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Minor embedding with Stuart-Landau oscillator networks
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We theoretically implement a strategy from quantum computation architectures to simulate Stuart-Landau
oscillator dynamics in all-to-all connected networks, also referred to as complete graphs. The technique builds
upon the triad structure minor embedding which expands dense graphs of interconnected elements into sparse
ones which can potentially be realized in future on-chip solid-state technologies with tunable edge weights. As a
case study, we reveal that the minor embedding procedure allows simulating the XY model on complete graphs,
thus bypassing a severe geometric constraint.
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I. INTRODUCTION

Solving dense graph combinatorial optimization problems
has been studied thoroughly in the field of quantum annealing,
where qubits and their relative coupling strengths represent
graph vertices and edge weights, respectively. To solve ar-
bitrary graph problems using preexisting qubit architectures,
dense graphs can be embedded into new representative graphs
using gauge field constraints [1,2] or connected ferromagnetic
(FM) subgraphs using minor embedding techniques [3–8].
In the latter, a standardized minor embedding to the triad
structure is commonly used, allowing any all-to-all connected
(dense) graph to be mapped to a planar qubit architecture
[3,9,10].

In this paper, we investigate the feasibility of using minor
embedding to a triad structure [3,10] to simulate the dynamics
in dense networks of interacting classical oscillators instead
of qubits. Our paper is motivated by recent developments in
designing analog computing strategies based on optical oscil-
latory networks to heuristically solve complex graph problems
across various platforms such as exciton-polariton conden-
sates [11–16], photon condensates [17], nondegenerate optical
parametric oscillators [18–20], photon down-conversion os-
cillators [21], and coupled microlaser arrays [22,23]. Even
digital computer algorithms designed to efficiently solve the
dynamics of oscillatory networks have displayed impressive
prowess in combinatorial optimization [24,25].

Optical platforms for unconventional analog computa-
tion [21] have many desirable properties such as photonic
parallelism, low cross-talk, ultrafast timescales (i.e., high
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sampling rate), and low power consumption using pas-
sive elements. However, engineering high degrees of graph
connectivity—which has been achieved with good control in
cold atom ensembles in optical cavities [26]—still presents a
major hurdle in many of the above-mentioned photonic plat-
forms. As an example, in planar microcavity exciton-polariton
condensates, the coupling strength between neighboring con-
densates decays exponentially with their spatial separation
distance [27,28], making the coupling beyond nearest neigh-
bors usually negligible. That, plus the need to control each
intercondensate coupling strength makes it near impossible
to solve an all-to-all connected graph beyond a handful of
condensate vertices. A scheme to achieve all-to-all coupling
between polariton condensate modes was theoretically pro-
posed using a fast time-modulated nonresonant laser [29].
We show that these connectivity problems can, in principle,
be overcome using the minor embedding technique to the
triad structure, which realizes a more experimentally friendly,
on chip, strategy to simulate dynamics and emergent be-
haviors in all-to-all connected networks of nonlinear optical
oscillators.

We focus on two measures and compare them be-
tween nonembedded and corresponding embedded networks
to quantify the applicability of our technique. First, we
calculate and characterize the emergence of coherence
in disordered ferromagnetically connected Stuart-Landau
(SL) oscillatory networks [30] with increasing coupling
strength. Second, we investigate the efficiency of embed-
ded oscillatory networks to approximate low-energy solu-
tions of the classical XY Hamiltonian through dynamical
annealing [31,32].

II. THE STUART-LANDAU MODEL

The SL model describes a plethora of oscillatory systems
and is formally derived from the normal form of an Andronov-
Hopf bifurcation. We apply this universal model to describe
the dynamics of our dissipatively coupled oscillators at the

2643-1564/2023/5(1)/013018(11) 013018-1 Published by the American Physical Society

https://orcid.org/0000-0002-0302-728X
https://orcid.org/0000-0002-4156-4414
https://orcid.org/0000-0002-3557-5299
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.013018&domain=pdf&date_stamp=2023-01-17
https://doi.org/10.1103/PhysRevResearch.5.013018
https://creativecommons.org/licenses/by/4.0/


HARRISON, SIGURDSSON, AND LAGOUDAKIS PHYSICAL REVIEW RESEARCH 5, 013018 (2023)

graph vertices written as

dψn

dt
= −[iωn + |ψn|2]ψn +

N∑
m=1

Jn,mψm. (1)

Here, ψn ∈ C denotes the nth oscillator, ωn its intrinsic fre-
quency, and Jn,m is the coupling strength between oscillator n
and m corresponding to the weighted edge connecting graph
vertices n and m. We can rewrite the SL model in polar
coordinates with ψn = ρneiθn arriving at

dρn

dt
= −ρ3

n +
∑

m

Jn,mρm cos(θm − θn), (2)

dθn

dt
= ωn +

∑
m

Jn,m
ρm

ρn
sin(θm − θn). (3)

