B33)

Note that in the experiment l0 is the smallest length scale, i.e., l0 � l , and that l4/4l2
0 is comparable to 1/2βmω2. Therefore, at

long times (t � 1/γ ), we can estimate 〈y2〉 by disregarding the exponentially decaying second term in Eq. (B33). After these
simplifications, we derive

〈y2〉 ≈ l2

2β h̄ω
− l4

4l2
0

e−2γ t cos

(
2ωt

√
1 −

(γ

ω

)2
)

. (B34)

Comparing Eq. (B34) with Eq. (B28), we can identify � = 2ω, � = γ /ω, ȳ0 = l/
√

2β h̄ω, A2 = l4/8ȳ0l2
0 . We see that the

dynamics of the system is fully determined by l0 and γ . Assuming that γ is measured in the experiment, the only free parameter
is the initial energy fixed by l0. Note that the width of the steady state does not depend on the initial state, in agreement with
general postulates of thermodynamics.

The values of A1 and t0 determine, in particular, the initial inflation, i.e., increase of the oscillation amplitude. These
parameters describe phenomenologically the effect of exponentially decaying terms. Since they are strongly model dependent
(i.e., depend on the choice of the fitting function), we do not discuss them here.

3. Solution of the 1D master equation with B = 0

Here, we consider systems with α �= 0 and B = 0. As was noted in the main text, in this case SOC can be gauged out by
transformation

ρ(y, y′, t ) = e− imασx y
h̄ f (y, y′, t )e

imασx y′
h̄ , (B35)
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where fS (y, y′, t ) satisfies Eq. (B1) with B = 0; the function f has the form presented in Eq. (B3). The presence of SOC modifies
the initial condition for f j (K ′, r′, 0):

f0(K ′, r′, 0) = cos

(
mαr′

h̄

)
ρ0(K ′, r′, 0), (B36)

f1(K ′, r′, 0) = −i sin

(
mαr′

h̄

)
ρ0(K ′, r′, 0), (B37)

f2(K ′, r′, 0) = ip

2

(
e− mαK ′ l20 +2imαy0

h̄ − e
mαK ′ l20 +2imαy0

h̄
)
e

m2α2 l20
h̄2 ρ0(K ′, r′, 0), (B38)

f3(K ′, r′, 0) = p

2

(
e− mαK ′ l20 +2imαy0

h̄ + e
mαK ′ l20 +2imαy0

h̄
)
e

m2α2 l20
h̄2 ρ0(K ′, r′, 0). (B39)

From these density matrices, we can derive the densities via inverse Fourier transform:

f0(y, y, t ) = 1

8
√

πb0(t )

(
e− (y−y0g1 (t )− mαg2 (t )

h̄ )
2

4b0 (t ) + e− (y−y0g1 (t )+ mαg2 (t )
h̄ )

2

4b0 (t )

)
, (B40)

f1(y, y, t ) = 1

8
√

πb0(t )

(
e− (y−y0g1 (t )− mαg2 (t )

h̄ )
2

4b0 (t ) − e− (y−y0g1 (t )+ mαg2 (t )
h̄ )

2

4b0 (t )

)
, (B41)

f2(y, y, t ) = − ipe
m2α2 l20

h̄2

8
√

πb0(t )

⎛
⎝e

2imαy0
h̄ e−

(
y−y0g1 (t )− imαg1(t )l20

h̄

)2

4b0 (t ) − e− 2imαy0
h̄ e−

(
y−y0g1 (t )+ imαg1(t )l20

h̄

)2

4b0 (t )

⎞
⎠, (B42)

f3(y, y, t ) = pe
m2α2 l20

h̄2

8
√

πb0(t )

⎛
⎝e

2imαy0
h̄ e−

(
y−y0g1 (t )− imαg1(t )l20

h̄

)2

4b0 (t ) + e− 2imαy0
h̄ e−

(
y−y0g1 (t )+ imαg1(t )l20

h̄

)2

4b0 (t )

⎞
⎠. (B43)

After straightforward but tedious calculations, we derive time dynamics of observables

〈y〉 = y0g1(t ), (B44)

〈y2〉 = y2
0g2

1(t ) + 2b0(t ) + m2α2g2
2(t )

h̄2 , (B45)

〈σx〉 = 0, (B46)

〈yσx〉 = mα

h̄
g2(t ), (B47)

