
PHYSICAL REVIEW RESEARCH 5, 013026 (2023)

Machine learning discovery of new phases in programmable quantum simulator snapshots
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Machine learning has recently emerged as a promising approach for studying complex phenomena character-
ized by rich datasets. In particular, data-centric approaches lead to the possibility of automatically discovering
structures in experimental datasets that manual inspection may miss. Here, we introduce an interpretable
unsupervised-supervised hybrid machine learning approach, the hybrid-correlation convolutional neural network
(hybrid-CCNN), and apply it to experimental data generated using a programmable quantum simulator based on
Rydberg atom arrays. Specifically, we apply hybrid-CCNN to discover and identify new quantum phases on
square lattices with programmable interactions. The initial unsupervised dimensionality reduction and clustering
stage first reveals five distinct quantum phase regions. In a second supervised stage, we refine these phase
boundaries and seek insights into the phases by training multiple CCNN classifiers. A learned spatial weighting,
introduced to the CCNNs in this work, enables discovery of spatial structure at scales beyond the filter size.
The characteristic spatial weightings and snippets of correlations specifically recognized in each phase capture
quantum fluctuations in the striated phase and identify a previously undetected boundary-ordered phase as well
as motifs of more exotic ordered phases. These observations demonstrate that a combination of programmable
quantum simulators with machine learning can be used as a powerful tool for detailed exploration of correlated
quantum states of matter.
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I. INTRODUCTION

Recent advances in realization of programmable quantum
simulators (PQSs) have opened up a new era in the exploration
of strongly correlated quantum matter [1–4], which calls for
new approaches for analyzing large volumes of data generated
by such quantum devices. Using optical techniques, it is pos-
sible to arrange a large number of qubits in arbitrary lattice
geometries [5] and to control the Hamiltonian evolution of the
system [2] dynamically in real time. Remarkably, these simu-
lators can probe states within an extremely large Hilbert space.
For example, in a 13 × 13 system, the quantum states live in
a 2169-dimensional space while each measurement probabilis-
tically projects to just a single dimension. Tomographically
[6–8] inferring the entire many-body wavefunction from such
measurements themselves is a formidable task. While certain
types of many-body states can be easily identified by evalu-
ating simple local observables, many exotic quantum phases
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that can be explored on programmable simulators cannot be
characterized using conventional approaches.

In this paper, we introduce a hybrid unsupervised-
supervised machine learning (ML) approach to analyze the
data generated using programmable quantum simulators.
Specifically, we apply this method to a PQS based on Rydberg
atoms arrayed on a square lattice [5]. We show how the unsu-
pervised stage automatically discovers new phases and reveals
a priori unknown order parameters when the ordering is long
ranged. Importantly, we uncover several features including: (i)
the pattern of quantum correlations in the “striated phase”; (ii)
a boundary-ordering quantum phase transition in which the
edge of the system develops long-range order while the bulk
remains trivial; and (iii) previously undetected ordering motifs
corresponding to the more exotic “rhombic”, “staggered”, and
“nematic” phases.

Our programmable Rydberg quantum simulator [see
Fig. 1(a)] consists of neutral atoms trapped in defect-free
arrays of optical tweezers with programmable geometries [5].
Coherent laser excitations to atomic Rydberg states realize an
Ising-like spin model [2,4] described by the Hamiltonian
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FIG. 1. (a) Defect-free square lattices of neutral atoms undergo coherent quantum evolution for different values of blockade extent Rb/a
and linear detuning sweeps’ endpoints �/�, followed by projective readout in which atoms excited to the Rydberg state are detected as loss
(red circles). (b)–(d) Idealized real-space patterns corresponding to phases predicted to be present at various regions of parameter space. Dark
pink and white sites indicate |r〉 and |g〉 states, respectively, while the light pink sites in the striated phase are in a quantum superposition
of |r〉 and |g〉. (e) A diagram outlining the hybrid-CCNN approach. First, an unsupervised technique is used to generate a rough first-pass
phase diagram. Here, we choose to measure average Fourier amplitudes |n(k)|2 at each (�, Rb), perform a dimensionality reduction using
principal component analysis, and finally cluster using a Gaussian mixture model. The resulting phase diagram informs the starting “seeds”
in the parameter space, from which snapshots are sampled in a second supervised stage. We then learn to distinguish these snapshots using
interpretable classifiers, from which we can extract refined phase boundaries and key identifying features.

where atoms in the ground (Rydberg) state are denoted by |g〉
(|r〉), and ni ≡ |ri〉〈ri|. The transverse field � corresponds to
the Rabi frequency of the laser field, the longitudinal field �

corresponds to the laser detuning, and Vi j ≡ V0/|xi − x j |6 is
the long-range van der Waals interactions between Rydberg
excitations at xi and x j .

Density-matrix renormalization group (DMRG) calcula-
tions with a truncated interaction [9] have predicted a number
of quantum phases arising from the interplay between coher-
ent laser driving and the long-range van der Waals interactions
[see Figs. 1(b)–1(e)]. These phases can be understood based
on the Rydberg blockade phenomenon [10]: The strong in-
teractions Vi j can prohibit (or “blockade”) the simultaneous
excitation of neighboring atoms to the Rydberg state. The
spatial extent of this blockade (or equivalently, the interac-
tion strength) is captured by the blockade radius, defined as
Rb ≡ (V0/�)1/6. The full phase diagram is thus parametrized
by the ratio of the longitudinal to the transverse field �/�

and Rb/a, where a is the lattice spacing. For �/� > 0, the
system energetically favors maximizing the number of atoms
in the Rydberg state. However, this is subject to the blockade
constraint, so for Rb/a � 1, only one out of every pair of
nearest neighbors can be excited; on a square lattice, this leads
to the checkerboard phase with antiferromagnetic ordering of
atoms in ground and Rydberg states. Higher values of Rb/a
result in various new density-wave-ordered phases. Some of
these correspond to classical hard-sphere packing of Rydberg
excitations, while others are stabilized by quantum coherence
between the ground and Rydberg states.

Recent experiments [5] have demonstrated three of these
predicted states [Figs. 1(b)–1(d)], namely, the checkerboard,
striated, and star phases. In the experiments, different values
of Rb/a are accessed by tuning the lattice spacing a at fixed V0.
By linearly ramping �/� from negative to positive values,
one can quasi-adiabatically prepare different ordered states,
which are probed by measuring targeted order parameters
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constructed from the average of the Fourier transform inten-
sities. However, structures incommensurate with the system
size or the boundary conditions, and states with quantum fluc-
tuations are challenging to detect and analyze directly from
averages of Fourier transforms.

To address the challenge associated with large volumes
of data produced by PQS projective measurements, we in-
troduce an unsupervised-supervised hybrid machine learning
approach: Hybrid-CCNN. In Ref. [11], some of us intro-
duced the CCNN architecture, which modifies the standard
convolutional network to reveal the key correlations of a
learned phase. While the application of the CCNN to syn-
thetic, classically simulated, data in Ref. [11] established
the proof of principle, the supervised structure limited the
CCNN’s effectiveness. In particular, the CCNN trained on
synthetic data failed to learn from experimental data. More-
over, even successful learning from synthetic data was tainted
by the inherent bias of supervised learning associated with
the choice of training sets. There have been efforts to remove
such bias from “phase recognition” [12] algorithms either
by using fully unsupervised learning [13–23] or by adopt-
ing an element of unsupervised learning [24–26]. However,
discovery of new phases or fluctuation effects from experi-
mental data through such efforts are rare to date. Building
on the prior success in discovering new fluctuating phases
from voluminous x-ray data using the Gaussian mixture
model (GMM) [18], we introduce here the “hybrid-CCNN”,
which synergizes GMM-based unsupervised learning with
improved CCNN-based supervised learning. We apply the
hybrid-CCNN directly to voluminous Rydberg PQS data
forgoing the use of synthetic data [see Fig. 1(f)]. Without re-
quiring more experiments, the two-stage hybrid-CCNN yields
three discoveries.

At each point in the (�, Rb) phase space, the available
snapshot data consists of 250 binary maps ni(x; {�, Rb}) ∈
{0, 1}, i ∈ 1, ..., 250 with x ∈ [1, ..., 13]2. An innovative
feature of the hybrid-CCNN is the use of different data
preprocessing for the unsupervised and supervised stages to
target different facets of the high-dimensional data: average
density modulations and snapshot-to-snapshot fluctuations.
In targeting aspects of scientific importance, it is essential
for human researchers to ensure that machine learning ap-
proaches do not latch onto trivial yet dominant effects. One
such trivial effect is the overall density shift that occurs as
the detuning � is increased. For the unsupervised learning
stage of hybrid-CCNN, we enforce that the model ignores
this behavior by constructing a set of Fourier-space fea-
tures |ñ(k)|2, which are invariant to the overall density shifts
(see Appendix A).

In the final supervised stage, however, we work directly
with position-space-based input from individual snapshots.
This choice allows the hybrid-CCNN to capture the structure
of many-body quantum fluctuations and learn from nonperi-
odic occurrences of motifs characteristic of a given phase.
For this stage, we guide the CCNN away from the mean
density profile by using the full density fluctuation maps
δni(x) ≡ ni(x) − n̄(x) produced from each snapshot as in-
dependent training data. Here, n̄(x) = ∑

i ni(x)/N is the
snapshot-averaged Rydberg excitation density at each site x,

where Ns = 250 is the number of snapshots at each (�, Rb). As
detailed later, this normalization allows the CCNN to easily
focus on fully connected components of low-order correlation
functions and prevents the network from learning trivial over-
all excitation densities.

II. UNSUPERVISED PHASE DISCOVERY

A. Feature selection and dimensional reduction

In scientific applications of ML, feature selection requires
the most nontrivial involvement of human researchers. The
chosen features should both reflect the scientific goal and
enable separation of the trivially large signal from the sci-
entifically interesting signal. At the same time, the feature
choice should lead to a stable result that is robust to noise
and insignificant details.