If the amplitudes of the oscillators are set as equal, ρn = ρ0,
and with zero detuning ωn = 0, then Eq. (3) describes the
generalized Kuramoto model [33,34]. The fixed points of a
Kuramoto network are described by the minima of the follow-
ing Lyapunov potential [30]:

L = −
∑
n,m

Jn,m cos (θn − θm), (4)

which is the same as the well-known XY Hamiltonian.
Therefore, the phases θn in a Kuramoto network experi-
ence a gradient descent toward local minima of the XY
Hamiltonian θ̇n = −∂L/∂θn. In this respect, the phasors sn =
[cos (θn), sin (θn)]T play the role of two-dimensional classi-
cal spins which experience phase space flow toward these
minima. This is in a similar spirit to Ising machines which
undergo quantum or classical annealing into the ground state
of some target Ising Hamiltonian [35]. In this sense, Jn,m > 0
are said to be FM links (in-phase coupling) and Jn,m < 0 are
antiferromagnetic links (antiphase coupling).

Surprisingly, even with coupling-induced amplitude inho-
mogeneity ρn �= ρm, SL networks have displayed impressive
results in approximating the global minima of the XY
Hamiltonian in dense networks [32]. In Sec. IV B, we will
characterize the quality of using a minor embedding technique
to simulate densely connected SL networks by comparing
their performance in approximating low-energy solutions of
the XY Hamiltonian against corresponding nonembedded
networks.

III. MINOR EMBEDDING

A. Triad graph

In the process of creating a triad graph, we must first
consider the undirected complete graph (all-to-all connected
graph) of N vertices KN , with vertex set V (KN ) and edge set
J (KN ). Each vertex Vn is assigned an index n and each edge
symmetrically connecting two distinct vertices Vn and Vm is
denoted Jn,m = Jm,n. Through the process of minor embed-
ding, KN is mapped to the triad graph Kemb

N [shown for K5

in Figs. 1(a) and 1(b)] by expanding each vertex Vn ∈ V (KN )
to a chain of uniform coupled vertices of length N − 1, with
intrachain edge weights set to

J intra = Jc > 0 (colored edges). (5)

FIG. 1. (a) K5 graph mapped through minor embedding to (b) the
Kemb

5 triad graph, (c) the mathematical layout of Kemb
5 , and (d) when

including N additional edges to loop the chains. In (b)–(d), the
FM chain couplings are shown by colored edges J intra = Jc and the
encoded coupling strength of K5 are shown by black edges, such
that J inter

n,m = Jn,m. The grey solid and dashed boxes overlayed in
(a) and (b) demonstrate two possible phase extraction methods for
the unembedded and embedded XY energies from the triad graph,
respectively.

Each vertex of the chain is adjacent to a single vertex of
another chain with interchain edge weights:

J inter
n,m = Jn,m, ∀ Jn,m ∈ J (KN ) (black edges). (6)

An additional description can be found in Ref. [36].
Physically, Jc > 0 gives precedence to in-phase locking

between oscillators within each chain, which—in the context
of the XY Hamiltonians—can be regarded as a FM-type cou-
pling. The aim of FM coupling is to minimize the deviation
between oscillators across each chain to better simulate the
dynamics of the complete graph KN [8]. In other words, the
red vertex in the complete graph [red oscillator ψ1 in Fig. 1(a)]
is represented by the average amplitude and phase of the
oscillators in the red chain of the triad [see grey solid box
in Fig. 1(b)]. Notice that the number of black edges in the
complete graph is the same as in the triad graph.

In this paper, we will work close to the bifurcation thresh-
old of the system separating the attenuated state ρn = 0 from
the oscillatory state ρn �= 0, and are thus interested only in the
phases of the oscillators whose average in each colored chain
is written

θ̄n = 1

N − 1

N−1∑
n′∈chain

θn,n′ . (7)
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We will refer to this phase averaging as unembedding the
triad graph [37,38]. That is, the averaged phases θ̄n of the
triad graph have been unembedded back to the vertices of
the original complete graph.

Where the triad structure in Fig. 1(b) is the hardware layout
for investigating the minor embedding of complete graphs, it
can be easier to picture the mapping process as the mathe-
matical layout shown in Fig. 1(c), where each vertex of KN is
expanded to a chain of length N − 1 about its original vertex
site, such that the adjacency of the hardware layout [Fig. 1(b)]
and mathematical layout [Fig. 1(c)] are equivalent.

We also consider the addition of an intrachain edge be-
tween the first and last vertex of each chain [Fig. 1(d)], thus
looping them, such that the looped graph has a uniform de-
gree of connectivity. Although this is more difficult to realize
experimentally in most platforms, we will compare results
between unlooped and looped chains at minimizing the XY
Hamiltonian and elucidate on how this more symmetric con-
nectivity affects the performance of the triad graph.

