
PHYSICAL REVIEW RESEARCH 5, 013020 (2023)

Correlated topological pumping of interacting bosons assisted by Bloch oscillations
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Thouless pumping, not only achieving quantized transport but also immune to moderate disorder, has attracted
growing attention in both experiments and theories. Here, we explore how particle-particle interactions affect
topological transport in a periodically modulated and tilted optical lattice. Three characterized interaction effects
are revealed: topological pumping of bound states, interaction blockade of scattering states, and topologically
resonant tunnelings. Attributed to the tilting, we have found a linear scanning in the first Brillouin zone at each
Bloch-oscillation period of multiparticle center-of-mass momentum. Not limited to multiparticle Wannier states,
our scheme ensures a dispersionless quantized transport even for initial Gaussian-like wave packets of interacting
bosons which do not uniformly occupy a given band. Our study deepens the understanding of correlation effects
on topological states, and provides a feasible way for detecting topological properties in interacting systems.
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I. INTRODUCTION

Thouless pumping [1,2], a quantized transport in peri-
odically modulated systems, can be viewed as a dynamical
version of the integer quantum Hall effect. In Thouless pump-
ing, when a uniform band occupation and adiabatic cyclic
modulation are satisfied, the Chern number of the occupied
band can be identified by the displacement per driven period.
Due to its potential applications such as current standard,
quantum state transfer, and entanglement generation, Thou-
less pumping has been theorized [3–8], and observed in
ultracold atom [9–12], photon [13–15], and spin [16] systems.
However, if the initial state is restricted to a single momentum
state, a nonquantized geometric pumping has been observed in
a Bose-Einstein condensate [17]. Recently, a new topological
pumping assisted by Bloch oscillations is proposed, in which
adding a tilting potential recovers a quantized transport of
a single momentum state [18]. Owing to the tilting poten-
tial, two main obstacles in Thouless pumping, initial-state
preparation with a uniform band occupation and wave-packet
dispersion, are solved.

Since particle-particle interaction is ubiquitous and in-
evitable, Thouless pumping has been naturally generalized
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to interacting systems [19–27]. Relying on cotranslational
symmetry, Thouless pumping of a multiparticle Wannier state
is related to the Chern number of the occupied multiparticle
Bloch band. For few particles, the interactions support the
Thouless pumping of bound states in which particles are
transported as a whole [19,20], and topologically resonant
tunnelings in which particles are transported one by one [21].
The interplay between the interaction strength and linear po-
tential contributes to the engineering of the Floquet bands
which can be identified by two-boson Thouless pumping [22].
For many particles, quantized topological pumping may occur
in the Mott-insulating regime with one boson per unit cell
[23] and break down due to the vanishing many-body energy
gap [24,25]. On the other hand, the on-site interactions can
be treated as Kerr nonlinearity in the mean-field approxima-
tion. Moderate nonlinearity supports quantized transport of a
soliton, while strong nonlinearity makes the soliton localized,
which has been observed in curved waveguide arrays [26,27].
Notice that a tilting potential has some advantages in topolog-
ical pumping of a single particle. It is of great interest how
the new topological pumping assisted by Bloch oscillations is
affected by particle-particle interaction.

In this paper, we study topological transport of inter-
acting bosons in a periodically driven and tilted optical
superlattice, as depicted in Fig. 1. In a rotating framework,
the tilting potential is transferred to the role of linearly
varying phase in the tunneling rate, and multiparticle cotrans-
lational symmetry is recovered. According to the multiparticle
Bloch theorem, the energy bands consist of scattering-state
bands and bound-state bands in strong interaction regions.
Compared to the single-particle case with single-particle mo-
mentum in Ref. [18], we have demonstrated the multiparticle
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FIG. 1. Schematic of two bosons in a periodically driven super-
lattice under a tilted linear potential. The nearest-neighbor tunneling
and on-site potential are driven via the phase φ(t ). The on-site inter-
action is labeled by U and the tilt is ωF .

center-of-mass momentum linearly scans the first Brillouin
zone at each Bloch-oscillation period and clarified three main
effects induced by interactions. The first is the topological
pumping of bound states. For an initial bound state with an
arbitrary center-of-mass momentum, we find that the center-
of-mass displacement in an overall period is nearly quantized
and independent of the initial quasimomentum, in contrast to
nonquantized displacement in the absence of tilting potential.
The quantization is related to a reduced Chern number defined
as a one-dimensional time integral of the Berry curvature,
which can be viewed as a perfect approximation of the two-
body Chern number. We derive an effective single-particle
model for the bound states by the many-body degenerate
perturbation theory, and find the reduced Chern number of
the single-particle model is consistent with the one men-
tioned above. The reduced Chern number can be used to
precisely identify the boundary of topological phase transi-
tions. The second is the interaction blockade of scattering
states. For the scattering states, when the two particles are
far away from each other and occupy the topologically non-
trivial scattering-state bands, the two particles as a Fock state
can be transferred as a whole. However, when the two par-
ticles occupy the topologically trivial scattering-state bands,
the two counterpropagating particles can be independently
shifted toward each other, incur an interaction blockade at
the nearest-neighbor lattice sites, and come back to the initial
state without crossing each other. The third is the topologi-
cally resonant tunnelings. When the interaction matches with
the on-site potential difference between two nearest-neighbor
sites, we find topologically resonant tunnelings occur where
two particles move one by one.

This paper is organized as follows. In Sec. II, we in-
troduce an interacting Rice-Mele model in a tilted optical
lattice. In Sec. III, under the guidance of an effective single-
particle model, we clarify the topological pumping of bound
states assisted by Bloch oscillations. In Sec. IV, we show
that the scattering states can be topologically transported
as a whole or maintain the same after certain cycles, de-
pending on the initial positions of the two particles. In
Sec. V, we discuss the topologically resonant tunnelings
assisted by Bloch oscillations when the on-site potential
difference between nearest-neighbor sites compensates the
interaction. In Sec. VI, we give a brief summary and
discussion.