Since robust clustering typically requires a low-
dimensional space, we form a representative feature vector
for each point in parameter space by averaging over all
snapshots measured at that point. Additionally, we desire
these features to be independent from the trivial mean-density
information n̄(�, Rb). As we aim to discover spatially
modulated patterns driven by the long-range interaction
V , we choose our feature space to be in the Fourier basis,
with the following preprocessing protocol. We start by
normalizing the snapshots at each (�, Rb) by the mean
density to obtain ñi(x) = ni(x) − n̄, where n̄ is the average
density across all sites and snapshots at (�, Rb). Then,
Fourier transforming to |ñi(k)|2, subtracting the background
contribution ∼ ∑

k |ñi(k)|2, and averaging over all snapshots
leads us to a density-shift-invariant structure factor.

To improve the robustness of the clustering, we further
reduce the dimensionality of the feature space using principal
component analysis (PCA) [27]. PCA identifies vectors called
principal components (PCs) in this 256-dimensional feature
space along which the data varies the most dramatically across
the full phase diagram. Specifically, each of the principal
components is a linear combination of multiple points in k
space as visualized in Figs. 2(a)–2(c).

B. Clustering and results

The final step of the unsupervised learning stage is to clus-
ter the phase-space points (�, Rb) in the reduced feature space
spanned by the dominant PCA components. As our clustering
algorithm, we use a Gaussian mixture model [27] (GMM)
for its robustness and invariance to the scale of each feature.
The two choices we must make are the number of principal
components to keep for the clustering, and the number of
clusters to fit. We choose the first by increasing the number of
retained principal components one-by-one until the clusters
stabilize, finding 10 to be sufficient for the current data. We
then determine the optimal number of clusters to be six as the
Bayesian information criterion [27] plateaus past this number
(see Appendix A).

The clustering result shown in Fig. 1(f) partially resembles
the manually obtained phase diagram based on evaluation of
three target order parameters for the checkerboard, striated,
and star phases [5] (see Appendix C), except that the unsu-
pervised learning indicates that there are five phases distinct
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FIG. 2. [(a)–(c)] Principal components 1, 2, 5 in Fourier space. (d) Results of the GMM clustering performed in the reduced 10-dimensional
PCA space and projected for visualization into the space spanned by (a)–(c). (e) The CCNN architecture for the supervised learning stage,
constructed here up to third order C (3)

α with three learned filters fα and a learned spatial weighting w(x). First, a density-normalized snapshot
δn(x) is convolved with the filters fα to produce a convolutional map C (1)

α (x). The δn(x) are zero padded to allow a convolution of the filters
over the entire snapshot. Then, a series of polynomials are applied to produce maps C (m)

α (x), which measure mth-order correlators near each x.
These maps are summed with a learned spatial weighting w(x) to produce features c(m)

α , which are used by a final logistic layer for classification.
(f) Resulting phase diagram produced by supervised learning, obtained by cropping the classification confidence maps at level-set contours
ŷ = 0.75 and overlaying them.

from the disordered phase [shown in grey in Fig. 1(f)]. A
visualization of the clusters projected to the subspace spanned
by PC1, PC2, and PC5 shows that the clusters are tightly
defined [Fig. 2(d)], and notably the red, green, and purple
clusters are located at high values of PC1, PC2, and PC5,
respectively. As PC1 and PC2 show considerable overlap
with the theoretical order parameters for the checkerboard
and star phases, respectively, this allows us to clearly identify
these phases with no prior knowledge. While PC3 and PC4
do not immediately offer interpretation as an order param-
eter in Fourier space, possibly capturing peak broadening
(see Appendix A), PC5 somewhat resembles the Fourier-
space order parameter associated with the rhombic phase
predicted in DMRG simulations on a cylinder [9]. This is
tantalizing since the previous manual analysis of the data
did not report any signature of additional phases [5]. At
this stage, two phases are clearly resolved: the checkerboard
(red region and PC1) and the star phase (green region and
PC1), we have hints at a potential rhombic-like phase (pur-
ple region and PC5), and the identities of the orange and
blue phases remain unclear from the unsupervised learning
alone.

III. SUPERVISED PHASE CHARACTERIZATION

A. Architecture and training

To better characterize each of the phases, we now turn
to a supervised learning stage, which focuses on real-space
snapshot-to-snapshot fluctuations δni(x; �, Rb) [see Fig. 2(e)
for the description of the architecture]. To learn the distinct
identity of each phase, we train multiple neural networks, with
each given the task of identifying snapshots of a single phase
against the rest through a binary classification1. The origi-
nal CCNN architecture classifies phases by learning a set of
spatially-averaged correlation functions parameterized using
convolutional filters [11]. Specifically, from site-normalized
density fluctuation snapshots δni(x), the CCNN builds mth-
order correlation maps C(m)

α (x) parameterized by learnable

1This is distinct from the common choice of using one neural net-
work with multineuron output for multiphase detection [26,28,29].
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filters fα (a) through mth-order polynomials defined by

C(m)
α (x) =

∑
a1 �=···�=am

m∏
j=1

fα (a j )δn(x + a j ). (2)

We evolved our supervised learning phase from that of Ref.
[11] in three significant ways.

The first evolution is to introduce a learnable spatial
weighting w(x) to the CCNN [see Fig. 2(e)] that can reveal
spatial structures beyond the length scale of the filters. The
new spatially weighted features are

c(m)
α,w(x) ≡

∑
x

w(x)C(m)
α (x). (3)

We restrict w(x) to be symmetric under reflections and rota-
tions of the spatial coordinates for simplicity of parametriza-
tion. The second evolution is to restrict the filters to be positive
definite, which aids interpretation by avoiding additional sign
bookkeeping. The third evolution is to determine the minimal
order m in a systematic manner through ablation testing [30]
and strong regularization (described in Appendix A).

To produce the final classification, the spatially weighted
features c(m)

α,w(x) enter a final logistic layer coupled by weights
β (m)

α and bias ε to produce the output

ŷ =
⎡
⎣1 + exp

⎛
⎝−

∑
α,m

β (m)
α c(m)

α,w(x) + ε

⎞
⎠

⎤
⎦

−1

. (4)

For training, the snapshots from the target training points are
labeled with y = 1 and those from the remaining training
points are labeled with y = 0. During training, the filters fα (a),
logistic weights β (n)

α , bias ε, and spatial weighting w(x) are
all simultaneously learned by stochastic gradient descent to
minimize the cross-entropy loss, which drives the predicted
ŷs towards their correct labels y (Appendix A).

This architecture enables access to new theoretical insights
by offering both expressibility through the nonlinear feature
maps, and interpretability by ensuring these features are phys-
ically meaningful and linearly coupled to the output. Our three
modifications in this paper further aid in this goal. Specifi-
cally, the learned spatial weighting w(x) spotlights emergent
heterogeneity unique to each phase. The positivity of the filter
fα (a) allows us to unambiguously infer the ferromagnetic (+)
or antiferromagnetic (−) nature of the learned characteristic
m-pixel correlations from the sign of the learned weights β (m)

α .
Finally, a principled approach to the decision of the necessary
order m of the correlation features provide confidence in the
significance of the learned filter-specific m-pixel correlations.
In the rest of this section, we present the theoretical insights
gained in this manner.

B. Independent learning of known order parameters

We first focus on the red and green phase-space regions
in Fig. 2(f). Comparing these two regions to the earlier result
[5] based on manual evaluation of target order parameters in
Fourier space, the red and green regions of Fig. 2(f) clearly
map to the checkerboard [Fig. 1(b)] and star [Fig. 1(d)]
phases, respectively. For these phases, the key advantages of
CCNN-based phase recognition are an unbiased discovery of

the simplest order parameter suitable for the complexity of
fluctuations present in the data (see Appendix B), as well as
noticeably sharper phase boundaries without prior knowledge.

While these regions coincide with checkerboard and star
phases manually identified previously, hybrid-CCNN proves
itself by rediscovering the known order parameters through
unbiased search. Specifically, the learned minimal architec-
ture of uniform spatial weighting and two-point correlations
for the red and green phases allows us to connect the learned
features to the previously inspected Fourier-space-based order
parameters. As shown in the Appendix C, by the convolution
theorem, a linear combination of c(2)

α,w(x)=1 features amounts to
a sum of the structure factor |δn(k)|2 weighted by the Fourier
transform of the filters fα (a). Inspecting the learned effective
weightings in Fourier space (shown in Appendix C), we re-
markably find that the learned c(2)

α,w(x)=1 identify the correct
order parameters traditionally used to characterize the respec-
tive density-wave orderings. We emphasize the nontriviality
of the former observation as the hybrid-CCNN is able to re-
veal the correct order parameters without any prior input about
the physics or structure of the density-wave-ordered ground
states. This highlights the utility of our method for appli-
cations to potentially more complicated symmetry-breaking
phases, for which the correct order parameters may not be
immediately obvious.

C. Insights

In the blue, orange, and purple phases, the hybrid-CCNN
provided insights from the data without requiring new exper-
imental data. The discoveries were propelled by the synergy
between the implemented spatial weight w(x) learning and the
CCNN’s innate ability to learn key multipixel correlations.