B. XY energy extraction

As mentioned above, each vertex of the complete graph KN

is associated with a complex valued number ψn containing
information on the state the nth oscillator. We define the state
vector of the graph as ψ = [ψ1, ψ2, . . . ψN ]T and its corre-
sponding phase vector θ = [θ1, θ2, . . . θN ]T. The energy of
the graph KN is calculated from the XY Hamiltonian, written

HXY = −
N∑

n,m

Jn,m cos (θn − θm). (8)

On the other hand, the energy of the triad graph can follow two
methods. The first one defines the energy of the unembedded
triad in the same way as Eq. (8) but with the average phases
across the chains θ̄n:

Hunemb
XY = −

N∑
n,m

Jn,m cos(θ̄n − θ̄m). (9)

We refer to this as the unembedded energy of the triad.
The other method directly uses the relative phase �θ inter

n,m
between all pairs of oscillators still embedded in the triad
graph connected by a black interchain edge as depicted by
the grey dashed boxes in Figs. 1(a) and 1(b). We will refer to
this as the embedded energy of the triad graph, written

H emb
XY = −

N∑
n,m

Jn,m cos
(
�θ inter

n,m

)
. (10)

Note that when Jc = 0, then minimizing H emb
XY is trivial since

the graph forms just a set of N individual oscillator pairs
connected by Jn,m.

IV. RESULTS

A. Coherence properties

Here, we numerically investigate and compare the phase
coherence properties (i.e., the ability to synchronize in-phase)
in the oscillator network dynamics between the complete
graph and the triad graph. We consider a complete FM graph

where each oscillator is coupled equally to all the others with
coupling strength Jn,m = J > 0. The frequencies ωn are ran-
domly chosen from a normal distribution with density g(ω) of
mean ω̄ and standard deviation σ . Naturally, we can always go
into a rotating reference frame with frequency ω̄ and therefore
we can set ω̄ = 0 throughout our paper without any loss of
generality. We will use dimensionless units for all parameters
and variables and fix σ = 1 in this section. We point out
that the oscillator coupling matrix J = (Jn,m) ∈ RM×M has
always at least one positive eigenvalue for all graphs consid-
ered throughout the paper, which means that the trivial ρn =
0 solution is never stable. This means that the phases θn(t )
are well-defined at all times when calculating the dynamics
of Eq. (1).

To understand the emergent coherence properties of the
network, it is useful to define a phase order parameter, com-
monly used in analysis of such networks [30], to capture the
degree of phase coherence between the oscillators. For the
complete graph, it is written

rcomplete = 1

N

∣∣∣∣∣
N∑

n=1

eiθn

∣∣∣∣∣. (11)

If all the oscillators have the same phase θn = θm, then
rcomplete = 1, and in the limit of infinitely many uniform-
randomly distributed phases on the interval [0, 2π ), one
has rcomplete = 0. We have checked that the special case of
rcomplete = 0, where half of the oscillators are θn = 0 and other
half θn = π (i.e., antiphase ordering), does not appear in our
results.

We numerically integrate Eq. (1) from t = 0 → T �
J−1, J−1

c and calculate the average coherence 〈rcomplete〉 at the
final time t = T over 160 random realizations of ωn and initial
conditions (i.e., Monte Carlo sampling). We then repeat our
calculation over a range of coupling strengths J [see Fig. 2(a)],
observing a gradual transition from an incoherent state to a
coherent state with increasing coupling strength. This is rem-
iniscent of the coherence bifurcation in Kuramoto networks
[30,34]. There, all phase oscillators are in an incoherent state
rcomplete = 0 below some critical coupling strength Jcrit defined
in the limit N → ∞. As J is increased through and above Jcrit,
the system reaches a partially synchronized state rcomplete > 0,
where oscillators at the center of g(0) are synchronized while
those at the tails of the distribution remain in an incoherent
state such that the system is split in two dynamical groups
[39]. As J is increased further, more oscillators join the syn-
chronized group until the entire system becomes coherent
[33,40], as we observe with the SL model. Finite-size effects
can also be clearly observed in Fig. 2(a) when changing the
number of oscillators N . Notably, larger coupling strengths
are needed to synchronize smaller networks. We also point out
that the presence of finite coherence values as J → 0 arises
from these finite-size effects, which gradually decrease as N
becomes larger.

