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Power-law distributions appear in a large variety of situations and influence our understanding of various
physical phenomena. Their identification and characterization are notoriously difficult because of the large
fluctuations inherent to empirical data and also because of the unknown range over which the power-law behavior
holds. Furthermore, the data on which one is trying to detect power laws are affected by technical constraints
and experimental limitations. Here, we show how a power-law distribution is modified by two fundamental
limitations: the spatiotemporal resolution and the time window. We consider a time series of events or states
and investigate the interevent time probability density function (PDF) or the PDF of the duration of a state. We
present in detail how each limitation affects the PDF and derive mathematical expressions that relate the observed
distribution to the true one: the resolution globally affects the shape of PDF while preserving the asymptotic
exponent and the time window introduces a nonexponential cutoff. We demonstrate that, instead of looking
for a simple power law in experimental data, one should fit the data with the modified PDF that we derived
for given experimental constraints. We apply our theory to data from an experimental study of the transport of
mRNA-protein complexes along dendrites. The presented mathematical theory widens our understanding of the
identification and characterization of power-law distributions in experimental data and can be used in a broad
spectrum of science fields.
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I. INTRODUCTION

Found in critical phenomena [1–4], in systems with a crit-
ical self-organization [5], earthquake magnitudes [6], human
mobility [7], animal foraging or distribution pattern of animal
species [8], and transport in cells [9,10], power-law distribu-
tions in natural, technical, and living systems have attracted
many research activities to understand their origins. The de-
tection of such power-law distributions is a main subject of
research that has lead to the well-known maximum likelihood
method for the estimation of the power-law exponent, as de-
veloped in Ref. [11] and tested over many real-world data.
More recently, this method has been used to solve the usual
claim on whether or not real-world networks are scale-free,
which means that their degree distribution should follow a
power-law distribution [12,13].

In general, real-world data or typical experimental data
consist of either time series of events or trajectories of specific
objects. In the former case, the events are recorded over time
[Fig. 1(a)], e.g., earthquake sequences [14], and the interevent
time distribution is usually studied. In the latter, the loca-
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tion of an object is tracked over time, e.g., movement of
labeled macromolecules within a cell [10,15–18]. Over the
last decades, a large array of experimental techniques and
analytical tools, such as the single-particle tracking technique,
has been applied to characterize the microscopic behavior of
biomolecules in living systems. The diffusion coefficient or
the active transport properties are deduced from the mea-
sured trajectories, and microscopic models mimicking the
observed behavior are constructed. For example, the motion
of the β-actin mRNA-protein (mRNP) complex was shown
to follow an aging Lévy walk [10]. However, estimation of
the power-law exponent from such data is nontrivial because
the experimental constraints often cause significant deviation
from the original time distribution of the data.

When it comes to the study of transport phenomena, there
were some efforts to develop a statistical method taking into
consideration the experimental constraints and measurement
errors in the determination of the diffusion coefficient and the
anomalous diffusion exponent [19,20]. More recently, using
machine-learning-based approaches, several groups extracted
the anomalous exponent and inferred a stochastic model to
describe experimental diffusion processes [21]. Bayesian in-
ference methods have also been developed to extract the
anomalous exponent from real data with errors and for detect-
ing Lévy walks [22] and fractional or scaled Brownian motion
[23]. For a short reminder, the anomalous diffusion of a single
particle is conventionally classified by a power-law scaling of
the mean-squared displacement:

〈x2(t )〉 ∝ tα, (1)
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FIG. 1. Examples of stochastic processes under consideration.
(a) Events occurring along the timeline, e.g., earthquakes. The quan-
tity of interest is the PDF of the interevent time ts. (b) Continuous-
time random walk processes governed by ψwaiting(ts ), i.e., the PDF
of waiting times ts between successive jumps. The jumps are in-
stantaneous and described by the PDF of jump length ψjump(x).
(c) A Lévy walk with rests [49]. It is a two-state process con-
sisting of an alternation of a ballistically moving run phase and a
“no-moving” rest phase. The occurrence times of both phases are
independent, characterized by the corresponding PDFs, ψrun(tr ) and
ψrest (ts ), respectively.