1. Blue region: Fluctuations in the striated phase

The blue region found in the unsupervised stage over-
laps with the region previously demarcated as the striated
phase. The supervised phase of the hybrid-CCNN sharpens
the phase boundary and offers evidence of nontrivial quantum
many-body correlations in this region. To gain insight into
the identity and refine the phase boundary of the blue phase,
we locate the most informative and stable training points (see
Appendix B) and use the resulting trained CCNN to mark the
phase-space region supporting the phase by producing the av-
erage confidence map ŷ(�, Rb). The resulting phase boundary
is remarkably sharper than previously detected using a mean-
field order parameter. Moreover, the learned spatial weighting
w(x) and the learned logistic weights β

(2)
1 , β

(2)
2 also encode

new information beyond the mean field.
First, the weight map w(x) learns to identify a specific

sublattice in the bulk, and correspondingly activates the filters
only when they are centered on this sublattice. As a result, the
CCNN measures correlations within repeating 3 × 3 blocks
that span the system [see Fig. 3(e)]. Second, the sign of the
learned logistic weights β

(2)
1 and β

(2)
2 provides tomographic

insight into the many-body state in this region. While the filter
f1 and its positive weight confirms joint excitation of corner
sites in the 3 × 3 block expected in the striated phase, the filter
f2 and its negative weight [see Fig. 3(c)] reveals quantum cor-
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FIG. 3. (a) CCNN-learned region of support for the striated phase, with highlighted boxes indicating the training points. (b) Previously used
approximate order parameter detecting the striated phase. Red markers indicate phase boundaries obtained from DMRG simulations on a 9 × 9
array [5]. (c) The filters learned by a third-order nonuniform CCNN to identify the striated phase in (a) and the signs on the β (2)

α coefficients
connecting the corresponding c(2)

α to the output. For ease of display, the filter weights are normalized such that the maximum is 1 within each
filter. (d) The spatial weighting w(x) learned by a third-order CCNN identifying the striated phase. A single-pixel outer layer, corresponding to
where the filter lands on the zero-padded region, is omitted for clarity. (e) A diagram showing example patches of the idealized striated phase
whose correlations are measured by the CCNN of (c) and (d).

relations incompatible with a product-state ansatz. Moreover,
anticorrelations among all three sites in the unit cell frustrates
the polarization on each site.

The tomographic information advances our understanding
of the role quantum dynamics play in Rydberg simulations
as captured by the experimental data. Without the quantum
fluctuation driven by the transverse field �, classical energet-
ics will dictate one of the classical ordering patterns, as was
pointed out in earlier DMRG simulations [9]. At the same
time, our insights revealing connected quantum fluctuations
present a conundrum. Firstly, the observed quantum corre-
lations rule out the earlier product-state ansatz, which only
captures superposition between |r〉 and |g〉 states on individual
sites [5]. Secondly, the observed deviations in the PQS data
from the mean-field product-state ansatz contradict DMRG
findings reporting good overlap between the DMRG ground
state and the mean-field ansatz for the striated phase [5,31].

Quantum correlations and entanglement can arise from
two primary sources. Firstly, they might be present in the
ground state itself, particularly in the vicinity of a second-
order quantum phase transition [32]. Second, they might be
generated in the dynamical state preparation process due to the
quantum Kibble-Zurek mechanism [33], where nonadiabatic
processes can coherently generate superpositions including
excited states that generically result in entanglement. Our
hybrid-CCNN approach cannot distinguish between these sce-
narios as it is agnostic to the actual origin of the correlations.
Nonetheless, to better understand the potential entanglement
structure, we inspect the bipartite entanglement entropy and

correlations within a 9 × 9 system using the density-matrix
renormalization group (DMRG) in Appendix D. We find
that the calculated von Neumann entanglement entropy S
peaks sharply along transition lines, before plateauing to a
small but nonzero value within the phase. This is accom-
panied by anticorrelations between the excited sublattices
as found by the CCNN, although the state preparation pro-
cess appears to significantly extend the support of these
correlations as compared to the DMRG ground state (see
Appendix D).

2. Orange region: The boundary-ordered phase

Next, we turn to the first of the two mysterious phases,
depicted in dark orange in Fig. 4(a). The first clue regarding
the identity of this phase comes from the learned weight map
w(x), which focuses strongly on the edges of the snapshots.
As shown in Fig. 4(b), the CCNN learned to measure the
differences in correlations between the bulk and the boundary
by having large w(x) > 0 along the edge and predominantly
w(x) < 0 in the interior. The learned filters focus the CCNN’s
attention on specific short-range two-point correlations that
differ significantly between the edge and bulk. Figure 4(c)
demonstrates the dramatic performance gain enabled by the
learned edge-centered weight map. Inspection of the exper-
imental snapshots in this orange phase [Fig. 4(d)] indeed
confirms a regular occurrence of local Z2 patterns of (• ◦ •)
along the edges of the snapshots. In contrast, the bulk of
the snapshots appear disordered, further evidenced by explicit
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(b) (c)(a)

(e)(d)
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FIG. 4. (a) CCNN-learned region of support for the edge-ordered phase, with highlighted boxes indicating the training points. (b) The
learned spatial weighting and filters for the model trained to identify the edge-ordered phase, with the spatial extent of the snapshot indicated
by the dashed line. The outermost pixels correspond to where the filter is centered on zero padding but “clip” the edge pixels of the snapshot.
For display purposes, the filter weights are normalized such that the maximum is 1 within each filter. (c) Measured performance discrepancy
between second-order models with a fixed uniform w(x) = 1 and a freely learned spatial weighting. The central lines and bands show the
mean and standard deviation across five randomly initialized models of each type, respectively. (d) Experimental snapshots from the training
set, showing • ◦ • motifs primarily only along the single-site border, with the interior highly disordered. (e) Measurement of the third-nearest-
neighbor 〈δni, jδni+2, j〉 connected correlation function within the edge and bulk (all sites but the outermost two-site strips) along a cut at
Rb = 1.46, averaged across translations and other symmetries.

measurements of correlation functions along the edge and in
the bulk in Fig. 4(e).

While the local Z2 pattern is commensurate with the
neighboring checkerboard and striated phases, the reduced en-
ergetic cost of having Rydberg excitations along the boundary
(relative to the bulk), due to the presence of fewer neighbors,
actually allows the edge to order before the bulk. Hence,
we identify this mystery phase as a boundary-ordered phase
characterized by the edge ordering in the absence of long-
range order in the bulk. The subsequent onset of bulk order, in
the presence of preexisting edge order, defines an “extraor-
dinary” boundary universality class [34]. We highlight the
existence of this boundary-ordered phase in the present paper
since this phase cannot be obtained on geometries with fully
periodic or cylindrical boundary conditions, as was used for
earlier DMRG calculations [9]. Critical to the identification
of this phase is the real-space nature of the CCNN analysis
as the edge ordering introduces a large number of artifacts
into 〈|n(k)|2〉, which can challenge traditional Fourier-based
analysis. Interestingly, a complementary paper [35] indepen-
dently detected this edge ordering in quantum Monte Carlo
simulations of the system with open boundary conditions, and
confirmed the first-order nature of several transitions.

3. Purple region: Rhombic, staggered, and nematic motifs

Finally, we examine the other mystery phase identified by
the hybrid-CCNN: the purple swath in Fig. 5(a). To iden-
tify the defining characteristic of this phase, we restrict the
CCNN to learn positive correlation functions by enforcing
β (n)

α � 0 during training, increase the filter size to 4 × 4,
and fix uniform w(x) = 1 (see Appendices C and D). The

CCNN learns the two filters f1 and f2 shown in Figs. 5(b)
and 5(c) and uses a combination of two- and three-pixel
correlations c(2)

α,w(x)=1, c(3)
α,w(x)=1 to recognize this phase as dis-

played in Figs. 5(d)–5(i). Inspection of the experimental data
in Fig. 5(k) shows that these motifs are indeed present in the
snapshots, albeit in short-ranged manners. The short-ranged
nature of the occurrences indicate that the underlying ten-
dencies for long-range ordered phases are being frustrated
by the finite size of the system and the boundary conditions.
Nevertheless, identification of characteristic motifs reveals
the natures of the candidate states. Five of the six motifs
indicate the presence of ferromagnetic and antiferromagnetic
correlations (see Appendix E), which occur in the staggered
and rhombic phases predicted to be present in this region
of the phase space by Ref. [9]. Meanwhile, the final mo-
tif in Fig. 5(g) is expected to be common in the finite-size
realization of the nematic phase proposed in recent DMRG
simulations that retain the full long-ranged interaction [31].

The staggered and rhombic phases share the characteristic
motifs in Figs. 5(k) and 5(l), but arrange these motifs differ-
ently. Earlier DMRG simulations with truncated interactions
predicted the staggered phase at a larger Rb/a than this exper-
imental range probes [9]. Recently, simulations retaining the
full interaction range have found that in the presence of the
long-ranged interaction tails, the rhombic phase is replaced in
the phase diagram by a region of tight competition between
a staggered order and an exotic nematic phase ORourke and
Chan [31]. The nematic phase is a phase characterized by
anisotropic modulation of the entanglement entropy. How-
ever, the exact nematic phase is vulnerable to finite-size
boundary effects and Ref. [31] found a “nematic-like” state
with the relevant entanglement properties in the bulk by im-
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FIG. 5. (a) The region of support for the ordered phase(s) at large Rb/a, as learned by the full CCNN model of Fig. 1(n), with 5 × 5 filters
and highlighted boxes indicating the training points. [(b),(c)] The two learned 4 × 4 convolutional filters for a simplified model (w(x) =
1, β (n)

α � 0). [(d)–(i)] High-weight two- and three-point connected correlators measured by c(2)
α , c(3)

α resulting from the filters in (a) and (b). We
find β

(2)
2 to be nearly zero, so we omit two-point correlators stemming from the filter f2. Our CCNN is symmetrized (see Appendix B) and thus

measures all correlators symmetry-equivalent under rotations and flips to those shown. (j) Identification of local occurrences of these motifs in
experimental snapshots sampled from the training set. (k) Identification of five of these motifs in the ideal rhombic pattern. (l) Identification
of five of these motifs as constructing the ideal staggered pattern. (m) Identification of the final motif (g) as the key pattern in finite-size
realizations of the nematic phase (image reproduced from Ref. [31], with permission).

posing a tailored edge configuration. Hence, the fate of the
rhombic order, the staggered order and the highly entangled
nematic phase in an experimental setting, and whether such
an entangled state can be realized, are open questions.

To assess which of these phases is dominant, we identify
the unique unit-cell motifs characterizing each phase [shown
in Figs. 5(j), 5(l), and 5(m)] in the experimental data. We
find that in each snapshot, there are on average 13.3(3) cells
matching the staggered motif while there are 20.4(4) cells
matching the nematic motif. We do not find the full rhombic
motif. From these counts, we see that nematic motif best
represents the hybrid-CCNN discovered purple phase. This is
evidence of the highly entangled nematic phase in experimen-
tal snapshots.