II. AN INTERACTING RICE-MELE MODEL IN A TILTED
OPTICAL LATTICE

We consider an interacting Rice-Mele model with a tilted
potential (see Fig. 1), described by the following Hamiltonian:

Ĥ (t ) =
∑

j

{{J + δ0 sin[π j + φ(t )]}â†
j â j+1 + H.c.}

+ U

2

∑
j

n̂ j (n̂ j − 1) +
∑

j

{�0 cos[π j + φ(t )]

+ ωF j}n̂ j . (1)

Here, â†
j (â j) creates (annihilates) a boson at site j with the

atom number operator n̂ j = â†
j â j . For simplicity, we set the

Planck constant h̄ = 1. J is the tunneling constant, and δ0

and �0 represent the modulation amplitudes of the tunneling
strength and on-site potential, respectively. U denotes the
interaction which can be tuned by the Feshbach resonance
[28,29]. A double-well optical superlattice can be formed by
a superposition of a short-wavelength optical lattice Vs(t ) =
−Vs cos2(πx/d ) with a period d and a long-wavelength opti-
cal lattice Vl (t ) = −Vl cos2[πx/(2d ) − φ(t )/2] with a period
2d . The relative phase φ(t ) = φ0 + ωt has been experimen-
tally realized [9,10].

ωF is a tilt formed by applying a gradient magnetic field
[30–35] or by placing the lattice along the gravitational field
direction [36,37]. Considering magnetic field gradient as a
tilt, atoms are prepared at hyperfine levels, and then the Zee-
man shift occurs by applying a position-dependent magnetic
field. The Zeeman energy gradient corresponds to a magnetic
field gradient. In ultracold atomic experiments, a magnetic
field gradient is applied to measure temperature [30], pre-
pare arbitrary patterns of atoms [31], create state-dependent
optical lattices [32], observe Bloch oscillations in position
space [33,34], and obtain a tunneling phase [35]. After ap-
plying additional tilts along one [38,39] or two [40] directions
in two-dimensional systems, the wave-packet centroid shifts
are also proposed to dynamically detect the band topology.
The tilt ωF forms an on-site potential difference between
two sites, which breaks the translational invariance of the
lattice. To obtain the energy band under periodic boundary
conditions, we apply a time-dependent unitary transformation
Û = exp(i

∑
j jωFt n̂ j ) to the Hamiltonian (1). The lattice

translational invariance is recovered in the rotating frame
given by

Ĥrot (t ) = U

2

∑
j

n̂ j (n̂ j − 1) +
∑

j

{�0 cos[π j + φ(t )]}n̂ j

+
∑

j

{{J + δ0 sin[π j + φ(t )]}e−iωF t â†
j â j+1

+ H.c.}. (2)

Obviously, the tilted potential in the Hamiltonian (1) amounts
to a time-dependent phase factor of the tunneling term in the
rotating frame. The Hamiltonian (2) involves two frequencies
where one is the modulation frequency ω depending on the
parameter modulation period Tm = 2π/ω and the other is the
tilt frequency ωF depending on the tilt period TF = 2π/ωF . p
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and q are chosen as coprime numbers, and a rational number is
defined as ωF /ω = p/q. An overall period Ttot = nqTm, as the
common multiple of periods Tm and TF , guarantees a trans-
lational symmetry in time domain for Hamiltonian (2) with
Ĥrot (t + Ttot ) = Ĥrot (t ) with n = 1, 2, 3, . . . . All eigenstates
return to themselves over a period Ttot which is consistent with
the period of Hamiltonian (2). In the following sections, the
evolution time is chosen as Ttot.

We consider N interacting bosons in the optical superlattice
consisting of L cells with d sites per cell. For Hamiltonian
(2), particles as a whole satisfy a cotranslational invari-
ance, that is, the system remains invariant as long as all the
particles as a whole shift integer cells [21,41]. The quasimo-
mentum of the center of mass, as a good quantum number,
contributes to the multiparticle Bloch bands by solving the
eigenequation

Ĥrot (k)|ψm(k)〉 = Em(k)|ψm(k)〉. (3)

Here, |ψm(k)〉 represents the multiparticle Bloch state with
quasimomentum k in the mth multiparticle Bloch bands
whose corresponding eigenvalue is Em(k). Combining the pe-
riodic parameters t and k, we can construct a closed surface
where t serves as a quasimomentum in the second dimension
[18,42,43]. Referring to real two-dimensional periodic sys-
tems [44], we define the Chern number in a two-dimensional
closed surface as

Cm = 1

2π

∫ 2π/d

0
dk

∫ qTm

0
dt Fm(k, t ) (4)

with the Berry curvature of the mth band Fm = i(〈∂tψm |
∂kψm〉 − 〈∂kψm | ∂tψm〉).

Given [Ĥrot,
∑

j n̂ j] = 0, subspaces with different par-
ticle numbers are decoupled and the particle number is
conserved. We mainly analyze the topological properties
of two interacting bosons in the Rice-Mele model where
the system is confined in two-boson basis {|l1l2〉 = (1 +
δl1l2 )−1/2â†

l1
â†

l2
|0〉} with 1 � l1 � l2 � Lt and Lt = dL be-

ing the system size. After introducing Cl1l2 = 〈0|âl2 âl1 |ψ〉,
an arbitrary two-boson state can be expanded as |ψ〉 =∑

l1�l2
ψl1l2 |l1l2〉 where ψl1l2 = Cl1l2 (1 + δl1l2 )−1/2. Further,

the eigenequation Ĥrot|ψ〉 = E |ψ〉 turns to

ECl1l2 ={J + δ0 sin[π l1 + φ(t )]}e−iωF tCl1+1,l2

+ {J + δ0 sin[π l2 + φ(t )]}e−iωF tCl1,l2+1

+ {J + δ0 sin[π (l1 − 1) + φ(t )]}eiωF tCl1−1,l2

+ {J + δ0 sin[π (l2 − 1) + φ(t )]}eiωF tCl1,l2−1

+ {�0 cos[π l1 + φ(t )] + �0 cos[π l2 + φ(t )]}Cl1l2

+ UCl1l2δl1l2 . (5)

III. TOPOLOGICAL PUMPING OF BOUND STATES
ASSISTED BY BLOCH OSCILLATIONS

In this section we discuss the quantized topological pump-
ing of two-boson bound states assisted by Bloch oscillations,
where bosons tend to stay at the same site. By solving
the two-particle eigenequation (3), we obtain two-particle
Bloch bands [see Fig. 2(a)]. The parameters are chosen
as J = −1, δ0 = 0.8, �0 = 2, U = 30, ω = 0.005, φ0 = 0,

FIG. 2. Two-boson energy spectrum. (a) The 3D view of Bloch
bands in the parameter space (k, t). (b) The time evolution of energies
E (t ) for Bloch states with k = 0. The red circles are the eigenener-
gies of the effective single-particle model (19). The parameters are
chosen as J = −1, δ0 = 0.8, �0 = 2, U = 30, ω = 0.005, φ0 = 0,
ωF /ω = 10/3, Lt = 26.