〈σy〉 = pe
m2α2

h̄2 (l2
0 (1+2g1(t ))−4b0(t )) sin

(
2mαy0

h̄
(1 − g1(t ))

)
, (B48)

〈yσy〉 = pe
m2α2

h̄2 (l2
0 (1+2g1(t ))−4b0(t ))

[
mα

h̄

(
g1(t )l2

0 − 4b0(t )
)

cos

(
2mαy0

h̄
(1 − g1(t ))

)
− y0g1(t ) sin

(
2mαy0

h̄
(1 − g1(t ))

)]
,

(B49)

〈σz〉 = pe
m2α2

h̄2 (l2
0 (1+2g1(t ))−4b0(t )) cos

(
2mαy0

h̄
(1 − g1(t ))

)
, (B50)

〈yσz〉 = pe
m2α2

h̄2 (l2
0 (1+2g1(t ))−4b0(t ))

[
−mα

h̄

(
g1(t )l2

0 − 4b0(t )
)

sin

(
2mαy0

h̄
(1 − g1(t ))

)
+ y0g1(t ) cos

(
2mαy0

h̄
(1 − g1(t ))

)]
.

(B51)

We see that the presence of SOC modifies the time dynamics of spin-independent observables, such as 〈y2〉. More importantly, it
also generates spin dynamics, which was absent for α = 0. To illustrate this dynamics, we consider 〈yσy〉 assuming that the initial
state is spin-polarized in the z-direction (i.e., p = 1) and the initial packet is at the center of the well (i.e., y0 = 0). According to
Eq. (B49), SOC rotates the spin of the impurity, adding a component along the y direction. This effect can be understood already
at the level of a one-body Schrödinger equation. Presence of dissipation leads to a steady state for t � 1/γ . Indeed, in this case
g1(t ) → 0 and g2(t ) → 0, but g3(t ) → (ω2 − γ 2)/(ω2γ ) and g4(t ) → (ω4 + 3γ 2ω2 − 4γ 4)/(ω4γ ), leading to a finite value of
〈yσy〉 (see also the main text).

4. Solution of the 1D master equation with B �= 0 and α �= 0

Finally, we consider the case with finite magnetic fields and SOC, i.e., B �= 0 and α �= 0. We perform the gauge transformation
presented in Eq. (B35) and work with the function f . For the sake of discussion, we assume that the initial condition for f (y, y′, t )
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is as for the B = 0 case; we also assume that B ‖ y. Assuming that SOC is weak, we restrict our calculations to the first order in
α. The corresponding equations for f [ f (y, y′, t ) = f0σ0 + f1σx + f2σy + f3σz] are

df0

dt
= L f0 + 2iμBBmα

h̄2 (y − y′) f3, (B52)

df1

dt
= L f1 + 2μBB

h̄
f3 + 2μBBmα

h̄2 (y + y′) f2, (B53)

df2

dt
= L f2 − 2μBBmα

h̄2 (y + y′) f1, (B54)

df3

dt
= L f3 − 2μBB

h̄
f1 + 2iμBBmα

h̄2 (y − y′) f0, (B55)

where L is the operator that reproduces the right-hand side of the master equation with B = 0 and α = 0. From the initial
conditions Eqs. (B36)–(B39), it is clear that f2 ∝ α even when B = 0. Therefore, the last term of Eq. (B53) will be second order
in α and can be ignored. To proceed, we use the expansion fi = f 0

i + α f 1
i , where f 0

i satisfies the equations with α = 0 [cf.
Eq. (B3)]. Then, we solve the system of equations (it is convenient to solve for f± = f1 ± i f3). For the densities in the leading
order, we have

f 0
0 (y, y, t ) = f0(y, y, t ), (B56)

f 0
1 (y, y, t ) = f1(y, y, t ) cos

(
2μBBt

h̄

)
+ f3(y, y, t ) sin

(
2μBBt

h̄

)
, (B57)

f 0
2 (y, y, t ) = f2(y, y, t ), (B58)

f 0
3 (y, y, t ) = − f1(y, y, t ) sin

(
2μBBt

h̄

)
+ f3(y, y, t ) cos

(
2μBBt

h̄

)
, (B59)

where on the right-hand side we have density matrices from Eqs. (B40)–(B43). The corresponding functions f 1
i are

f 1
0 (y, y, t ) = 2μBBm

h̄2 Im

[
b1(t )

∂

∂y

(
f 0
1 (y, y, t ) − i f 0

3 (y, y, t )
)]