where α �= 1 is referred to as the anomalous exponent. The
diffusion process is called subdiffusion for 0 < α < 1 and
superdiffusion for α > 1 [24]. This power-law exponent ap-
pears in various areas such as target finding times [25] or
cellular organization [26]. The generalized diffusion law (1)
emerges due to the breakdown of the central limit theorem
(CLT). One of the physical mechanisms violating the CLT is
broad distributions in diffusion events, such as jump lengths
or waiting times between successive jumps [24].

It is known that anomalous diffusion processes in this
category are described by the diffusion models in the class
of continuous-time random walk (CTRW) such as subdiffu-
sive CTRW [Fig. 1(b)], Lévy walk (LW), and LW with rests
[Fig. 1(c)]. They can be understood as a two-state process
where the system stays in a state for a duration drawn from
a given distribution; see the rest events in the subdiffusive
CTRW [Fig. 1(b)] and run/rest events in the LW with rests
[Fig. 1(c)]. For many single-particle tracking experiments,
it has been reported that these models describe the micro-
scopic transport dynamics successfully. Examples include the
gamma burst pattern in a primate cerebral cortex [27], the
motion of mRNA along the dendrites [10], the diffusion of
microbeads in cytoskeletal filaments [28], the predator search
behavior [29], the human mobility [30], the migration of

swarming bacteria [31], the central pattern of locomotion of
the Drosophila [32], and the T-cell motility in the brain [16].

In the aforementioned dynamic models such as time series
of events or CTRW families, the knowledge on the distri-
bution or its probability density function (PDF) of random
event times is essential to classify the dynamics of the object.
However, it is highly nontrivial to correctly obtain the corre-
sponding time (or length) distribution in the experiments due
to the limitations and errors of the measurement. For instance,
in single-particle tracking experiments, the localization errors
that originate from photon-counting noise, pixelation noise,
and background noise [33–36] have been shown to induce a
bias in the determination of the power-law (or anomalous)
exponent [37]. This effect cannot be fully resolved by an
improved ensemble average or a longer experiment [38,39].
For the case of the PDF of the duration of interevents or
states, the experimental errors hinder the determination of
the state in which the system is. Thus, a minimal number of
successive measurements is required to assign a state to the
system. Furthermore, the duration of the experiments itself
affects the observed PDF: it is usually treated using an upper
truncated Pareto distribution and has been applied in different
contexts, e.g., in finance [40–42], geology [43], and biology
[32,44]. In the current work, we establish a mathematical
framework to formulate the distribution of an observed time
series under these two constraints, providing the mathematical
relation between the original PDF of the duration of the states
and the observed PDF.

The organization of the paper is in the following. In
Sec. II, we define the three distinct dynamic models (Fig. 1)
under consideration and establish our mathematical frame-
work. In Sec. II A, we construct a theory to deal with the
temporal-spatial resolution effect. In Sec. II B, we investigate
the modification of event time PDFs due to the effect of a
finite observation window. Thereafter, in Sec. II C we combine
the two effects, constructing the complete theory for accessing
the event time PDF under the limits of the resolution and finite
observation time window. For each case, we derive a formal
relation of the observed PDF of the duration of events and give
an analytical expression for the special case of the power-law
distribution. For confirming the pertinence of our theory, we
also perform simulations of the CTRW and LW models and fit
the distribution of the duration of events with these analytical
expressions. In Sec. III, we apply our theory to an experi-
mental case: the transport of mRNA-protein (mRNP) particles
along dendrites in neuronal cells. We extract the power-law
exponent of the distribution of the duration of the immobile
state of these macromolecular complexes and discuss the re-
sults therein. Finally, we give some concluding remarks.