ωF /ω = 10/3, Lt = 26. The two-particle energy spectrum
consists of five isolated bands ordered for decreasing values
of the energy marked with bands (i)–(v), of which the bands
(i) and (ii) correspond to bound states and the remaining
bands belong to scattering states. According to the defini-
tion (4), the Chern numbers of multiparticle Bloch bands
are calculated: Ci = −3, Cii = 3, Ciii = −3, Civ = 0, and
Cv = 3. The corresponding bulk-boundary correspondence
under open boundary condition is presented in Appendix A.
Figure 2(b) shows the change of energies for Bloch states
with k = 0, where the band gaps remain open as time
evolves.

The adiabatic transport theorem indicates that the velocity
for a state with momentum k in the mth band is written to the
first order as [45]

vm(k, t ) = ∂εm(k, t )

h̄∂k
+ Fm(k, t ), (6)

which consists of dispersion of energy band and Berry curva-
ture. After inputting a Bloch state, the pumping distance at the
moment τ is determined by a semiclassical formula

�X (τ ) =
∫ τ

0
vm(k, t )dt . (7)

Without loss of generality, we pay attention to the band (ii) of
the two-boson Bloch bands. Figure 3 displays the center-of-
mass displacements of the multiparticle Bloch state at each
quasimomentum in band (ii) after an evolution time Ttot =
3Tm. When ωF = 0, analogously to a geometric pumping
[17], the center-of-mass displacements of Bloch states are
associated with the quasimomentum k, whose amplitudes are
significantly reduced by interaction. In the presence of ωF ,
�X (3Tm)/d for each k are quite close to the Chern num-
ber (Cii = 3), regardless of the interaction values. It implies
that any states initially prepared on a given band can realize
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FIG. 3. The center-of-mass displacements of multiparticle Bloch
states with different quasimomenta k in terms of the semiclassical
formula (7) for different U and ωF . The other parameters are chosen
as J = −1, δ0 = 0.8, �0 = 2, ω = 0.005, φ0 = 0.

a quantized topological pumping even for an initial single-
momentum state.

In the two-particle basis, the multiparticle Bloch state is
written as |ψ〉 = ∑

l1�l2
ψl1l2 (k0, t0)|l1l2〉 with the probability

amplitude ψl1l2 (k0, t0). Since multiparticle Bloch states are
independent of k feature quantized transports, it is reasonable
to predict that a quantized transport can be realized with an
arbitrary wave packet initially prepared on a given band. To
verify this, two typical initial states are considered. One is a
strongly localized initial state in a real space, e.g., |ψ(t0)〉 =
|Lt/2, Lt/2〉. The other is the Gaussian wave packet con-
structed by the multiparticle Bloch state with quasimomentum
k0 = 0 in band (ii), e.g.,

|ψ(t0)〉 =
∑
l1�l2

e−(l1−l0 )2+(l2−l0 )2/4σ 2
ψl1l2 (k0, t0)|l1l2〉. (8)

Here, σ and l0 are the width and center-of-mass position of
the initial wave packet, respectively. Such a Gaussian wave
packet (8) can be prepared by adding an additional harmonic
potential. The evolved state |ψ(t )〉 = ∑

l1�l2
ψl1l2 (t )|l1l2〉 is

determined by |ψ(t )〉 = T exp{−i
∫ t

t0
Ĥ (t )dt}|ψ(t0)〉 with the

time-ordering operator T . We extract the center-of-mass dis-
placement

�X (t ) = X (t ) − X (0) (9)

from the particle density distribution n j (t ) = 〈ψ(t )|n̂ j |ψ(t )〉
with X (t ) = ∑

l1�l2
l1+l2

2 |ψl1l2 (t )|2. The change of wave-
packet width is given by

�W (t ) = W (t ) − W (0) (10)

with wave-packet width described by W (t ) =√∑
l1�l2

[(l1 + l2)/2 − X (t )]2|ψl1l2 (t )|2.
By numerically calculating the wave-packet dynamics of

different initial states and interaction strengths, we evaluate
the effect of tilt in Fig. 4. Depending on the probability of
initial states projecting onto band (ii) at time t = 0, the motion
of a real-space wave packet undergoes distinct dynamics. The

tightly localized initial states |ψ(t0)〉 = |Lt/2, Lt/2〉 actually
spread over bands (i) and (ii) at time t = 0, whose population
probability in band (ii) at time t = 0 increases with interac-
tion. As interaction increases, the bound-state bands (i) and
(ii) gradually become flat with a reduced tunneling strength
in a second-order tunneling process as derived in Eq. (18),
accompanied by the initial Fock states becoming multiparticle
Wannier states as an equal superposition of all the multi-
particle Bloch states at each quasimomentum in band (ii) at
time t = 0 (see Appendix B for initial multiparticle Wannier
states). The center-of-mass displacement after 3Tm is extracted
as displayed in Fig. 4. For U = 10, the population probability
of the initial Fock state in band (ii) at time t = 0 is 0.858,
both accompanied by nonquantized centroid displacements
2.644d (ωF = 0) in Fig. 4(a) and 2.607d (ωF = 10ω/3) in
Fig. 4(b). For U = 30, the centroid displacements of the initial
Fock states are almost perfect quantization in Figs. 4(e) and
4(f) whose slight deviations are caused by the nonadiabatic
transition for the smaller energy gap with a stronger interac-
tion. The tilt ensures that the centroid position of the initial
Gaussian wave packet shifts integer cells [see Figs. 4(d) and
4(h)]. Despite the lack of tilt, the centroid displacements of the
initial Gaussian wave packet gradually approach to the band
topology Cii = 3 as interaction increases [see Figs. 4(c) and
4(g)]. In agreement with the semiclassical results in Fig. 3,
this behavior is directly attributed to the reduced tunneling
strength by the interaction. When applied to the tilting, the
real-space wave-packet dynamics in Fig. 4(h) has a slight
difference with the absence of the tilting in Fig. 4(g) due to
the reduced tunneling strength by strong interaction, while the
effect of tilt can be obviously observed in quasimomentum
space in Appendix C.