IV. DISCUSSION

In summary, we have developed a supervised-unsupervised
hybrid machine learning approach, the hybrid-CCNN, to re-
veal collective quantum phenomena in voluminous quantum
snapshot datasets and applied our approach to square-
lattice Rydberg PQS data. The initial unsupervised stage
used Fourier intensities 〈|n(k)|2〉 and clustering in a low-
dimensional feature space obtained using PCA to reveal a
rough initial phase diagram. This first pass reveals the number
of phases to expect and informs the initial location of training
points for the supervised stage. The phase diagram is then
refined in the second supervised stage by training CCNNs to
identify a small set of key correlations describing each phase.
The CCNNs in this paper are evolved in three ways compared

to the original one of Ref. [11]: through introduction of a
spatial weighting, positive definite filters, and ablation testing.
These adaptations led to insights and uncovered the identities
of each phase, using a principled minimal architecture. The
identities thus revealed not only confirmed the previously
known phases [5,9] but also resulted in insight into potential
quantum entanglement structures in the striated phase and the
discovery of previously undetected phases: the edge-ordered
phase, and the motifs of staggered and nematic orders. In par-
ticular, observation of the nematic motifs—that are expected
to be highly entangled—is a nontrivial confirmation of predic-
tions from recent DMRG simulations [31]. We emphasize that
these findings were made using machine learning tools trained
entirely on experimental quantum simulator datasets.

The insights that we gained on the square-lattice Ryd-
berg array using hybrid-CCNN have significant theoretical
and experimental implications. Firstly, the observation of
enhanced quantum correlations in the striated phase raises
questions on the interplay between ground-state entanglement
and correlations resulting from the quantum Kibble-Zurek
mechanism [33]. Furthermore, hybrid-CCNN-aided detection
of quantum correlations will be instrumental in future studies
of exotic states that are becoming experimentally accessible
[36]. Secondly, the discovery of the boundary-ordered phase
raises theoretical questions on the nature and mechanism of
the phase transitions. Independent observation of boundary
ordering in quantum Monte Carlo (QMC) simulations [35]
supports the detected boundary ordering as a property of the
ground state. Finally, the signature of the short-ranged ne-
matic ordering observed to coexist with motifs of staggered
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or rhombic order is the experimental evidence of a highly
entangled nematic ground state. This success is significant
since all these phases were predicted for a narrow range of pa-
rameter space in the thermodynamic limit and were expected
to be sensitive to the boundary conditions. Our success in
detecting motifs of these intricate orders paves the way for
detecting other rarer and more complex phases in future PQS
experiments.

With the rapid progress towards probing more exotic quan-
tum many-body phenomena using PQS [36–39], the need for
new data-centric approaches to extracting insight from large
volumes of quantum snapshot data will only grow. Here, we
demonstrated that the hybrid-CCNN can not only meet this
need but also enable the discovery and identification of new
quantum states. The hybrid-CCNN’s ability to extract spatial
structures of a quantum state at multiple length scales is
particularly valuable given the limited spatial extent and in-
commensurate domains of phases produced by finite systems
under quasiadiabatic state preparation [33].
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APPENDIX A: UNSUPERVISED LEARNING DETAILS

To perform our initial rough-estimate unsupervised phase
discovery, we first collect features at each experimental pa-
rameter point (�, Rb). For easy interpretability, we choose
to work with simple features that represent all second-order
fluctuations, but are blind to the overall Rydberg excitation
density present in the snapshots. We find that blinding our en-
tire machine learning pipeline to the overall density results in
phase boundaries that are more closely aligned to meaningful
changes in spatial orderings rather than simple increases in
Rydberg excitation densities. More complex phase transitions
would require higher-order correlations or nonlinear unsuper-

vised learning techniques, but we find the following approach
to be sufficient for our data. To allow for direct comparison
to previous experimental paper [5], we would like to work
with the average squared Fourier amplitudes of the snapshots
at each (�, Rb). In order to make the process blind to overall
density changes, we must take two steps.

First, in this section, we work with snapshots, which are
overall density-normalized as δni(x) ≡ ni(x) − 〈n〉, where the
expectation value is computed over all sites of all snapshots
available at the same (�, Rb). Note that this is different
than the per-site density normalization used in the supervised
follow-up. In the supervised phase, we found that per-site den-
sity normalization was necessary to build interpretable order
parameters for phases with subtle correlation structures such
as the striated, rhombic, and nematic phases, which could be
masked by average density modulations induced by the edge
ordering. Per-site density normalization subtracts out this av-
erage density modulation, allowing connected correlators to
be easily measured. However, while difficult to interpret, these
very same average density modulations appear to be key to
the success of our unsupervised phase, which is restricted to
measuring raw Fourier amplitudes.

We then measure the average squared Fourier amplitudes
of these normalized snapshots,

δn̂(k; �, Rb) = 1

N (�, Rb)

∑
ni∈(�,Rb)

∣∣∣∣∑
x

e−ik·xδni(x)

∣∣∣∣
2

, (A1)

where N (�, Rb) is the number of available snapshots at the
parameter value (�, Rb).

Our first density normalization does not make δn̂(k) in-
variant under an overall shift in the density of the n(x)s, even
away from k = 0, due to the input data being sampled from
a bosonic system with the values of n(x) restricted to 0 or
1. In this case, the marginal distribution of each individual
site’s density is a Bernoulli distribution whose variance is
linked to its mean as 〈δn(x)2〉 = 〈n(x)〉(1 − 〈n(x)〉). In this
way, information about the density can “bleed” through to the
learning process at all k points. We can see this explicitly by
expanding out the square in Eq. (A1) and rewriting it as

δn̂(k; �, Rb) = 1

N (�, Rb)

∑
ni

[∑
x

δni(x)2

+
∑
x�=x′

e−ik·(x−x′ )δn(x)δn(x′)

]
. (A2)

To make our Fourier-space features invariant under density
shifts we need to remove the first term. Using Plancherel’s
theorem, we can achieve this this by normalizing once more
in k space as

p̂(k; �, Rb) = δn̂(k; �, Rb) − 1

L2

∑
k′

δn̂(k′; �, Rb), (A3)

with L being the number of k points sampled along each direc-
tion of the discrete Fourier transform. These resulting features
p̂(k; �, Rb) are then provided to the principal component anal-
ysis, the results of which are summarized in Fig. 6. Figure 6
shows the resulting top 12 principal components, which to-
gether capture >99.9% of the variance of the dataset. Notably,
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FIG. 6. The top twelve principal components, shown as weightings in k space, and the average projection onto each component across the
experimental parameter space.
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FIG. 7. (a) Clusters obtained when performing a Gaussian mixture model clustering with varying number of clusters (from 2–9), and the
top 14 PCA components retained. Colors of each cluster are manually chosen for visual continuity. [(b),(c)] The log-likelihood and Bayesian
information criterion (BIC) for the best mixture model at each number of clusters.

since all of the input features lie within the
∑

k p̂(k) = 0
subspace, so do the resulting principal component vectors.

Below each PCA vector in Fig. 6, we show its average
inner product with each p̂(k; �, Rb) across parameter space.
These maps reveal which areas of parameter space have aver-
age Fourier-space intensity patterns that match the principal
component vectors well. Importantly, many of these maps
vary smoothly in parameter space and as such, correspond to
meaningful changes in Fourier structure. Meanwhile, at first
glance PCA6, and partially PCA10, seem visually noisy in pa-
rameter space. However, this is due to these PCA components
breaking rotational symmetry in Fourier space. In phase re-
gions where the relevant Fourier peaks are present, these PCA
components are either strongly positive or strongly negative
depending on which way the symmetry is broken, while in
other regions they remain close to zero. These components
could be improved by further post-processing; however, for
simplicity, we do not do so here.

To robustly perform the GMM clustering, we initialize the
clusters using the k-means algorithm [27], repeat the initial-
ization and clustering with different random seeds until 500
sequential clusterings do not improve the final log-likelihood,
and keep the best-found clustering. Interestingly, random ini-
tializations (rather than k means) often produce clusterings
with higher final log-likelihoods but poor structures in pa-
rameter space, with one cluster often a seemingly random
collection of points across parameter space. This ambiguity
points to the persisting need to have a physicist “in the loop”
verifying machine learning (ML) results at each stage, which
is made easier when using interpretable techniques.

To determine the appropriate number of clusters and PCA
components to retain, we perform the entire clustering pro-
cess while varying the number of clusters and the number of
retained PCA components. In Fig. 7(a), we find that starting
from two clusters, each additional cluster meaningfully cap-
tures the next-strongest phase in the dataset, with topology
similar to the clustering of the main text with Nclust = 6.
As expected, each additional cluster improves the final log-
likelihood [Fig. 7(b)]; however, a distinct kink and reduction
in slope is observed after Nclust = 6. This is reflected addi-
tionally by the Bayesian information criterion (BIC) [27], a
standard heuristic metric for determining the correct number
of clusters, plateauing past this point. As we should pick
the simplest model, which minimizes the BIC, this points to
Nclust = 6 as being optimal. Clusterings with Nclust > 7 are
increasingly noisy and can be seen to simply be chunking
off transition regions between phases, rather than dramatically
changing the phase diagram’s topology.

In Fig. 8, we show clustering results with a fixed Nclust = 6
but varying number of PCA components kept. Across all
settings, we predominately see the topology presented in
the main text (similar to NPCA = 9), with exceptions being
NPCA = 5, 6, 7, which substitute the purple phase with a clus-
ter around the broadened-checkerboard region characterized
by PCA3. The relative stability and understandability of these
clusterings give us confidence that they indicate real regions
of varying orderings suitable for a follow-up analysis. As
truncating the number of PCA components kept is primarily a
cost-saving and robustness-improving technique, we increase
the number of principal components kept until the cluster-
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FIG. 8. Clusters obtained when performing a Gaussian mixture model clustering with six clusters, and varying the number of PCA
components retained (from 3–14). Colors of each cluster are manually chosen for visual continuity.

ing is seen to stabilize, which can be seen in Fig. 8 to be
roughly 10.