We now move onto the triad graph. Similar to Eq. (11), we
can define coherence order parameters for the unembedded
(averaged) phases of the triad graph,

rinter = 1

N

∣∣∣∣∣
N∑

n=1

eiθ̄n

∣∣∣∣∣, (12)

013018-3



HARRISON, SIGURDSSON, AND LAGOUDAKIS PHYSICAL REVIEW RESEARCH 5, 013018 (2023)

FIG. 2. Coherence of (a) 〈rcomplete〉 for uniform FM coupled com-
plete graphs with coupling strength J , (b) 〈rinter〉, and (c) 〈rintra〉 for
the corresponding triad graphs. All results are averaged over 160
instances of ωn and random initial conditions. Plots (a)–(c) all share
the same x axis. Example steady state phases of N = 5 oscillators in
the (d), (g) complete and triad structures with (e), (h) Jc = 1 and (f),
(i) Jc = 10 for a single instance. (d)–(f) J = 1 and (g)–(i) J = 10,
where the phases are indicated by vertex color.

and for the average phase coherence within each chain of
the triad:

rintra = 1

N

N∑
n=1

1

N − 1

∣∣∣∣∣
N−1∑

n′∈chain

eiθn,n′

∣∣∣∣∣︸ ︷︷ ︸
rintra

n

. (13)

For more details, please see Fig. 8 in Appendix A. Just like
for the complete graph, we average the coherences of the triad
over 160 random samples of the dynamics denoted by 〈.〉.

Considering two different orders of the scaling parameter
Jc = {1, 10}, we investigate how the triad graph’s coherence
properties relate to the complete graph (going to lower and
larger orders of Jc did not qualitatively change the findings).
Note that the frequencies ωn are randomly drawn from g(ω)
for all oscillators in the triad, which represents experimental
reality (i.e., we do not associate a single random frequency
across each chain). As expected, when Jc is small, the inter-
and intrachain coherences in Figs. 2(b) and 2(c) show poor
coherence with weak dependence on J . When Jc is large,
we instead observe a fast interchain coherence transition in
Fig. 2(b). This indicates that the triad graph managed to rep-

resent the embedded complete graph dynamics within J/Jc <

0.1, which gives a figure of merit for the design requirements
of possible triad graph platforms. Interestingly, in Fig. 2(b),
for large J the coherence is smaller in large graphs. This
can be attributed to the fact that the chains within the triad
graph need themselves to be coherent, rintra ≈ 1, to represent
the embedded complete graph. But longer chains struggle
more to settle on a phase and achieve good coherence as can
be seen in Fig. 2(c), such that the larger graphs in general
require a stronger FM coupling strength to build coherence.

As both J and Jc increase, both inter- and intrachain co-
herences converge to unity and all oscillators synchronize.
In Figs. 2(d)–2(i), we show example simulations of vary-
ing coupling strengths where the vertex colors represent the
steady-state oscillator phases. The effect of looping the chains
as shown in Fig. 1(d) is found to have little effect on the
coherence properties of the system (see Fig. 9).

To better understand the quality of the triad graph as a
simulator for the phase dynamics of the complete graph, we
calculate the root mean square error (RMSE) between the
phases in the complete graph θn and their corresponding repre-
sentations in the triad graph θ̄n as a function of Jc. For brevity,
we use the same set of randomly sampled detunings ωn with
strength σ , and same random initial conditions ψn(t = 0)
across all calculations to quantify the similarity between the
complete and the triad graph. We define a gauge-invariant
RMSE measure as

η = 1

N (N − 1)T

[∑
n<m

T∑
t=1

[cos (θnm(t )) − cos(θ̄nm(t ))]2

+ [sin (θnm(t )) − sin(θ̄nm(t ))]2

] 1
2

, (14)

where θnm = θn − θm for the complete graph phases and θ̄nm =
θ̄n − θ̄m for the representative triad graph phases. The RMSE
is calculated only for the last 200 time steps of each simulation
to skip any transient effects that might be strongly dissimilar
at early times between the complete and triad graphs.

In Figs. 3(a)–3(d), we plot the RMSE with N = 5, 10, 15,
and 20, respectively, which show that the RMSE converges
toward a minimum with increasing Jc, where we have marked
with black circles the values of Jc where the gradient of ln(η)
surpasses 0.05.

The corresponding Jc values where ∇ ln(η) = 0.05 are
collated in Fig. 3(e), showing that the optimum value of Jc

increases with the number of oscillators and, interestingly,
appears to be independent of the strength of detuning σ . We
apply a linear fit to this data, shown by the black dashed line,
with Jc = 0.34N + 2.39, which gives an estimation of what
value of intrachain coupling strength in the triad Jc is needed
to simulate the dynamics of the complete graph.