It can be seen from Fig. 4 that the initial wave packets may
spread over the whole lattice over enough time in the absence
of tilt. However, in the presence of tilt, the initial wave
packets are well localized with initial widths. This is because
the wave-packet dispersion can be significantly suppressed by
the tilt. We find that the role of a tilt ensures the dispersionless
quantized centroid displacements once the initial states are
prepared on a given band and follow adiabatic evolutions.
While for the absence of tilt the quantized transports require
the initial states uniformly filling at a specific band such as
Wannier states with adiabatic driving. It is worth mentioning
nonadiabatic effects also break the topological pumping.
Whether the tilt is applied or not, the topological pumping
after Ttot approaches the quantized value only if the adiabatic
driving condition is satisfied. Fast topological pumping out
of the adiabatic approximation is proposed by introducing
the time-periodic dissipation [46] and mapping onto the
zero curvature representation of the Euclidean sinh-Gordon
equation [8].

A. Effective single-particle model

To have a better understanding of the bound-state transport
mechanism, we take the interaction term as the domination
and the other terms as the perturbation, and employ the many-
body degenerate perturbation theory to analytically derive an
effective single-particle model of bound states. The effec-
tive single-particle model can greatly describe the topological
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FIG. 4. The time evolution of particle density distribution of the bound-state dynamics. Blue lines and red dashed lines indicate the
corresponding center-of-mass displacement �X (t )/d and variation of wave-packet width �W (t ). Different interaction strengths are examined:
(a)–(d) U = 10 and (e)–(h) U = 30. The role of tilt is analyzed: ωF = 0 (the first and third columns) and ωF = 10ω/3 (the second and fourth
columns). Two types of initial states are discussed: localized Fock states (the first and second columns) and extended Gaussian states (the third
and fourth columns). The other parameters are chosen as J = −1, δ0 = 0.8, �0 = 2, ω = 0.005, φ0 = 0, and Ttot = qTm = 3Tm.

properties of bound-state bands, where eigenvalues, eigen-
states, and topological invariants of the bound-state bands
can be solved analytically. Consequently, the reduced Chern
number of the multiparticle Bloch bands can be defined.

The Hamiltonian (1) is divided into two parts, Ĥ (t ) =
Ĥ0 + Ĥint with

Ĥint = U

2

∑
j

n̂ j (n̂ j − 1) (11)

as the interaction term and

Ĥ0 =
∑

j

{{J + δ0 sin[π j + φ(t )]}â†
j â j+1 + H.c.}

+
∑

j

{�0 cos[π j + φ(t )] + ωF j}n̂ j (12)

as the noninteraction term. In the strongly interacting regime
U � (J, δ0,�0, ωF ), Ĥ0 is treated as a perturbation to Ĥint .
Ĥint includes two degenerate subspaces U and V . The sub-
space U consists of bound states with two bosons at the same
site, that is, U ≡ {|2〉 j}, and the degenerate energy is Ej = U .
The subspace V consists of states with two bosons at different
sites, that is, V ≡ {|1〉 j |1〉k}, and the degenerate energy is
Ejk = 0 with j �= k. We respectively define the projection
operators into the subspaces U and V as

P̂ =
∑

j

|2〉 j〈2| j (13)

and

Ŝ =
∑
j �=k

1

Ej − Ejk
|1〉 j |1〉k〈1|k〈1| j . (14)

Using a second-order degenerate perturbation theory [47,48],
the effective Hamiltonian in the subspace U is given by

Ĥeff = ĥ0 + ĥ1 + ĥ2 = EjP̂ + P̂Ĥ0P̂ + P̂Ĥ0ŜĤ0P̂. (15)

The zero-order term satisfies

ĥ0 = EjP̂ = U
∑

j

|2〉 j〈2| j . (16)

The first-order term is

ĥ1 = P̂Ĥ0P̂ =
∑

j

{2�0 cos[π j + φ(t )] + 2ωF j}|2〉 j〈2| j,

(17)

and the second-order term becomes

ĥ2 = P̂Ĥ0ŜĤ0P̂

=
∑

j

2{J + δ0 sin[π j + φ(t )]}2

U
|2〉 j〈2| j+1 + H.c.

+
[

2(J − δ0)2

U
+ 2(J + δ0)2

U

]∑
j

|2〉 j〈2| j . (18)
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Combining Eqs. (16), (17), and (18), the effective single-
particle model yields

Ĥeff =
∑

j

2{J + δ0 sin[π j + φ(t )]}2

U
b̂†

j b̂ j+1 + H.c.

+
∑

j

{2�0 cos[π j + φ(t )] + 2ωF j}b̂†
j b̂ j + C. (19)

Here, b̂†
j represents the creation of two bosons at the site

j simultaneously, that is, b̂†
j |0〉 = |2〉 j . Given the conserva-

tion of the particle number, C is an energy constant with
C = U + 2(J − δ0)2/U + 2(J + δ0)2/U . Similarly, the tilted
potential breaks the lattice translational invariance which can
be recovered in the rotating frame as

Ĥ rot
eff =

∑
j

2{J + δ0 sin[π j + φ(t )]}2

U
e−i2ωF t b̂†

j b̂ j+1

+ H.c. +
∑

j

2�0 cos[π j + φ(t )]b̂†
j b̂ j + C. (20)

B. The reduced Chern number of multiparticle
bound-state bands

To obtain the eigenvalues and eigenstates of the bound-
state bands in quasimomentum space, we take the Fourier
transform for the effective single-particle model (20) as

b̂†
2 j = 1√

L

∑
k

e−ik2 j b̂†
k,e,

b̂†
2 j−1 = 1√

L

∑
k

e−ik(2 j−1)b̂†
k,o. (21)

Here k is the quasimomentum and L is the cell number. o
(e) represents the odd (even) site. After the Fourier transform
(21), the Hamiltonian (20) can be decomposed as Ĥ rot

eff (t ) =∑
k Ĥ rot

eff (k, t ). Each Ĥ rot
eff (k, t ) belongs to a two-level quantum

system

Ĥ rot
eff (k, t ) = hxσ̂x + hyσ̂y + hzσ̂z + C, (22)

where⎛
⎝hx

hy

hz

⎞
⎠ =

⎛
⎜⎜⎝

4 {J2+δ2
0 sin2[φ(t )]}

U cos (k − 2ωFt )

−4 {2Jδ0 sin[φ(t )]}
U sin (k − 2ωFt )

2�0 cos[φ(t )]

⎞
⎟⎟⎠. (23)

By solving the eigenequation Ĥ rot
eff (k, t )|u(k, t )〉 =

ε(k, t )|u(k, t )〉, the eigenvalue is

ε± = ±
√

h2
x + h2

y + h2
z + C. (24)

The eigenstate satisfies

|u±(k, t )〉 =
(

hx−ihy

ε±−hz

1

)
. (25)

Under the same parameters, the eigenvalue (24) is added in
Fig. 2(b) with red circles, which agrees well with the two
bound-state energies.