APPENDIX B: SUPERVISED LEARNING DETAILS

1. CCNN Training

We implement our Convolutional Correlator Neural Net-
works using the Pytorch [41] library, and our code is made
available at GitHub [42]. Each CCNN is trained to identify
a single phase: all snapshots sampled within that phase are
labeled 0, while snapshots sampled from all other phases are
labeled 1. The list of parameter-space points sampled to form
each phase’s training set is given in Table I. From each point,
we randomly take 90% of the snapshots as the training dataset
shown to the network, and take the remaining 10% as a vali-
dation dataset, which is not shown during training and is only
used to verify that the network has not overfit. To handle the
uneven distribution of snapshots available from each phase,
when training a CCNN to identify a phase P each presented
snapshot has a 50% probability to be sampled from phase P ,
and a 10% probability to be sampled from each of the 5 other
phases. This ensures that there is an equal representation of
“within-phase-P” snapshots and “out-of-phase-P” snapshots,
as well as equal representation among all classes within the
“out-of-phase” distribution.

The training points in Table I are obtained by starting
with points suggested by the unsupervised clustering, and
modifying iteratively based on the results of training until all
phases overlap minimally and have clear distinctions. For the
striated phase, the support of which was very narrow in the
unsupervised learning results, we explored a wider range in
phase space to identify the training points yielding physically
meaningful features.

During training, the free parameters of our CCNNs { fα (a),
β (m)

α , ε,w(x)} are all simultaneously learned so as to minimize
the training loss averaged across the dataset, chosen to be the
standard cross entropy loss used for classification tasks with

TABLE I. Parameter-space points used to train models identify-
ing each phase. Training sets are formed by all points in the Cartesian
product of the �/� and Rb/a columns.

Phase �/� Rb/a

Checkerboard 3.02, 3.26 1.13, 1.23
Striated 2.33, 2.56, 2.79, 3.02 1.46
Star 3.95, 4.19, 4.42, 4.65 1.71
Purple 2.32, 2.56, 2.79, 3.02 1.97
Edge 0.69, 0.93 1.46, 1.56
Disordered −2.09, −1.62, −1.16, −0.4 1.13, 1.46, 1.81

013026-12



MACHINE LEARNING DISCOVERY OF NEW PHASES IN … PHYSICAL REVIEW RESEARCH 5, 013026 (2023)

an additional L1 regularization on the filter weights,

L = 1

N

∑
i

(−yi log ŷi − (1 − yi ) log(1 − ŷi ))

+ γ
∑
α,a

| fα (a)|, (B1)

where i runs over all snapshots in the training dataset, and N
is the total number of snapshots. We optimize this loss using
the ADAM [43] optimization algorithm, with a minibatch size
of 128 snapshots, an initial learning rate of 0.01, and a cosine-
annealed learning rate schedule as implemented by Pytorch’s
CosineAnnealingLR [41].

As in Ref. [11], we also place a BatchNorm [44] layer
(without the optional affine transformation) after the correla-
tor features c(m)

α , which introduces no extra free parameters but
aids in rapid and stable convergence of the training. Similar to
Ref. [11], we additionally spatially symmetrize C(m)

α (x) and
w(x) to improve generalization and interpretability. Specif-
ically, on each forward pass, we symmetrize the maps by
summing over all symmetry transformations as

C(m)
α (x) ←

∑
g∈D4

gC(m)
α (x), (B2)

with the sum running over all group elements g ∈ D4 act-
ing on the convolutional maps, and the same transformation
additionally applied to w(x). This symmetrization procedure
aids in generalization, as the model’s predictions are made
invariant under symmetry transformations of the input snap-
shots, and reduces the effective total number of parameters to
learn. In particular, this allows the model to avoid having to
learn symmetry-equivalent versions of the filters fα (a), and
makes the spatial weighting w(x) easier to visually interpret.
To make interpretation simpler, we also restrict fα (a) to take
only positive values by applying an absolute value function on
every forward pass.

To ensure that all pixels of the learned filters hit all pixels of
the snapshot in the convolution, we zero-pad each δni(x) with
a sufficient number of zeros. In particular, if the convolutional
filters fα (a) are of spatial extent F × F , we pad the input
snapshots with F − 1 zeros on all edges.

After training is completed, a CCNN has learned a col-
lection of convolutional filters fα (a), as well as a set of
coefficients β (m)

α connecting the mth-order feature c(m)
α derived

from filter fα to the output, and an overall bias ε. The output
of the model is then

ŷ =
⎡
⎣1 + exp

⎛
⎝−

∑
α,m

β (m)
α c(m)

α + ε

⎞
⎠

⎤
⎦

−1

, (B3)

where c(m)
α are constructed from the learned filters fα and the

input by Eq. (3) of the main text.

2. Ablation testing

When building a specific CCNN, there is a lot of flexibility
in the architectural choices. These architectural hyperparam-
eters include the order m to truncate at, whether to include a
learnable spatial weighting w(x), and how many filters (and of
what size) to use. For the current paper, we take the approach

of building the simplest architecture [second-order, uniform
w(x)] first, and adding on architectural complexity piece-by-
piece. If a large gain in accuracy is achieved by a single
architectural addition, then we keep that piece and attribute a
quality of the phase to requiring the additional expressibility.
This approach is commonly referred to as ablation testing in
the ML literature [30], although for large neural networks,
ML practitioners commonly remove modules piece-by-piece
rather than adding them as we do for our shallow networks.

To improve interpretability, an additional hyperparameter
that we have at our disposal is the coefficient γ on the filter L1
loss in Eq. (B1). Intuitively, larger γ results in simpler filters
with more pixels deactivated but decreased classification per-
formance. For all models except for the uniform second-order
models (which we can easily interpret in Fourier space, see
Appendix C), we increase γ until the filters identifying all
phases are sparse enough to easily interpret while perfor-
mance is maintained sufficiently high.

Along these lines, in Table II, we summarize validation
accuracy measurements of several variations of our CCNNs
trained to identify each phase. From these measurements, in
conjunction with observing the quality of the resulting phase
diagram, we can determine what is required to form a good
order parameter for each of the identified phases. For exam-
ple, the checkerboard, star, and purple phases show roughly
uniform or even decreasing (due to overfitting) validation
performance as the CCNN’s truncation order is increased, in-
dicating that second-order features are sufficient to distinguish
these from other phases. However, we find the second-order
features identifying the purple phase to be somewhat un-
interesting as they primarily just measure the tendency for
longer-range density correlations; see Appendix C. The star
phase shows some improvement when incorporating spatial
inhomogeneity, but we find that the phase diagram changes
little while the second-order model is simplest to interpret (see
Appendix C).

The most striking changes are observed for the two re-
maining phases, both of which benefit heavily from learning
a nonuniform spatial weighting w(x). For the striated phase,
we observe a dramatic 11.6% jump in classification accu-
racy between uniform and nonuniform second-order models.
This difference reflects that due to finite-size effects, many
striated-like correlations persist throughout the system within
the star phase. Appendix C presents an alternate interpreta-
tion in Fourier space, where the difficulty originates from the
relevant Fourier peaks being overly diffuse.

However, many of these striated-like correlations in the star
phase occur on the even sublattice, while the striated ordering
entirely occupies the odd sublattice. If the network has the
ability to focus on a specific sublattice matching the ideal stri-
ated ordering (making all other sites contribute with a negative
weight to the output), it can better distinguish the striated from
the star phase. Alternatively, we find that increasing the order
of the model while keeping w(x) = 1 also results in a good
classifier for the striated phase but one which is more difficult
to understand.

In contrast, for the edge-ordered phase, we find that
simply increasing the order of the model while keeping uni-
form w(x) = 1 makes negative changes to generalization

013026-13



COLE MILES et al. PHYSICAL REVIEW RESEARCH 5, 013026 (2023)

TABLE II. Final validation accuracies for models identifying snapshots of each phase using various architectures. Measurements are made
with 10-fold cross-validation [27], with 5 random seeds run at each train/validation split. Reported errors for each model type are the standard
error across all runs. All models are trained with 3 convolutional filters. Figure 2(f) of the main text is produced by the final, most expressive,
row of models. Table entries in italics are simpler models studied in Figs. 4 and 5 of the main text. Models sampled from the “2nd order,
w(x) = 1” row produce the order parameters shown in Fig. 10 of Appendix C.

Checkerboard Star Striated Purple Edge

2nd order, w(x) = 1, 4 × 4 filters, γ = 0.0 99.81(1) 84.9(3) 75.7(3) 89.3(3) 78.0(3)
3rd order, w(x) = 1, 4 × 4 filters, γ = 0.1 98.5(2) 73(1) 86.1(7) 87(1) 71.4(9)
3rd order, β (m)

α � 0, w(x) = 1, 4 × 4 filters, γ = 0.1 98.7(2) 78(1) 83.3(5) 86.3(4) 71.6(8)
2nd order, learned w(x), 3 × 3 filters, γ = 0.1 98.4(3) 83.6(9) 87.3(5) 88.5(4) 82.9(3)
3rd order, learned w(x), 3 × 3 filters, γ = 0.1 100. 85.8(5) 91.9(2) 91.7(4) 88.0(2)

performance. Meanwhile, keeping the model at second or-
der, we see a 4.9% jump in accuracy when allowing for a
spatially varying w(x). While this may not seem dramatic,
we find that all models with uniform w(x) produce order
parameters, which persist deep into the disordered region.
This indicates that successfully identifying this phase re-
quires measuring spatially-inhomogeneous correlation func-
tions, which reflects that this phase is itself defined by this
inhomogeneity.