II. THEORY

The underlying process we consider is a two-state process
(state S and state S′): a particle alternates between one state
to the other with a duration drawn from a given PDF ψS (t )
[resp. ψS′ (t )] or with a given rate. Representative examples
include time series of events, such as earthquake occurrence
or arrival of emails [Fig. 1(a)], and on-off processes like
blinking of quantum dots [45]. In the diffusion process, the
continuous-time random walk is a typical example. In the
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framework of CTRW, a random walk is described by instan-
taneous jumps and waiting events in between the successive
jumps [Fig. 1(b)]. An additional important example is a LW
with rests [Fig. 1(c)]. In this process, the instantaneous jump
in the (subdiffusive) CTRW is replaced by a ballistic run
whose duration time is proportional to the jump length. The
process is thus understood as ballistic diffusion alternating
with immobile motions. The statistical property of the PDF of
the duration time of each state is a fundamental characteristic
of the process.

In practice, the time series data consist of a succession
of positions measured every time interval �t . Therefore, the
data set is given by X = {Xi, i = 0 . . . N} where i is the time
index and N is the maximum number of measurement. A
conventional method to identify the state is to calculate the
instantaneous velocity vi,inst = Xi+1−Xi

�t . If the instantaneous
velocity is below a given threshold, the particle is in an im-
mobile state and is in a mobile state otherwise. This strategy
is a projection from the position to the state of the system,
and it generates a time series {Si, i = 1 . . . N − 1} where Si is
the state at time i�t . In general, there exist other complicated
strategies identifying the system state [46–48], but they all
consist of a projection F from the data set X and result in a
time series of states S = F (X ) = {Si, i = 1 . . . N − r} where
r is the minimum data points needed to determine the state
of the system. Once S is obtained, the duration time of each
state and their observed PDFs are immediately extracted from
it. Using the analytical theory and computer simulations, we
demonstrate that the original PDFs of the duration of each
state are different from the observed PDFs. The mathemat-
ical relation between the two PDFs is obtained in terms of
the aforementioned resolution r and the maximal observation
time of the time series.

A. Temporal-spatial resolution

In this section, we investigate the sole effect of the reso-
lution over the observed PDFs. As stated before, determining
the state {Si} requires a minimum number of data points. If
one uses the instantaneous velocity aforementioned, it only
requires two data points. However, in general it requires more
data points because of the noise or of the measurement errors.
These minimum data points are the resolution r. In other
words, with the knowledge of r data points, we determine
the system state. However, in doing so we have implicitly
assumed that the state remains unchanged during r�t , which
is not generally true. There exists a possibility that a change
of state occurs during the time interval of r�t .

In Figs. 2(a)–2(c), we give schematics of the measurement
process and show the consequences of the resolution over
the measured trajectory against the real one. In Fig. 2(a), we
consider a time series of events. The measurement occurs
every time step �t ; therefore, if two events occur within that
time step only one event is detected. Thus the statistics of
interevents is modified because of the inability to measure the
interevent duration shorter than �t . In Figs. 2(b) and 2(c),
we show how the resolution modifies the real trajectory for
the cases of CTRW and LW with rests. Suppose a trajectory
such that the system stays in an immobile state for t1, un-
dergoes an event (jump or ballistic motion) and then again

remains in the immobile state for t2. If the event induces
a change in the trajectory lower than the resolution �x or
�t , the change is not detected. Therefore, on the measured
trajectory, only a single event is recorded which last t ′