Based on the equivalent definition of the Berry curvature

Fm(k, t ) = −2 Im

⎡
⎣ ∑

m′ �=m

〈um|∂kĤ |um′ 〉〈um′ |∂t Ĥ |um〉
(εm − εm′ )2

⎤
⎦ (26)

with m = ±, we derive the Berry curvatures of two bands in
the effective single-particle model (20) as

F±(k, t ) = 32
Jδ0ω�0

U

{
J2 + δ2

0 sin2[φ(t )]
}

U

× 1 − cos2[φ(t )] cos2(k − 2ωFt )

[ε±(k, t )]3
. (27)

The instantaneous eigenvalue ε±(k, t ) as a periodic function
of k and t ensures that the integration of the dispersion ve-
locity in the semiclassical formula (7) is equal to zero. After
an evolution time Ttot, only the integration over the time of
the Berry curvature contributes to the center-of-mass displace-
ment of the wave packet, which is defined as the reduced
Chern number

Cm,red(qTm) ≡ �X (qTm)

d
= 1

d

∫ qTm

0
Fm(k, t )dt . (28)

The reduced Chern numbers obtained from Eqs. (27) and (28)
yield the values 2.961(U = 10) and 2.992(U = 30). The other
parameters are chosen as J = −1, δ0 = 0.8, �0 = 2, ω =
0.005, ωF = 10ω/3, φ0 = 0, and Ttot = qTm = 3Tm. Com-
pared with the band topology Cii = 3, the slight deviation
arises from the perturbation condition for the effective model
(19). Given the validity of the effective model, the results be-
come more accurate for a stronger interaction. It indicates that
the bound-state topological properties can be well described
by the effective model for enough interaction strength. In
Appendix D, we have analytically derived a vital relationship
Cm,red(qTm) = Cm between the reduced Chern number and the
Chern number of the bound-state bands for ωF /ω → ∞.

C. Detecting topological phase transitions by the reduced
Chern number

The measurement of topological invariants plays an im-
portant role in understanding topological phases. The band
topology induces quantized transport, which may provide a
way for detecting topological phase transitions in an interact-
ing system. By solving degenerate points of two bound-state
bands, the topological phase boundary without a tilt is analyti-
cally captured under the perturbation condition. There exists a
quantum criticality at �0 = 0 (δ0 = 0) regardless of δ0 (�0).
Except for the critical boundaries, the Chern number Cii of
the band (ii) is calculated in terms of Eq. (4), and the cor-
responding topological phase diagram is shown in Fig. 5(a).
The parameters are chosen as J = −1, ω = 0.005, ωF = 0,
and φ0 = 0. The system size is Lt = 58.

We focus on the topological phase transition from Cii = −3
to Cii = 3 when �0 takes a value from −2 to 2 at δ0 = 0.8,
as shown in the red dashed lines in Figs. 5(a) and 5(b). The
transition of the Chern number is sharper across the critical
point �0 = 0. When the tilt is present, the reduced Chern
number Cii,red in band (ii) is calculated by Eq. (28). The
reduced Chern number can be used for detecting the critical
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FIG. 5. (a) The Chern number Cii of band (ii) with ωF = 0.
(b) The detection of topological phase transition in terms of the
Chern number Cii with ωF = 0 and reduced Chern number Cii,red with
ωF = pω/q. The inset is an enlarged part in (b). The other parameters
are chosen as J = −1, ω = 0.005, φ0 = 0, and Ttot = qTm = 3Tm.
The system size is Lt = 58.

point more accurately as the tilt ωF increases, as shown in
Fig. 5(b). Therefore, the reduced Chern number offers a flex-
ible way for the detection of topological phase transitions in
interacting systems.

IV. TOPOLOGICAL PUMPING OF SCATTERING STATES
ASSISTED BY BLOCH OSCILLATIONS

The continuum band of scattering states is divided into
three isolated cluster bands (iii)–(v). At the initial moment
(t/Tm = 0), in band (v) two independent bosons mainly oc-
cupy different odd sublattices; in band (iv) one (the other)
boson mainly occupies the odd (even) sublattice; and in
band (iii) two independent bosons mainly occupy different
even sublattices. Under the appropriate parameters (J = −1,
δ0 = 0.8, �0 = 7, U = 30, ω = 0.05, φ0 = 0, ωF /ω = 31/3,
Lt = 58), initial state |ψ(t0)〉 = |21, 35〉 (|ψ(t0)〉 = |23, 36〉)
has 0.981 (0.981) population probability in band (v) [band
(iv)] at time t = 0. Figure 6 shows the dynamic evolution from
the initial state |ψ(t0)〉 = |21, 35〉 with an evolved time Ttot =
3Tm. Individual transport is revealed via the particle density
distribution n j = 〈ψ(t )|n̂ j |ψ(t )〉 in Fig. 6(a) and correlation
distribution Ri j = 〈ψ(t )|â†

i â†
j â j âi|ψ(t )〉 in Fig. 6(b). The time

evolution of the centroid position is added in Fig. 6(a) with a
red line, which reflects the centroid position shifts 2.941 cells
after up to 3Tm. Similar to the independent dynamics in Fig. 6,
the initial two bosons mainly occupying band (iii) will freely
propagate in the opposite direction due to C = −3.