B. XY energy minimization

In this section, we investigate the feasibility in using the
minor embedding technique on complete graphs of SL os-
cillators to optimize the XY Hamiltonian. We compare the
unembedded and embedded complete graph XY energies ex-
tracted from the triad structure [Eqs. (9) and (10)] to the
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FIG. 3. RMSE between the complete and triad graph phase dy-
namics for (a) N = 5, (b) N = 10, (c) N = 15, and (d) N = 20
oscillators over a range of Jc and σ . The black circles indicate the
value of Jc where the gradient of ln(η) surpasses 0.05. These points
are collated in (e) and are plot as a function of N , where a linear fit is
shown by a black dashed line following Jc = 0.34N + 2.39.

ground state of the XY Hamiltonian, as calculated using
the basin-hopping (BH) optimization method [41]. Here we
measure the performance of the SL system through the nor-
malized difference in the extracted XY energy from solving
the dynamics of the triad graph of SL oscillators ESL com-
pared to the complete graph XY energy solved using the BH
method EBH,

Error = EBH − ESL

EBH
. (15)

The BH algorithm is time-consuming but a highly accu-
rate optimization algorithm that serves as a good reference
for the energies found by the solving the dynamics of
triad embedded SL networks. Previous studies on complete
graphs (i.e., no embedding techniques) have shown very
good performance from numerically solving the dynamics
of SL networks as compared to the BH algorithm [32]. For
completeness, we provide evidence in Appendix B that the
SL network indeed outperforms commercial optimizers, and
also direct integration of the Kuramoto model, in finding
low-energy solutions of the XY Hamiltonian. Throughout
this section, the performance is obtained by averaging over
160 unique complete graphs with weights randomly selected
from a uniform distribution Jn,m ∈ [−1, 1] (there is no qual-

(b)(a)

(c)

FIG. 4. (a) Error between the triad embedded Stuart-Landau
model and the basin-hopping method in minimizing the XY
Hamiltonian on a randomly connected complete graph with N = 10
vertices and σ = 0. (b) Example phase dynamics of the triad embed-
ded oscillators for a single random graph with Jc = 10, indicating
clustering of the phases in different chains. (c) Performance of the
system for increasing strength in oscillator frequencies ωn for un-
looped triad graphs with Jc = 10 (purple), Jc = 20 (cyan), and the
complete K10 graph (black) for reference, with translucent surfaces to
represent the standard deviation in error of the unembedded energies.
Results in (a), (c) are averaged over 160 random graphs and initial
conditions and, in the case of (c), for random oscillator energies ωn.

itative difference in using a normal distribution of same
variance).

To find the optimum embedding parameter Jc, we first
consider a graph size of N = 10 in Fig. 4. In Fig. 4(a), we
show the system performance for σ = 0 and scanning across
the embedding parameter Jc. The error of the extracted XY
energies reduces as Jc is increased, where the unembedded
XY energy converges to zero faster than the embedded energy,
with a reduction in error for both methods when the triad
chains are looped. This result is to be expected, as larger
values of Jc reduce the distribution of oscillator amplitude
and phase across each triad chain, achieving a better represen-
tation of the complete graph in corroboration with Fig. 2(b).
This is seen in Fig. 4(b), where the phase dynamics θn(t ) of the
N (N − 1) = 90 triad graph oscillators split into ten moving
paths, with each path representing a different triad chain.

Interestingly, looping the triad chains in the considered
case of N = 10 oscillators is found to reduce the phase vari-
ation within each chain (see Fig. 9), achieving a lower error
(see Fig. 4). However, for larger N the error starts increasing
(see Fig. 5 in the Appendix), which we discuss in more detail
at a later stage. We point out that the negative error for the
embedded XY energy stems from the fact that min[H emb

XY ] <

min[HXY ] when Jc → 0. In this limit, the triad graph breaks
into N pair-coupled oscillators (only black edges remain) and
the sum of their XY energies is trivially minimized by simply
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(a) (b)

FIG. 5. XY energy error from the triad structure of Stuart-
Landau oscillators compared to the complete graph XY energy
solved using the basin-hopping method for (a) unlooped and
(b) looped triad chains with N = 5 to 50, averaged over 160 random
graphs and σ = 0.

setting the relative phase in each pair to �θn,m = 0, π for
positive and negative couplings, respectively.

In Fig. 4(c), we show the performance of SL networks
in dynamically finding a good XY energy when including
random oscillator frequencies ωn, normally distributed with
standard deviation σ . Here, we focus on unlooped triad graphs
with Jc = 10 and Jc = 20. As an additional reference, we
also plot the performance of the SL oscillators in the original
complete K10 graph (black line). As expected, the frequencies
ωn lead to desynchronization and fast increase in error with
increasing σ , and the network steady state is lost with no well-
defined phase relation that can enter into the XY Hamiltonian.
This increase in error in the SL networks occurs for σ � 1

10 ,
which is in qualitative agreement with the coherence transition
in Fig. 2(b).