APPENDIX C: EXTRACTING FOURIER-SPACE ORDER
PARAMETERS FROM UNIFORM SECOND-ORDER CCNNS

Second-order features with the uniform spatial weighting
w(x) = 1, c(2)

α,w(x)=1 amount to weighted sums of the Fourier

spectrum of the input. Specifically, each feature c(2)
α,w(x)=1 can

be written as

c(2)
α,w(x)=1 =

∑
x

C(2)
α (x) ≡

∑
x

[(∑
a

f (a)δn(x + a)

)2

−
∑

a

f (a)2δn(x + a)2

]
(C1)

= 1

N2

⎡
⎣∑

k

⎛
⎝∣∣ f̂ (k)

∣∣2 − 1

N2

∑
k′

∣∣ f̂ (k′)2
∣∣
⎞
⎠|δn̂(k)|2

⎤
⎦,

(C2)

where Eq. (C1) is just the expanded definition of C(2)(x),
Eq. (C2) is the Fourier-equivalent form, and discrete Fourier
transforms are defined by

f̂ (k) ≡
(L f ,L f )∑

a=0

e−ik·a f (a), δn̂(k) ≡
(Ln,Ln )∑

x=0

e−ik·xδn(x), (C3)

where L f , Ln are the lengths of each dimension of the convo-
lutional filter f and the input snapshot δn, respectively. The
wavevectors in the discrete Fourier transform are defined as
ki ∈ {0, 2π/N, 4π/N, . . . , (N − 1)2π/N} with N � L defin-
ing the resolution of the Fourier transform. Choosing N > L
encodes no new information in the result, but produces higher-
resolution Fourier spectra for plotting.

Note that for all terms in Eq. (C1) to be well defined,
we take an “infinite zero-padding” convention, where the do-
main of δn is expanded to all x by defining δn(x) = 0 ∀ x /∈

[0, Ln] × [0, Ln]. Under this convention, we take the x sum
to be over all space. In practice, our CCNNs equivalently
pad δn with enough zeros to recover all nonzero C(2)

α (x).
Equation (C2) can be obtained from Eq. (C1) by straightfor-
ward application of the convolution theorem and Plancherel’s
theorem.

A simple interpretation of this result is that a uniform-
weighted c(2)

α measures a weighted sum of δn(k), with the
weights given by the Fourier transform of fα , normalized to
be zero mean in k space. Since second-order CCNNs linearly
combine multiple filters fα with coefficients βα to produce
the input to the final logistic function, we can understand
the full action of the network by the weighted sum of the
input in k space with effective weights f̃ (k) = ∑

α β (2)
α f̃α (k),

with normalized Fourier intensities of each filter defined as
f̃α (k) = | f̂α (k)|2 − 1

N2

∑
k′ | f̂α (k′)|2. Due to the symmetriza-

tion procedure outlined in Appendix B, this map must be then
symmetrized over all symmetries of D4. This “order parameter
map” defines our effective second-order CCNN order param-
eter for a given phase as

O = σ

(∑
k

f̃ (k)sym|δn̂(k)|2 − ε

)
, (C4)

with σ (x) = (1 + exp(−x))−1 the logistic sigmoid function,
and ε the learned bias.

In Fig. 9(a), we provide a visual diagram demonstrating
this process to produce an interpretable f̃ (k)sym. In Figs. 9(b)–
9(d), we show exemplary resulting Fourier-weighting maps
learned for each of the checkerboard, striated, and star phases,
and demonstrate the intuition to interpret these maps. Apply-
ing the weighting f̃ (k)sym to the average Fourier intensity of
the target phase should produce a large positive number, while
applying it to the intensities of all other phases should produce
smaller or negative numbers (after subtracting the learned ε,
only the target phase should remain positive).

We find that the checkerboard, striated, and star Fourier
weightings look strikingly similar to smeared-out versions of
the hand-crafted order parameters discussed in Refs. [5,9],
which can be interpreted in our framework as f̃ (k) that are
nonzero only at finitely many k points. In particular, our
learned checkerboard order parameter is strongly positive at
(π, π ), the striated at (±π, 0), (0,±π ), and the star order
parameter spreads positive weight towards (π/2, 0), (0, π/2)
while putting negative weight at (π, π ). This observation is
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FIG. 9. (a) The process by which the action of a uniform-w(x) second-order CCNN can be interpreted in Fourier space. Each filter is
discrete Fourier transformed and normalized to form f̃α (k), linearly combined pointwise in k space with learned coefficients β (2)

α , and then
symmetrized to form the final map. [(b)–(d)] The order parameter maps f̃ (k)sym learned to identify the checkerboard, striated, and star phases.
We apply each order parameter map as weightings to the idealized Fourier intensities for each of the checkerboard, striated, and star phases. If
learning is successful, applying this weighting and then summing in k space should produce large positive numbers for the target phase, and
small or negative numbers for every other phase.

reassuring as it demonstrates that these models identify each
phase by an ordering similar to the ideal density waves.

In Figs. 10(a)–10(c), we show measurements of Fourier-
space order parameters manually crafted to capture each of
the checkerboard, star, and striated phases. We can see that
due to the blurring of the relevant Fourier peaks resulting
from the finite-size system, the order parameters for the star
and striated phases [Figs. 10(b) and 10(c)] heavily overlap.
For comparison, in Figs. 10(d)–10(h), we show confidence
maps from uniform second-order CCNNs with 4 × 4 convo-
lutional filters trained to recognize each phase examined in
the main text. We can observe that only the checkerboard
(red) and star (green) phases are well resolved by these re-
duced models, in accordance with the intuition that these
phases are classical crystals easily identified in Fourier space.
Meanwhile, just as with manually crafted Fourier-space order
parameters, the uniform second-order CCNN’s predictions for
the striated phase significantly overlap with those of the star
phase. These combined observations point to a fundamental
limit to phase resolution using Fourier-space order parameters
in finite, open-boundary, noisy systems. The purple phase
is somewhat well resolved, but it too suffers from overly
broad peaks in Fourier space. Meanwhile, we see that uniform
second-order models fail dramatically for the edge-ordered
(orange) phase, which by its nature fundamentally requires the
ability to learn spatially inhomogeneous functions, as mea-
sured in Appendix B.

To uncover what is being learned by the second-order
CCNN for the purple phase in particular, we repeat the above
analysis to produce the Fourier-space order parameter shown
in Fig. 11(a). We see that the learned order parameter attempts
to identify diffuse Fourier intensity along the diagonals in
Fourier space. In contrast, Fig. 11(b) shows that Fourier peaks
appear at (±2π/5, 0) and (0,±π/2) in the ideally-ordered
rhombic phase. However, due to broadening resulting from
experimental noise and the finite-size system, we hypothesize
that the CCNN does not attempt to directly measure any
long-range ordering peaks as they blur too strongly into the
star phase’s (±π/2, 0) peaks. Nevertheless, peaks resembling
the ideal rhombic ordering can be visually resolved when
averaging over a large number of snapshots as in Fig. 11(f).

Manual inspection of the learned filters and β (2)
α coeffi-

cients reveals that the purple-phase CCNN obtains this order
parameter by placing negative β (2)

α on filters, which contain
short-range patterns. This makes intuitive sense, as density
fluctuations between nearby sites are anticorrelated at high
Rb. However, this does not give us clear insight into the actual
Rydberg crystal being realized, other than that it is constructed
from longer-range displacements. This motivated our choice
in the main text of investigating third-order models, which en-
force β (m)

α > 0 to ensure that the CCNN must rely on positive
correlations to identify the phase. Due to three-point corre-
lators having a nontrivial sign structure (see Appendix E),
the CCNN still measures some short-range patterns, but also
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FIG. 10. [(a)–(c)] Measurements of Fourier-space order parameters manually crafted [5] to capture the checkerboard, star, and striated
phases. Red symbols mark phase boundaries from DMRG simulations of a 9 × 9 open boundary system [5]. [(d)–(h)] CCNN order parameter
maps of uniform second-order CCNNs trained to identify each of the phases examined in the main text. At each point in (�, Rb) space, c(2)

α

is averaged across all available snapshots (mimicking “measuring the correlation functions” from the snapshots) and then fed into the final
logistic layer. Only the checkerboard (red) and star (green) phases are well resolved by this minimal model.

FIG. 11. (a) Fourier intensity weighting map derived from a second-order model trained to identify the purple phase. (b) Symmetrized
Fourier intensities resulting from the density-normalized ideal long-range rhombic ordering. [(c)–(g)] Fourier intensities of per-site density-
normalized experimental data δn̂(k) sampled deep in each of the identified phases.
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FIG. 12. Density-matrix renormalization group results for a 9 × 9 system. (a) Bipartite entanglement entropy S between two halves of
the system. [(b),(c)] Average density on (0, 0) and (1, 1) sublattices, respectively. (d) Average connected density-density correlator between
next-nearest-neighboring sites on the so-called (0, 0) and (1,1) sublattices, marked in pink and purple in the inset, respectively.

learns several key longer-range patterns, which help us char-
acterize the phase.

APPENDIX D: ENTANGLEMENT GENERATED
BY RYDBERG INTERACTIONS

As often exploited by Rydberg-atom quantum simulators,
the Rydberg blockade effect can generate entanglement be-
tween interacting atoms [45–47]. Here, we perform simple
calculations to examine the interplay between entanglement
and correlations in the vicinity of the transition to the
striated phase and draw connections to the correlations in the
experimental data uncovered by our CCNN analysis. To
this end, we perform density-matrix renormalization group
(DMRG) calculations using a “snakelike” matrix product state
ansatz for a 9 × 9 system with open boundaries. The Ry-
dberg Hamiltonian realized by the experiment examined in
this paper is given by Eq. (1), and for notational simplicity,
we will refer to the first, second, and third terms therein as
�̂, �̂, and V̂ , respectively. Entanglement can be generated
in the ground state of Ĥ (≡ H/h̄) due to energetic competi-
tion between these terms. For any two sites, the interaction
term V̂ prefers small overlap with basis states containing
|rr〉, while �̂ desires large overlap with all of |gr〉, |rg〉, and
|rr〉. Crucially, �̂ favors weight to be present with opposite
phase between basis states with a single site flipped as |g〉 ↔
|r〉. As a result, for a two-site system, the ground state as
Rb/x12 → ∞ places weight across all of the |gg〉, |rg〉, |gr〉 ba-
sis states, but not |rr〉, resulting in an entangled, anticorrelated
state.