Figure 7 manifests the case of initial state |ψ(t0)〉 =
|23, 36〉 with Ttot = 6Tm. Two bosons propagate toward each
other until they occupy nearest-neighbor sites, then are for-
bidden to stay at the same site due to the strong interaction
strength (named interaction blockade), and finally yields a

FIG. 6. Topological pumping of scattering states |ψ(t0)〉 =
|21, 35〉. (a) The time evolution of the particle density distribution.
The center-of-mass position at each moment is shown with a red
line. (b) The correlation distribution at moments t/Tm = 0 and 3.
The parameters are chosen as J = −1, δ0 = 0.8, �0 = 7, U = 30,
ω = 0.05, φ0 = 0, ωF /ω = 31/3, Lt = 58. The evolution time is
Ttot = 3Tm.

counterpropagating away from each other [see Fig. 7(a)]. Af-
ter an evolved time Ttot = 6Tm, the centroid position remains
almost constant in Fig. 7(b). Figures 7(c) and 7(d) respectively
show the two-boson correlations at moments t/Tm = 0 and 3.
During the interaction blockade, the large energy difference
coming from the interaction prevents two bosons from binding
at the same site while behaving similarly to Fig. 7(d). Finally,
two bosons almost return to the initial position as in Fig. 7(c).
For U = 0, the energy spectrum of two noninteracting bosons
consists of three scattering-state bands and two bosons un-
dergo independent dynamics in the absence of an interaction
blockade in Appendix E.

FIG. 7. Topological pumping of scattering states |ψ(t0)〉 =
|23, 36〉. The time evolution of the particle density distribution
(a) and center-of-mass displacement (b). (c) and (d) are the cor-
relation distributions at moments t/Tm = 0 and t/Tm = 3. The
parameters are chosen as J = −1, δ0 = 0.8, �0 = 7, U = 30,
ω = 0.05, φ0 = 0, ωF /ω = 31/3, Lt = 58. The evolution time is
Ttot = 6Tm.
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FIG. 8. The lowest three energy bands of two bosons. (a) The
3D view of Bloch bands in the parameter space (k, t). (b) The time
evolution of energies E (t ) for Bloch states with k = 0. The parame-
ters are chosen as J = −1, δ0 = 0.8, �0 = 20, U = 30, ω = 0.005,
φ0 = 0, ωF /ω = 10/3, Lt = 26.

V. TOPOLOGICALLY RESONANT TUNNELINGS
ASSISTED BY BLOCH OSCILLATIONS

Except for the topological transport of bound and scatter-
ing states, when U � (J, δ0, ωF ) and �0 > U/2 it is expected
that topologically resonant tunnelings could be one of typical
interaction effects. The interaction strength will match with
on-site potential difference between neighboring sites four
times over a period Tm, where the two bosons travel one
by one rather than as a whole. The effective single-particle
model (19) becomes invalid due to the crucial role of cou-
pling between the subspaces U and V . Taking the Fock state
as an example, once the interaction compensates the on-site
potential difference between neighboring sites, resonant tun-
neling happens between state |2〉 j and state |1〉 j |1〉 j+1 (or state
|1〉 j−1|1〉 j) [21].

When the parameters remain the same as those in Fig. 2
except for �0 = 20, the multiparticle Bloch bands are sig-
nificantly changed, as shown in Fig. 8(a) with the lowest
three energy bands. Figure 8(b) shows the change of energies
for Bloch states with k = 0, where a band marked with a
red dashed line is isolated from other bands to allow reso-
nant tunnelings with band Chern number C = 3. The energy
difference between the states |1〉 j |1〉 j+1 and |2〉 j (or |2〉 j+1)
almost vanishes at the energy avoided crossings. Within a
modulation period Tm, four resonant tunnelings occur at four
energy avoided crossings.

The multiparticle Bloch state with quasimomentum k = 0
is constructed into a Gaussian wave packet as the initial state.
The parameters are chosen as J = −1, δ0 = 0.8, �0 = 20,
U = 30, ω = 0.005, φ0 = 0, ωF /ω = 10/3, and σ = 5. The
system size is Lt = 74 and the evolution time is Ttot = qTm =
3Tm. Figure 9(a) exhibits the initial Gaussian wave packet
propagates in a certain range whose wave-packet centroid
in Fig. 9(b) moves up 2.983 cells after up to 3Tm. A small
deviation from the band Chern number results from nona-

FIG. 9. Topologically resonant tunnelings assisted by Bloch os-
cillations. (a) and (b) are the time evolution of the particle density
distribution in real space and the center-of-mass displacement, re-
spectively. (c) The time evolution of the particle density distribution
in quasimomentum space. The parameters are chosen as J = −1,
δ0 = 0.8, �0 = 20, U = 30, ω = 0.005, φ0 = 0, ωF /ω = 10/3,
and σ = 5. The system size is Lt = 74 and the evolution time is
Ttot = qTm = 3Tm.

diabatic transitions due to the slight band gap at the energy
avoided crossings. Based on the semiclassical formula (7),
we numerically calculate the reduced Chern number of multi-
particle Bloch states with quasimomentum k0 = 0, and obtain
Cred(3Tm) = 3. Both �X (3Tm)/d and Cred(3Tm) approach the
band Chern number. Despite a very obvious difference in the
real-space density distribution between topologically resonant
tunnelings and topological pumping of bound states, the mul-
tiparticle center-of-mass momenta both change periodically
across the first Brillouin zone and linearly scan the first Bril-
louin zone at each Bloch-oscillation period [see Fig. 9(c) and
Appendix C]. This is because most of the time two bosons
stay at the same lattice site as a bound pair, except near
the avoided-crossing points. The real-space dynamics of two
interacting bosons in tilted optical lattices has been experi-
mentally observed [33]. We find the linear scanning of center-
of-mass momentum in the first Brillouin zone at each Bloch-
oscillation period, which may provide an effective mean to
measure the magnetic field gradient or gravitational field.