Lastly, we show the performance of the triad graph as
a function of both the problem (i.e., network) size N and
Jc in Fig. 5. As before, the error converges to zero with
increasing Jc with better performance for the unembedded
XY energy. As expected, larger networks struggle to find the
correct (global) XY energy minimum and instead stabilize
into the growing number of local minima. Interestingly, in
Fig. 5(b), when the chains are looped, the unembedded XY
energy error plateaus such that beyond Jc = 10, the embedded
energy does not noticeably change and the benefit of loop-
ing the chains is only apparent for N � 10. This puzzling
behavior implies that looping the chains in the triad graph
has generated a new family of stable attractors which do not
correlate with the minima of the XY Hamiltonian. Such attrac-
tors could belong to twisted states in the chains which appear
in sparse networks [42], which we explore in the following
section.

C. Twisted states

Twisted states in oscillatory networks are characterized
by a winding number, �, denoting integer multiples of 2π

phase winding about a network of FM coupled oscillators

[42]. Typically, these states appear in looped networks (where
the first and last oscillators in a chain are connected) with
sparse connectivity up to the first few nearest neighbors. Al-
though an interesting nontrivial state, this family of attractors
is, however, detrimental to the performance of the looped
triad graph to find good XY energy minima. For the triad to
best represent the complete graph, the FM chains in the triad
should have all sites following the same phase dynamics (or
as similar as possible) to represent the dynamics of a single
oscillator in the complete graph. The appearance of a vortex
phase gradient in the looped triad chains is clearly detrimental
to this requirement.

Networks of N identical Kuramoto oscillators have re-
cently been studied with unit FM coupling to μ(N − 1)
nearest neighbors [42], where μ > 0.75 guarantees that all
oscillators will converge to a synchronized in-phase config-
uration with � = 0. Below this threshold, however, the loop of
oscillators exhibit a constant relative phase difference between
nearest neighbors of 2π�/N , where � �= 0. These solutions are
known as twisted states.

To explore the occurrence of twisted states in the
SL model, we create networks of N identical oscillators (σ
= 0) in loops (just like a single looped chain of a triad
graph) with unitary FM coupling and plot the distribution of
different winding numbers � that appear in the system over
1000 unique realizations as a function of nearest-neighbor
connectivity and varying N in Figs. 6(a)–6(d). Remarkably,
we find that twisted states appear frequently in our simula-
tions. For larger N , the spread in � is greater, but reduces
quickly as the number of nearest-neighbor connections in-
creases. When N = 20, for example, we observe |�| = 0, 1, 2
for first-nearest-neighbor coupling, but this range decreases
to |�| = 0, 1 when second-nearest-neighbor coupling is in-
troduced, as depicted in Fig. 6(e)–6(i) where the oscillators
(circles) have unit FM coupling following the black graph
edges and their steady-state phases are shown by their color.
In this analysis, |�| = 2 occurred in 0.1% of the cases for
N = 20 with first-nearest-neighbor connectivity, so it is very
unlikely to observe a phase winding greater than 2π in a
smaller chain. This is the likely reason that looped-chain triad
graphs do not converge to zero energy error in Fig. 5(b)
but instead plateau to a larger error that grows in value
with increasing N . As nonzero winding numbers in
SL chains grow in probability with N , we emphasize that
it is important to sample the system over many realizations
starting with different random initial conditions to increase
the chances of finding an XY energy closest to the XY
ground state.

D. Dynamic pumping

The presence of random couplings induces an amplitude
inhomogeneity in the SL network ρn �= ρm, meaning its fixed
points will, in general, not coincide exactly to the minima of
the XY model. As a possible improvement to achieve ampli-
tude homogeneity [32,43], we investigate the addition of a
dynamic pumping mechanism that feeds back the amplitude
of each oscillator at each step in numerical integration to
adjust the gain of each node, respectively. To explore this
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FIG. 6. Distribution in winding number � extracted from a
continuous chain of Stuart-Landau oscillators with (a)–(d) 1–4
nearest-neighbor couplings with unitary strength (J = 1), respec-
tively, for N = 20, 40, 60, 80, and 100 shown in red, orange, yellow,
green, and blue bars respectively, over 1000 unique realizations. For
N = 20, an example of each stable phase solution is shown in graph
format with (e)–(g) 1 and (h), (i) two nearest-neighbor connections,
showing all observed values of |�| over 1000 realizations.

feedback mechanism, we adjust Eq. (1) slightly to follow

dψn

dt
= [Pn(t ) − iωn − |ψn|2]ψn +

N∑
m=1

Jn,mψm. (16)