To examine this behavior more closely, we now turn to
the results of the DMRG computations. In Fig. 12, we show
the bipartite entanglement entropy between two halves of the
system. Within the disordered phase (� � 1), the entangle-
ment entropy of the ground state increases monotonically as
one approaches the quantum critical points, and, at large Rb,
the density on any site is anticorrelated with that of its next-
nearest neighbors in the corners [Fig. 12(d)]. As we transition
deep into the classically ordered phases, both the entangle-
ment and the connected correlations vanish due to the density
on each site approaching either 0 or 1 [Figs. 12(b) and 12(c)].
However, in a narrow region at Rb/a ≈ 1.4 where quan-
tum fluctuations stabilize a significant density on the (1,1)

sublattice [see Fig. 12(d)], both entanglement and diagonal
anticorrelations survive. We emphasize that this entanglement
is dependent on the state on each sublattice remaining in a
quantum superposition of |g〉 and |r〉, as is uniquely character-
istic of the striated phase.

Indeed, as shown in Fig. 13, in the experiment, the con-
nected part of many short-range correlations remains finite
and negative upon transitioning into the striated phase. In par-
ticular, all nearest-neighbor correlators remain anticorrelated,
along with next-nearest-neighbor correlators between the two
excited sublattices. However, there are many confounding ef-
fects, which make it difficult to pinpoint with certainty the
origin of these correlations. First, due to decoherence and
experimental noise, the experiment, in principle, produces a
mixed rather than a pure state. Given a mixed state ρ, nonzero
connected correlations can emerge either by entanglement, or
by “classical” correlations between the pure states comprising
ρ [48]. Efficient means for unambiguously revealing entan-
glement in experimental settings without full tomography is
an active field of research [49–55].

Moreover, quasiadiabatic sweeps across phase boundaries
produce final states, which are not perfect ground states but
are dependent on the original state starting from which the
phase boundary was crossed. As the system is theoretically
transitioning from a region of high entanglement, where
nearby neighbors have anticorrelated densities, it is likely
that some of the magnitude of correlations captured by the
CCNN is not directly representative of the true ground state,
instead having been “frozen in” from before the transition
[33]. Nevertheless, the nature (and, in particular, the signs)
of these correlations still reveals qualitative structures of each
identified phase.

APPENDIX E: SIGN STRUCTURES OF THIRD-ORDER
CORRELATORS

By inspecting the learned β (3)
α and the patterns in the

learned associated filters fα , we can determine which three-
point correlations are being measured for a target phase, and
whether they should be positive or negative within the phase.
However, the sign of a three-point contribution can be some-
what confusing to interpret, as there are multiple ways to
obtain positive/negative three-point correlations. The CCNN
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FIG. 13. [(a)–(c)] Measurements of connected correlations from the striated experimental training dataset (see Table I), performed on each
individual nearest-neighbor (NN), next-nearest-neighbor (NNN), or next-to-next-nearest-neighbor (NNNN) bond, respectively. The colors of
each site are for visual aid, showing the sites expected to be in the mostly excited (pink), mostly ground (purple), and entirely ground (black)
states in the ideal striated limit. [(d),(e)] Averaged correlations across all bonds of different symmetry classes, tracked as a function of �/�

for a cut at Rb/a = 1.56.

itself does not inherently point out how to interpret these
correlators—simply that they are strongly positive/negative
within the phase. Manual follow-up and investigation is al-
ways necessary to understand the underlying physics. This
section attempts to clarify the subtleties of these measured

three-point correlators, and presents explicit measurements
thereof from the data to confirm that the CCNN’s identifica-
tion was meaningful.

Within this section, for notational brevity, spatial indices
are written as (vector) subscripts. Given density-normalized

FIG. 14. [(a)–(e)] The three-point connected correlators identified from the third-order CCNN [(a)–(d)] in the main text, along with another
notable group of correlations characterizing the star and rhombic phases (e). For each, we show the contributions to the correlator from three-
site density fluctuation patterns of different sign configurations, measured from the snapshots in the purple phase training dataset (see Table I).
Contributions are summed across all eight reflection/rotation-transformed correlators, and averaged across all translations, which leave all
three sites within the snapshot. Red bars show magnitudes of positive contributions, while blue bars correspond to negative contributions. For
simplicity, the bar graph shows the (++−) and (+−−) contributions averaged over all three possible sign combinations. Above each bar
graph, we show the total value of the correlator, obtained by summing all contributions with the appropriate sign and multiplying the averaged
mixed-sign contributions by 3.
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FIG. 15. Connected three-point correlators that were discovered
by our CCNNs to capture the ordered phase at large Rb/a, used in
tandem with other two- and three-point correlators not shown. All
correlators are summed across all 8 reflection/rotation-transformed
versions and averaged over all translations, which leave all three sites
within the snapshot. At low Rb/a, these correlators become positive
again due to different sign contributions [(+−−) for the top two and
(+++) for the bottom two].

snapshots δni ≡ ni − 〈ni〉, uniform third-order CCNN fea-
tures measure weighted sums of connected three-point
correlation functions, averaged over all spatial translations,

〈
c(3)
α

〉 =
∑

x

(L f −1,L f −1)∑
i jk=(0,0)

fi f j fk〈δnx+iδnx+ jδnx+k〉, (E1)

where the inner sum runs over all configurations of displace-
ments (i, j, k) within the spatial extent of the filter f of
length L f . Due to the symmetrization process outlined in
Appendix B 1, this must also be averaged over all rotations
and flips of the three-point pattern.

In terms of individual density configurations, each of these
correlators acquire positive contributions either when all of
(δni, δn j, δnk ) are positive (+++), or when only one is

(+−−), (−+−), (−−+). The CCNN does not directly in-
form us as to how the correlator became positive—manual
follow-up is necessary to uncover this information. For exam-
ple, in Fig. 14, we show the statistics of these different sign
contributions for the dominant three-point correlators learned
by the CCNN within the purple region. For conciseness, the
heights of the bars corresponding to mixed-sign contributions
are averaged over all configurations, which produce the same
sign. In Fig. 15, we show the value of a handful of these
key correlators across the (�/�, Rb/a) parameter space in the
data.

From this, we can see that the short-range patterns learned
by the CCNN are actually producing positive signals due to
a large number of (+−−) density configurations, as shown
in Figs. 14(a) and 14(b). This points to the longer-range
packing of Rydberg excitations within this phase—if one of
the sites in the indicated triples is excited, it is more likely
that the other two are in the ground state. Meanwhile, the
patterns of Figs. 14(c) and 14(d) are positive dominantly due
to (+++) configurations, indicating that these motifs signal
actual common configurations of joint Rydberg excitations.
Figure 14 shows that the star-like configurations also have
a large (+++) signal in this phase, as expected from the
idealized pattern, but the other sign contributions cause this
correlator to turn negative and not be picked up by the CCNN.
Together, we can infer from these correlations that we are
probing a (possibly rhombic-like) ordered phase, which is
failing to develop long-range order due to the incommensurate
geometry of the system. Similar arguments apply to the motifs
for the staggered and nematic phases as well.

In Fig. 15, we show the extent in parameter space of the
key identified connected three-point correlators, and observe
that the purple region colored by the CCNN does indeed
correspond to the region where the long-range three-point
motifs uniquely produce a positive signal. Further theoretical
and numerical analysis is needed to confirm that this phase
exists in the thermodynamic limit and that the rough region of
parameter space identified by our CCNN corresponds to the
true region hosting this phase, as well as to determine if these
higher-order signals remain good indicators of the phase in
the thermodynamic limit.

[1] P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A.
Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, Observation of
spatially ordered structures in a two-dimensional Rydberg gas,
Nature (London) 491, 87 (2012).

[2] A. Browaeys and T. Lahaye, Many-body physics with in-
dividually controlled Rydberg atoms, Nat. Phys. 16, 132
(2020).

[3] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì,
T. Lahaye, and A. Browaeys, Tunable two-dimensional arrays
of single Rydberg atoms for realizing quantum Ising models,
Nature (London) 534, 667 (2016).

[4] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner et al.,
Probing many-body dynamics on a 51-atom quantum simulator,
Nature (London) 551, 579 (2017).

[5] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini,
A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho
et al., Quantum phases of matter on a 256-atom programmable
quantum simulator, Nature (London) 595, 227 (2021).

[6] K. Vogel and H. Risken, Determination of quasiprobability
distributions in terms of probability distributions for the rotated
quadrature phase, Phys. Rev. A 40, 2847 (1989).

[7] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G.
White, Measurement of qubits, Phys. Rev. A 64, 052312
(2001).

[8] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert,
Quantum State Tomography via Compressed Sensing, Phys.
Rev. Lett. 105, 150401 (2010).

[9] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S.
Sachdev, Complex Density Wave Orders and Quantum Phase

013026-19

https://doi.org/10.1038/nature11596
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1038/nature18274
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/s41586-021-03582-4
https://doi.org/10.1103/PhysRevA.40.2847
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevLett.105.150401


COLE MILES et al. PHYSICAL REVIEW RESEARCH 5, 013026 (2023)

Transitions in a Model of Square-Lattice Rydberg Atom Arrays,
Phys. Rev. Lett. 124, 103601 (2020).

[10] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch,
J. I. Cirac, and P. Zoller, Dipole Blockade and Quantum In-
formation Processing in Mesoscopic Atomic Ensembles, Phys.
Rev. Lett. 87, 037901 (2001).

[11] C. Miles, A. Bohrdt, R. Wu, C. Chiu, M. Xu, G. Ji, M. Greiner,
K. Q. Weinberger, E. Demler, and E.-A. Kim, Correlator
convolutional neural networks as an interpretable architecture
for image-like quantum matter data, Nat. Commun. 12, 3905
(2021).

[12] J. Carrasquilla and R. G. Melko, Machine learning phases of
matter, Nat. Phys. 13, 431 (2017).

[13] S. J. Wetzel, Unsupervised learning of phase transitions: From
principal component analysis to variational autoencoders, Phys.
Rev. E 96, 022140 (2017).

[14] W. Hu, R. R. P. Singh, and R. T. Scalettar, Discovering phases,
phase transitions, and crossovers through unsupervised machine
learning: A critical examination, Phys. Rev. E 95, 062122
(2017).

[15] E. Greplova, A. Valenti, G. Boschung, F. Schäfer, N. Lörch, and
S. D. Huber, Unsupervised identification of topological phase
transitions using predictive models, New J. Phys. 22, 045003
(2020).