VI. SUMMARY AND DISCUSSIONS

We explore the correlated topological pumping by applying
a tilted potential in an interacting Rice-Mele model. Attributed
to the tilting, the multiparticle center-of-mass momentum
changes periodically across the first Brillouin zone and lin-
early scans the first Brillouin zone at each Bloch-oscillation
period. Therefore, it allows us to obtain the information of
a multiparticle Bloch band in an entire Brillouin zone even
for an initial single-momentum state. Meanwhile, the wave-
packet dispersion is suppressed by the tilting. The reduced
Chern number defined as a one-dimensional time integral of
the Berry curvature characterizes the topological properties of
multiparticle Bloch bands. Interaction plays a key role in the
emergence of correlated topological pumping. The interaction
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binds two bosons together as a pair for topological pumping.
By applying the perturbation analysis, the effective single-
particle model is derived to explain the behavior of bound
states when the interaction is dominated. For scattering states,
fruitful topological transports can be engineered by choosing
the two-particle initial positions. When two counterpropa-
gating bosons meet at the nearest-neighbor lattice sites, an
interaction blockade occurs where interaction prohibits two
bosons from crossing each other. The topologically resonant
tunnelings in which the two particles move one by one are
clarified when the interaction compensates the on-site poten-
tial difference between nearest-neighbor sites.

Unlike the single-particle case in Ref. [18], we demonstrate
that the multiparticle center-of-mass momentum linearly
scans the first Brillouin zone at each Bloch-oscillation pe-
riod in the presence of a tilted field. The role of the tilting
allows one to obtain the information of the multiparticle Bloch
band in an entire Brillouin zone even for an initial single-
momentum state. This feature can be applied to many-body
systems to explore fractional topological states and extract
many-body topological invariants.

We focus on repulsive interactions for the correlated
topological pumping due to the experimentally observed re-
pulsively bound pairs [49] as well as their coherent dynamics
[33]. A symmetry-protected dynamical symmetry theorem
establishes a symmetric relation of the time evolution ob-
servable between repulsive and attractive systems [50,51].
Naturally, the dynamics of attractive interactions can be di-
rectly derived from the corresponding positive one according
to such a theorem. Our results are of great significance for
topological pumping and can be generalized to topological
spin pumping such as two-component bosons where two com-

ponents can be viewed as pseudospin s = 1/2 [52,53], and
other types of Thouless pumping such as nonlinear Thouless
pumping [26,27], non-Abelian Thouless pumping [54–56],
fractional Thouless pumping [57], and higher-order topolog-
ical pumping [58]. Taking the two-component bosons into
account, it is possible to obtain a dispersionless topological
spin transport with accessible initial states, which has poten-
tial applications for designing robust and flexible topological
quantum devices, such as topological beam splitters.
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APPENDIX A: BULK-BOUNDARY CORRESPONDENCE
OF MULTIPARTICLE BLOCH BANDS

The bulk-boundary correspondence is a key feature in
topological band theory, that is, nontrivial band topology is

FIG. 10. Two-boson energy spectrum under the open boundary condition. (a) and (b) are the energy spectra as a function of time t . (c)–(h)
are the density distributions of chosen states marked with (c)–(h) in red dashed lines in (a) and (b). The insets depict corresponding correlation
distributions Ri j . The parameters are chosen as J = −1, δ0 = 0.8, �0 = 2, U = 30, ω = 0.005, φ0 = 0, ωF /ω = 10/3, Lt = 26.
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FIG. 11. The time evolution of particle density distribution obtained using initial multiparticle Wannier states. Blue lines and red dashed
lines indicate the corresponding center-of-mass displacement �X (t )/d and variation of wave-packet width �W (t ). Different interaction
strengths are examined: U = 10 [(a) and (b)] and U = 30 [(c) and (d)]. The role of tilt is analyzed: ωF = 0 [(a) and (c)] and ωF = 10ω/3
[(b) and (d)]. The other parameters are chosen as J = −1, δ0 = 0.8, �0 = 2, ω = 0.005, φ0 = 0, and Ttot = qTm = 3Tm.

associated with the existence of topological edge states at
open boundaries [59,60]. Compared with the multiparticle
Bloch band in Fig. 2(a) in the main text, under the open
boundary condition isolated states appear at the energy gap
in Figs. 10(a) and 10(b). For the chosen parameter marked
with red dashed lines in Figs. 10(a) and 10(b), we respectively
extract states c–h to compute the density distributions: left
(right) two-boson edge state in [Figs. 10(c) and 10(d)] and
left (right) single-boson edge states in Figs. 10(e) and 10(g)
[Figs. 10(f) and 10(h)]. For bound-state bands, two bosons
both stay at the same edge to form two-boson edge states
[see Figs. 10(c) and 10(d)]. For scattering-state bands, the
interaction prevents two bosons from binding at the same edge
due to the large energy difference, while allows one boson
at one edge and the other one remains spatially extended
along the remaining sites [see Figs. 10(e)–10(h)]. Correlation
distributions in the insets show that one-boson edge states are
the direct product of a state with one boson locating at one
edge and another state with one boson distributing in the bulk
sites. Therefore, we classified the states in Figs. 10(e)–10(h)
as single-boson edge states.

APPENDIX B: WAVE-PACKET DYNAMICS OF INITIAL
MULTIPARTICLE WANNIER STATES

Figure 11 shows the wave-packet dynamics obtained using
initial multiparticle Wannier states. The quantized topolog-
ical pumping requires uniformly filled bands. Fortunately,
the multiparticle Wannier state, as an equal superposition of
all the multiparticle Bloch states at each quasimomentum,
uniformly fills a given band. As seen in Fig. 11, for initial mul-
tiparticle Wannier states the center-of-mass displacements are
all quantized whether the tilt is present or not. However, the
nontrivial role of tilt is able to suppress the wave-packet dis-
persion. Let us note that a slower driven frequency is required
to guarantee quantized transport for a stronger interaction due
to the energy gap reduced by interaction. Therefore, the slight
deviations from exactly the quantized value in Figs. 11(c)

and 11(d) with U = 30 originate from the nonadiabatic
effects.

APPENDIX C: DENSITY DISTRIBUTION
IN QUASIMOMENTUM SPACE

In the presence of a tilt, it is a challenge in real space to
extract the period of the Bloch oscillations. By transferring the
evolved states in Figs. 4(g) and 4(h) in the main text to the k-
space representation, the average quasimomentum of the wave
packet respectively remains unchanged and linearly scans the

FIG. 12. The time evolution of particle density distribution in
quasimomentum space for different values of ωF : (a) ωF = 0 and
(b) ωF = 10ω/3. The other parameters are chosen as J = −1, δ0 =
0.8, �0 = 2, U = 30, ω = 0.005, φ0 = 0, and σ = 5. The system
size is Lt = 74 and the evolution time is Ttot = qTm = 3Tm.
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first Brillouin zone at each Bloch-oscillation period as time
evolves, as shown in Figs. 12(a) and 12(b). Figure 12(b)
manifests that when the quasimomentum hits the boundary
k = 0 in the first Brillouin zone, it immediately transitions
to another boundary k = π . The number of Bloch oscilla-
tions can be clearly extracted by counting the number for
scanning the first Brillouin zone of the average quasimomen-
tum. It can be seen that the wave packet performs fractional
Bloch oscillations with a period half of the single-particle
Bloch-oscillation period TB = 2π/(dωF ), which means the
effective tilt experienced by two strongly interacting bosons
turns out to be 2ωF . Naturally, the time evolution of particle
density distribution in quasimomentum space can be used to

determine the value of the tilt, which has potential applica-
tions in measuring gradient magnetic field or gravitational
field.