Here, Pn(t ) is the pumping rate of oscillator ψn where initially
all oscillators are injected equally with Pn(0) = 0 for all n.
In terms of exciton-polariton condensates [11,16], the pumps
represent an arrangement of spatially modulated nonresonant
excitation beams. After the initial pumping in the first time
step of integration, we apply a feedback mechanism to balance
the occupation of each oscillator, following

dPn

dt
= ε[ρt − ρn(t )], (17)

where ε controls the rate of change of Pn, ρt is the target am-
plitude of the oscillators. We numerically integrate Eqs. (16)
and (17) for 100 unique randomly connected complete graphs

FIG. 7. (a) Unembedded energy error of randomly connected
triad graphs with (red) ε = 0 and (blue) ε = 0.04 with Jc = 20 over
a range of N , averaged over 100 unique random graph realizations.
Oscillator amplitude dynamics for (b) a randomly connected K5

graph with ε = 0 and the corresponding Jc = 20 triad graph with
(c) ε = 0 and (d) ε = 0.04, with amplitudes normalized to max |ψn|
and ρt = max |ψn|. The same x scale is used for panels (b)–(d).

and corresponding triad graphs with varying N , Jc = 20, and
for ε = 0 and ε = 0.04. The resulting performance, and am-
plitude dynamics for a single instance of the network is shown
in Fig. 7.

We do indeed see a considerable drop in error for smaller
networks when the feedback is present. However, for larger
networks the error is dominated by the approximative nature
of the embedding procedure and the role of feedback becomes
less important. It could be possible to design a more complex
feedback procedure which not only eliminates amplitude in-
homogeneity but also helps balance the phases in each chain
of the triad graph, but this is beyond the scope of the current
paper. Note, due to the large intrachain couplings Jc in the
triad graph, the oscillator amplitudes reach saturation an order
of magnitude sooner than for the equivalent complete graph.

V. CONCLUSIONS

We have demonstrated that the dynamics of a random
all-to-all coupled SL oscillator network can be approximated
using a minor embedding technique, regularly applied in
the design of quantum computing platforms. Here, a com-
plete (dense) graph is embedded into a sparse triad graph
defined by a single embedding parameter Jc. We show that
the steady-state phases in the embedded SL oscillator network
correspond to good approximation of the optimal solutions
in the corresponding graph XY Hamiltonian, achieving good
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FIG. 8. (a) Coherence extracted over all oscillators in the complete graph, (b) the unembedded triad coherence between the N average
chain phases, plus (c) the average chain coherence. All schematics represent the K5 and Kemb

5 graphs with the grey boxes in (a), (b) and red box
in (c) representing the extraction of the average phase and coherence across chain 5, respectively.

performance by simply adjusting its embedding parameter.
The results are compared against the standard complete graph
SL oscillator dynamics and the BH method.

The convergence of the minor embedded graph dynamics
to that of the complete graph offers up the triad structure
as a potential test bed for mapping out dense graph prob-
lems to continuous-phase coupled oscillator systems where
fully controllable all-to-all couplings are not practicable (such
as polariton condensates, photonic condensates, and coupled
laser arrays). This opens perspectives on designing analog
computing hardware aimed at heuristically solving dense
graphs problems (such as optimizing the XY Hamiltonian)
across a wide range of platforms in a similar spirit to quantum
computing platforms. Optical systems might hold a particu-
larly strong promise in this regard since their GHz operation
rates can provide rapid sampling of the objective function
energy landscape that can serve as good trial points for more
sophisticated optimizers.

All data supporting this paper are available on the
University of Southampton’s online repository [46].
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APPENDIX A: COHERENCE

1. Definitions

In the main text, we extract the coherence across all
oscillators in the complete graph rcomplete, the coherence
across the average phases of the chains rinter, and the average
coherence across each chain rintra. All three parameters are
defined alongside a schematic in Fig. 8. Here, θn is the phase
of oscillator n in the complete graph, θ intra

nn′ is the phase of the
n′th oscillator in triad chain n, and θ̄n is the average phase over
the N − 1 oscillators in chain n.

2. Looping triad chains

In addition to the unlooped triad representation of the uni-
form FM complete graph in the main text, we also consider
the effect of looping the triad chains on the coherence of
the system under the same conditions as the unlooped case
[9]. When the minor embedded chains are looped, all os-
cillators are symmetrically coupled and thus the triad graph

FIG. 9. Coherence (a) 〈rinter〉 and (b) 〈rintra〉 of triad graphs cor-
responding to uniform FM complete graphs with looped chains
and Jc = 1 and 10. All scanned over a range of coupling strengths
J and averaged over 160 instances with standard deviation in oscilla-
tor frequencies σ = 1.
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FIG. 10. (a) Average energy difference between the GS algorithm and the SL model according to Eq. (B1) with the GS algorithm using
two different optimizer approaches, trust region and SQP. The SL model outperforms the GS algorithm around N ≈ 30 spins. (b) Time taken
for different methods to arrive at an answer for the XY energy. (c) Energy difference between the KM and the SL model [i.e., EGS is replaced
with EKM in Eq. (B1)]. The SL model outperforms the KM model in finding low-energy values to the XY Hamiltonian at around N ≈ 30.

coherence is higher for the same coupling strength compared
to the unlooped equivalent, as the edge effects of the unlooped
chain coherence are eliminated. For Jc = 1, rinter and rintra

remain at a low coherence as the encoded complete graph
weights are not dominant in the system. For Jc = 10, there
is a coherence build up with increasing J , indicating that the
triad coherence dynamics represent the complete graph for
large Jc.