[16] K. Liu, J. Greitemann, and L. Pollet, Learning multiple or-
der parameters with interpretable machines, Phys. Rev. B 99,
104410 (2019).

[17] Y.-H. Liu and E. P. L. van Nieuwenburg, Discriminative Co-
operative Networks for Detecting Phase Transitions, Phys. Rev.
Lett. 120, 176401 (2018).

[18] J. Venderley, K. Mallayya, M. Matty, M. Krogstad, J. Ruff, G.
Pleiss, V. Kishore, D. Mandrus, D. Phelan, L. Poudel, A. G.
Wilson, K. Weinberger, P. Upreti, M. Norman, S. Rosenkranz,
R. Osborn, and E.-A. Kim, Harnessing interpretable and un-
supervised machine learning to address big data from modern
x-ray diffraction, Proc. Natl. Acad. Sci., 119, e2109665119
(2022).

[19] N. Käming, A. Dawid, K. Kottmann, M. Lewenstein, K.
Sengstock, A. Dauphin, and C. Weitenberg, Unsupervised
machine learning of topological phase transitions from exper-
imental data, Mach. Learn.: Sci. Technol. 2, 035037 (2021).

[20] J. Arnold, F. Schäfer, M. Žonda, and A. U. J. Lode, Inter-
pretable and unsupervised phase classification, Phys. Rev. Res.
3, 033052 (2021).

[21] K. Kottmann, P. Huembeli, M. Lewenstein, and A. Acín, Unsu-
pervised Phase Discovery with Deep Anomaly Detection, Phys.
Rev. Lett. 125, 170603 (2020).

[22] A. Cole, G. J. Loges, and G. Shiu, Quantitative and interpretable
order parameters for phase transitions from persistent homol-
ogy, Phys. Rev. B 104, 104426 (2021).

[23] P. Huembeli, A. Dauphin, P. Wittek, and C. Gogolin, Auto-
mated discovery of characteristic features of phase transitions
in many-body localization, Phys. Rev. B 99, 104106 (2019).

[24] C. Casert, T. Vieijra, J. Nys, and J. Ryckebusch, Inter-
pretable machine learning for inferring the phase bound-
aries in a nonequilibrium system, Phys. Rev. E 99, 023304
(2019).

[25] P. Huembeli, A. Dauphin, and P. Wittek, Identifying quantum
phase transitions with adversarial neural networks, Phys. Rev.
B 97, 134109 (2018).

[26] B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Fläschner,
C. Becker, K. Sengstock, and C. Weitenberg, Identifying
quantum phase transitions using artificial neural networks on
experimental data, Nat. Phys. 15, 917 (2019).

[27] C. M. Bishop, Pattern Recognition and Machine Learning,
Information Science and Statistics (Springer, New York, 2006).

[28] J. Venderley, V. Khemani, and E.-A. Kim, Machine Learning
Out-of-Equilibrium Phases of Matter, Phys. Rev. Lett. 120,
257204 (2018).

[29] A. Bohrdt, C. S. Chiu, G. Ji, M. Xu, D. Greif, M. Greiner, E.
Demler, F. Grusdt, and M. Knap, Classifying snapshots of the
doped Hubbard model with machine learning, Nat. Phys. 15,
921 (2019).

[30] R. Meyes, M. Lu, C. W. de Puiseau, and T. Meisen, Ablation
studies in artificial neural networks, arXiv:1901.08644.

[31] M. J. O’Rourke and G. K.-L. Chan, Entanglement in the
quantum phases of an unfrustrated Rydberg atom array,
arXiv:2201.03189.

[32] M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Entangle-
ment entropy in the O(N ) model, Phys. Rev. B 80, 115122
(2009).

[33] W. H. Zurek, U. Dorner, and P. Zoller, Dynamics of a
Quantum Phase Transition, Phys. Rev. Lett. 95, 105701
(2005).

[34] M. Metlitski, Boundary criticality of the O(N ) model in d = 3
critically revisited, SciPost Phys. 12, 131 (2022).

[35] M. Kalinowski, R. Samajdar, R. G. Melko, M. D. Lukin, S.
Sachdev, and S. Choi, Bulk and boundary quantum phase transi-
tions in a square Rydberg atom array, Phys. Rev. B 105, 174417
(2022).

[36] G. Semeghini, H. Levine, A. Keesling, S. Ebadi, T. T. Wang, D.
Bluvstein, R. Verresen, H. Pichler, M. Kalinowski, R. Samajdar
et al., Probing topological spin liquids on a programmable
quantum simulator, Science 374, 1242 (2021).

[37] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S.
Sachdev, Quantum phases of Rydberg atoms on a kagome
lattice, Proc. Natl. Acad. Sci. USA 118, e2015785118
(2021).

[38] R. Verresen, M. D. Lukin, and A. Vishwanath, Prediction of
Toric Code Topological Order from Rydberg Blockade, Phys.
Rev. X 11, 031005 (2021).

[39] R. Samajdar, D. G. Joshi, Y. Teng, and S. Sachdev, Emergent
Z2 gauge theories and topological excitations in Rydberg atom
arrays, arXiv:2204.00632.

[40] M. Fishman, S. R. White, and E. M. Stoudenmire, The
ITensor software library for tensor network calculations,
arXiv:2007.14822.

[41] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al.,
PyTorch: An imperative style, high-performance deep learning
library, in Advances in Neural Information Processing Systems
32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett (Curran Associates, Inc.,
New York, 2019), pp. 8024–8035.

[42] github.com/KimGroup/QGasML.
[43] D. P. Kingma and J. Ba, Adam: A method for stochastic opti-

mization, arXiv:1412.6980.
[44] S. Ioffe and C. Szegedy, Batch normalization: Accelerating

deep network training by reducing internal covariate shift,
arXiv:1502.03167.

013026-20

https://doi.org/10.1103/PhysRevLett.124.103601
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1038/s41467-021-23952-w
https://doi.org/10.1038/nphys4035
https://doi.org/10.1103/PhysRevE.96.022140
https://doi.org/10.1103/PhysRevE.95.062122
https://doi.org/10.1088/1367-2630/ab7771
https://doi.org/10.1103/PhysRevB.99.104410
https://doi.org/10.1103/PhysRevLett.120.176401
https://doi.org/10.1073/pnas.2109665119
https://doi.org/10.1088/2632-2153/abffe7
https://doi.org/10.1103/PhysRevResearch.3.033052
https://doi.org/10.1103/PhysRevLett.125.170603
https://doi.org/10.1103/PhysRevB.104.104426
https://doi.org/10.1103/PhysRevB.99.104106
https://doi.org/10.1103/PhysRevE.99.023304
https://doi.org/10.1103/PhysRevB.97.134109
https://doi.org/10.1038/s41567-019-0554-0
https://doi.org/10.1103/PhysRevLett.120.257204
https://doi.org/10.1038/s41567-019-0565-x
http://arxiv.org/abs/arXiv:1901.08644
http://arxiv.org/abs/arXiv:2201.03189
https://doi.org/10.1103/PhysRevB.80.115122
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.21468/SciPostPhys.12.4.131
https://doi.org/10.1103/PhysRevB.105.174417
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1073/pnas.2015785118
https://doi.org/10.1103/PhysRevX.11.031005
http://arxiv.org/abs/arXiv:2204.00632
http://arxiv.org/abs/arXiv:2007.14822
http://github.com/KimGroup/QGasML
http://arxiv.org/abs/arXiv:1412.6980
http://arxiv.org/abs/arXiv:1502.03167


MACHINE LEARNING DISCOVERY OF NEW PHASES IN … PHYSICAL REVIEW RESEARCH 5, 013026 (2023)

[45] M. Saffman, T. G. Walker, and K. Mølmer, Quantum informa-
tion with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).

[46] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
Büchler, A Rydberg quantum simulator, Nat. Phys. 6, 382
(2010).

[47] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko,
P. Grangier, and A. Browaeys, Entanglement of Two Individual
Neutral Atoms Using Rydberg Blockade, Phys. Rev. Lett. 104,
010502 (2010).

[48] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quan-
tifying Entanglement, Phys. Rev. Lett. 78, 2275 (1997).

[49] A. Elben, R. Kueng, H.-Y. R. Huang, R. van Bijnen, C.
Kokail, M. Dalmonte, P. Calabrese, B. Kraus, J. Preskill, P.
Zoller, and B. Vermersch, Mixed-State Entanglement from Lo-
cal Randomized Measurements, Phys. Rev. Lett. 125, 200501
(2020).

[50] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many prop-
erties of a quantum system from very few measurements, Nat.
Phys. 16, 1050 (2020).

[51] A. Ketterer, N. Wyderka, and O. Gühne, Entanglement
characterization using quantum designs, Quantum 4, 325
(2020).

[52] L. Knips, J. Dziewior, W. Kłobus, W. Laskowski, T. Paterek,
P. J. Shadbolt, H. Weinfurter, and J. D. A. Meinecke,
Multipartite entanglement analysis from ran-
dom correlations, npj Quantum Inf. 6, 51
(2020).

[53] A. Neven, J. Carrasco, V. Vitale, C. Kokail, A. Elben, M.
Dalmonte, P. Calabrese, P. Zoller, B. Vermersch, R. Kueng,
and B. Kraus, Symmetry-resolved entanglement detection us-
ing partial transpose moments, npj Quantum Inf. 7, 152
(2021).

[54] Y. Zhou, P. Zeng, and Z. Liu, Single-Copies Estimation
of Entanglement Negativity, Phys. Rev. Lett. 125, 200502
(2020).

[55] X.-D. Yu, S. Imai, and O. Gühne, Optimal Entanglement Cer-
tification from Moments of the Partial Transpose, Phys. Rev.
Lett. 127, 060504 (2021).

013026-21

https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1038/nphys1614
https://doi.org/10.1103/PhysRevLett.104.010502
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1103/PhysRevLett.125.200501
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.22331/q-2020-09-16-325
https://doi.org/10.1038/s41534-020-0281-5
https://doi.org/10.1038/s41534-021-00487-y
https://doi.org/10.1103/PhysRevLett.125.200502
https://doi.org/10.1103/PhysRevLett.127.060504