APPENDIX D: THE RELATIONSHIP BETWEEN REDUCED
CHERN NUMBER AND CHERN NUMBER

We prove that the reduced Chern number of bound-state
bands Cm,red is independent of the value of quasimomentum,
and build its relationship with the Chern number. Based on the
analytical expression of the Berry curvature (27) in the main
text, it can be seen that in the absence of tilted potential the
Berry curvature becomes

F0
±(k, t ) = 32

Jδ0ω�0

U

{
J2 + δ2

0 sin2[φ(t )]
}

U

1 − cos2[φ(t )] cos2(k)

[ε0±(k, t )]3
, (D1)

where

ε0
±(k, t ) = ±

√√√√(
4

{
J2 + δ2

0 sin2[φ(t )]
}

U
cos k

)2

+
(

4
{2Jδ0 sin[φ(t )]}

U
sin k

)2

+ (2�0 cos[φ(t )])2 + C (D2)

is the eigenvalue of the bound-state bands for ωF = 0. There exist ε±(k, t ) = ε0
±(k − 2ωFt, t ) and F±(k, t ) = F0

±(k − 2ωFt, t ).
As k goes to k + �k and t goes to t + �k/(2ωF ), the Berry curvature yields

F±(k + �k, t + �k/2ωF )

= ±32Jδ0ω�0
{
J2 + δ2

0 sin2[φ(t ) + φs]
}{1 − cos2[φ(t ) + φs] cos2(k − 2ωFt )}

U 2
{[

4 {J2+δ2
0 sin2[φ(t )+φs]}

U cos(k − 2ωFt )
]2 + [

4 {2Jδ0 sin[φ(t )+φs]}
U sin(k − 2ωFt )

]2 + [2�0 cos[φ(t ) + φs]]2
}3/2

≈ ±32Jδ0ω�0
{
J2 + δ2

0 sin2[φ(t )]
}{

1 − cos2[φ(t )] cos2
(
k − 2ωFt )

}
U 2

{[
4 {J2+δ2

0 sin2[φ(t )]}
U cos(k − 2ωFt )

]2 + [
4 {2Jδ0 sin[φ(t )]}

U sin(k − 2ωFt )
]2 + [2�0 cos φ(t )]2

}3/2

= F±(k, t ) (D3)

with φs = ω
2ωF

�k. When ωF /ω → ∞, we have φs = 0 and
the relation (D3) becomes exact enough. In the following
derivation, we assume that the system respects ωF /ω → ∞.
Since the Berry curvature (D3) is a periodic function with
period qTm in time domain, the one-dimensional time integral
of the Berry curvature (D3) follows:∫ qTm

0
F±(k + �k, t + �k/2ωF )

dt =
∫ qTm+�k/2ωF

�k/2ωF

F±(k + �k, t )

dt =
∫ qTm

0
F±(k + �k, t )dt . (D4)

According to Eqs. (D3) and (D4), we have

Cm,red = 1

d

∫ qTm

0
F±(k, t )dt = 1

d

∫ qTm

0
F±(k + �k, t )dt .

(D5)

It means that the reduced Chern number of bound-state
bands Cm,red is independent of the value of quasimomentum k

with

Cm,red(k + �k) = Cm,red(k). (D6)

Thus, we can average the reduced Chern number over the first
Brillouin zone without affecting the final results as

Cm,red(qTm) = 1

2π

∫ qTm

0

∫ π/d

−π/d
F0

m(k − 2ωFt, t )dt dk

= 1

2π

∫ qTm

0

∫ π/d

−π/d
F0

m(k, t )dt dk = Cm. (D7)

Unlike the Chern number obtained by a two-dimensional inte-
gral, the reduced Chern number is a one-dimensional integral
over time. The reason is that in the presence of a tilt, all
quasimomentum values are uniformly sampled over a time
cycle. The quasimomentum sampling can be understood as
a valid ergodic behavior in the Brillouin zone, such that the
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FIG. 13. Two noninteracting bosons. (a) The time evolution of
energies E (t ) for Bloch states with k = 0. Topological pumping of
scattering states |ψ(t0 )〉 = |23, 36〉: the time evolution of the particle
density distribution (b) and center-of-mass displacement (c). The pa-
rameters are chosen as J = −1, δ0 = 0.8, �0 = 7, U = 0, ω = 0.05,
φ0 = 0, ωF /ω = 31/3, Lt = 58. The evolution time is Ttot = 6Tm.

one-dimensional time integral is independent of the specific
value of the initial quasimomentum k0.

APPENDIX E: TWO NONINTERACTING BOSONS IN A
PERIODICALLY DRIVEN AND TILTED SUPERLATTICE

When U = 0, the two-boson energy spectrum just con-
sists of three scattering-state bands and Fig. 13(a) exhibits its
change for Bloch states with k = 0 as time evolves. The upper
and lower multiparticle Bloch bands belong to topologically
nontrivial scattering-state bands with Chern number C = −3
and C = 3, respectively. The middle band is topologically
trivial with C = 0. When the two noninteracting bosons are far
away from each other and occupy the topologically nontrivial
scattering-state bands, the two bosons as a Fock state can be
transferred as a whole similar to the interacting case in Fig. 6.
When the two bosons are initially prepared on the topologi-
cally trivial scattering-state bands, the two counterpropagating
bosons can be independently shifted toward each other, and
come back to the initial state after crossing each other without
an interaction blockade in Fig. 13(b). Unlike the interaction
blockade in Fig. 7, two bosons undergo independent dynamics
whose center-of-mass displacement always remains zero, as
shown in Fig. 13(c).
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