APPENDIX B: BENCHMARKING STUART-LANDAU
NETWORKS IN FINDING LOW-ENERGY XY SOLUTIONS

1. Stuart-Landau networks against global optimizers using
trust-region methods

Here we will benchmark the performance of dense SL
networks against commercially available global optimizers.
We have applied the BH algorithm from the Python SciPy
library as a benchmark in the main text. However, we point
out that we are benchmarking dense graphs, meaning that a
N = 50 vertex graph has N (N − 1) = 2450 weighted edges
to be optimized. The reason we limit ourselves to N = 50
vertices in this paper is because running the BH algorithm
with 1000 iterations (for good convergence) for larger graphs
on a single 2.6 GHz Intel Sandybridge processor (components
of the IRIDIS 4 supercomputer at University of Southampton)
exceeded 100 hours.

As a result, to investigate graphs of N > 50, instead of
using the BH algorithm, we have decided to use the speedier
and commercially available global optimizer GlobalSearch
[44] (GS) from the Global Optimization Toolbox [45] of
MATLAB. This algorithm uses a scatter search method to gen-
erate feasible trial points which are then evaluated using a cho-
sen optimizer method to find multiple local minima. The GS
algorithm then iteratively analyzes points that converge using
a score function which updates on the fly and rejects those
points that are unlikely to improve the best minimum found
so far. We have decided to use two well-known optimization
methods for the GS algorithm. (1) The trust region method,
since we can easily compute both the gradient and the Hessian
matrix of the XY Hamiltonian (i.e., the objective function),
making it quite fast and accurate and thus an appropriate

choice. (2) The sequential quadratic programming (SQP) gra-
dient descent method, since it also benefits from knowing
the gradient of the objective function. Our search region is
bounded on θn ∈ [−4, 4], which is taken larger than the peri-
odic range [−π, π ] to more efficiently find minima that might
be close to values around θn = ±π . All other options of the
GS algorithm were set to default as they did not considerably
improve the efficiency of the optimizer.

Just like in the main text, we quantify the performance
between the SL model and the GS algorithm using the ratio
of their energy difference:

Energy difference = EGS − ESL

2EGS
. (B1)

The factor 1/2 is added so if ESL = −EGS, then the differ-
ence is exactly unity. Our results are presented in Fig. 10(a)
where we have averaged over 1000 random dense graphs with
weights sampled from the interval Jn,m ∈ [−1, 1] going up to
N = 200 spins. Amazingly, even after supplying knowledge
of the gradient and the Hessian of the objective function (HXY

in the main text), the SL model starts outperforming the GS
algorithm around N ≈ 30 spins. We also show in Fig. 10(b)
the time taken to iterate the SL model using an explicit
Runge-Kutta Eqs. (4) and (5) method until it converged to a
steady state (red line), and the time it took the trust region
(blue line) and gradient descent (cyan line) methods in the
GS algorithm to provide a solution. The results evidence the
considerably better efficiency in iterating the SL model than
applying the GS algorithm in finding a low-energy value to
the XY Hamiltonian.

2. Stuart-Landau versus Kuramoto networks

We additionally investigate the performance of the
SL network at minimizing the XY Hamiltonian in comparison
to the fixed point solutions of the Kuramoto (KM) model.
As mentioned in the main text, relating the steady states of
the SL model with the minima of the XY Hamiltonian is a
heuristic approach since, in general, oscillatory systems like
lasers and driven-dissipative condensates have freely evolving
amplitudes and, therefore, it demands investigation into how
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well such heuristic systems will perform in approximating
the XY ground-state energy. To back up this point, we show
in Fig. 10(c) the average energy difference between the KM
and the SL model in minimizing the XY Hamiltonian over
1000 random dense graphs. Amazingly, around N ≈ 30 spins
(oscillators), the SL model starts outperforming the KM
model. This means that the SL oscillators are much more

efficient in exploring their state space during their transient
growth phase from the initial vacuum state |ψn(t = 0)| � 0
(in the context of quantum annealing) rather than the KM
oscillators which are always locked onto the unit circle. There-
fore, SL oscillators can clearly outperform KM oscillators
at minimizing the XY Hamiltonian of densely connected
oscillator networks.
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