, (B60)

f 1
1 (y, y, t ) = 2μBBm

h̄2 Im

[
b1(t )

∂

∂y
f 0
0 (y, y, t )

]
, (B61)

f 1
2 (y, y, t ) = −4μBBm

h̄2 Re

[
b2(t )

∂

∂y

(
f 0
1 (y, y, t ) − i f 0

3 (y, y, t )
)] + 4μBBmy0

h̄2 f 0
1 (y, y, t ), (B62)

f 1
3 (y, y, t ) = −2μBBm

h̄2 Re

[
b1(t )

∂

∂y
f 0
0 (y, y, t )

]
, (B63)

where

b1(t ) =
h̄
m − (

h̄
m g1(t ) + 2iμBB

h̄ g2(t )
)
e− 2iμBBt

h̄

ω2 + 4iμBBγ

h̄ − 4μ2
BB2

h̄2

, (B64)

b2(t ) =
(

2a(ω2 − γ 2)

γω2
+ b(2ω4 + 6γ 2ω2 − 8γ 4)

γω4

)(
2γ + 2iμBBt

h̄

)(
1 − g1(t )e− 2iμBBt

h̄

)
+ mω2

h̄ g2(t )e− 2iμBBt
h̄

ω2 + 4iμBBγ

h̄ − 4μ2
BB2

h̄2

− 4mb(ω2 − γ 2)

h̄ω2
b1(t ) +

[(
l2
0

2
+ 2a(ω2 − γ 2)

γω2
+ b(2ω4 + 6γ 2ω2 − 8γ 4)

γω4

)
g1(t ) − 4mb(ω2 − γ 2)

h̄ω2
g2(t )

]
g5(t )

+
[(

1

2l2
0

+ 2(a + b)m2(ω2 − γ 2)

h̄2γ

)
g2(t ) − 4bm(ω2 − γ 2)

h̄ω2
g1(t )

]
g6(t ), (B65)

g5(t ) = 1

λ+ − λ−

(
λ+(e− h̄t

mλ+ − e− 2iμBBt
h̄ )

h̄
mλ+

− 2iμBB
h̄

− λ−(e− h̄t
mλ− − e− 2iμBBt

h̄ )
h̄

mλ−
− 2iμBB

h̄

)
, (B66)

g6(t ) = λ+λ−
λ+ − λ−

(
(e− h̄t

mλ+ − e− 2iμBBt
h̄ )

h̄
mλ+

− 2iμBB
h̄

− (e− h̄t
mλ− − e− 2iμBBt

h̄ )
h̄

mλ−
− 2iμBB

h̄

)
. (B67)
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The observables have the form

〈y〉 ≈ y0g1(t ) + 2pαμBBm

h̄2 Re[b1(t )e
2iμBBt

h̄ ], (B68)

〈y2〉 ≈ y2
0g2

1(t ) + 2b0(t ) + 4pαμBBm

h̄2 y0g1(t )Re[b1(t )e
2iμBBt

h̄ ], (B69)

〈σx〉 ≈ p sin

(
2μBBt

h̄

)
, (B70)

〈yσx〉 ≈ mα

h̄
g2(t ) cos

(
2μBBt

h̄

)
+ py0g1(t ) sin

(
2μBBt

h̄

)
− 2αμBBm

h̄2 Im[b1(t )], (B71)

〈σy〉 ≈ 2pmαy0

h̄
(1 − g1(t )), (B72)

〈yσy〉 ≈ pmα

h̄
g1(t )

(
l2
0 + 2y2

0

) − pmα

h̄

[
g2

1(t )
(
l2
0 + 2y2

0

) + g2
2(t )

l2
0

− 4(ag3(t ) + bg4(t ))

]

× cos

(
2μBBt

h̄

)
+ 4pαμBBm

h̄2 Im[b2e
2iμBBt

h̄ ] + 4pαμBBmy2
0

h̄2 g1(t ) sin

(
2μBBt

h̄

)
, (B73)

〈σz〉 ≈ p cos

(
2μBBt

h̄

)
, (B74)

〈yσz〉 ≈ py0g1(t ) cos

(
2μBBt

h̄

)
− mα

h̄
g2(t ) sin

(
2μBBt

h̄

)
+ 2αμBBm

h̄2 Re[b1(t )]. (B75)

We checked numerically that these expressions are accurate for small values of α, and off-resonant magnetic fields. (The
resonance is located at h̄ω = 2μBB.)
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