1 > t1.
Note that the resolution is related to a physical limitation (e.g.,
camera resolution) and we will make use of it to evaluate the
probability of errors. These errors modify the waiting time
PDF and we illustrate in Figs. 2(d) and 2(g) the effects of it
for the case of a CTRW with power-law waiting times PDF; in
each plot we show the original PDFs (solid line) from which
the CTRW was generated and the observed PDFs (symbols)
obtained after measuring and identifying the immobile state.
In the following, we will derive in detail the exact relation
between them. Suppose that we have observed that the state
S of the system lasts for a certain period of time t . There is
a probability Pr that during the observation time t (> 0) the
state has quickly changed to S′ during a time interval shorter
than r�t at time τ1(< t ) and come back to S. Generalizing
this idea, there is a probability (Pr )m that during the observa-
tion time t the state has briefly changed m times to S′ for a
time period shorter than r�t . Assuming that the duration of
the state S′ is infinitesimal (as usually considered in the time
series of the event occurrence and CTRWs in Fig. 1), the
apparent PDF of duration time of the state S can be written
in terms of the true PDF ψS (t ) and Pr as in the following:

ψreso,S (t ) = 1

N

[
ψS (t ) + Pr

∫ t

0
dτ1ψS (τ1)ψS (t − τ1)

+ Pr
2
∫ t

0
dτ1ψS (τ1)

∫ t

τ1

dτ2ψS (τ2

− τ1)ψS (t − τ2) + . . .

]
. (2)

On the right-hand side, the first term takes into account the
probability that the state S lasts continuously up to time t , the
second term that the state S changes briefly to S′ at time τ1,
the third that the state S changes briefly to S′ two times at τ1

and τ2, etc.
Because Pr is the probability that the state lasts for a period

of time shorter than the resolution r�t , it depends on which
underlying process is considered. For the CTRW, it is the
probability that a jump is smaller than the spatial resolution
r�x

Pr =
∫ r�x

0
dx ψjump(x), (3)

where ψjump(x) is the jump length PDF. For the LW with rests
[Fig. 1(c)], it is the probability that the run is shorter than the
temporal resolution

Pr =
∫ r�t

0
dτ ψS′ (τ ), (4)

where ψS′ (τ ) is the PDF of duration time of run events (S′).
Thus, Pr is related to the cumulative distribution of the S′ state.
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FIG. 2. Top: The schematics of the measurement process for (a) a time series of events, (b) a CTRW process, and (c) a LW with rests. If
a change occurs within the time resolution �t and/or the spatial resolution �x, the event is undetected. Because of this effect, the statistics
of interevent times (or waiting times) can be altered substantially. In the panels (a)–(c), we schematically draw the original time sequences of
events (upper) and the recorded time sequences under the resolution limit (bottom). Middle and bottom: Plots of the observed waiting time
PDFs of the CTRW process (b) with a power-law distributed waiting time (7) and an exponentially distributed jump length ψjump(x) ∼ e−x/x0 .
All the plots display the waiting time PDFs for two power-law exponents α: the set of three plots on the middle line is for α = 1/2 and the set
on the bottom line is for α = 3/2. The left panels (d) and (g) illustrate how different are the original PDFs ψS (t ) (solid lines) used to generate
the CTRW trajectories and the observed PDFs ψreso,S (t ) (symbols) obtained from the measured trajectory. The simulation data [(e), (f), (h),
(i)] were fitted with our theory Eq. (6) using the numerical inverse Laplace transform (solid lines) and with the original power-law PDF (7)
used in the simulation (dashed lines). Here, the error bars of the simulation data are smaller than the symbol size. The corresponding best-fit
curve and the fit values are shown in the plots and are in excellent agreement with the simulations even though the probability of error Pr is
high, as in the (h) and (i) panels. When the fitting range of the (e) and (h) panels is reduced to (f) and (i), the fitting exponent using a regular
power-law distribution Eq. (7) worsens. However, the fitting exponent using our theory Eq. (6) remains correct irrespective of the fitting range.
The following are the parameters used in the simulation: (d), (e), (f): α = 1/2, τ0 = 1, x0 = 1.44, and r�x = 1 (Pr = 0.5). (f), (g): α = 3/2,
τ0 = 1, x0 = 1.71, and r�x = 2 (Pr = 0.69).

Using a Laplace transform f̂ (s) = L[ f (t )] =∫ ∞
0 dt f (t )e−st , we rewrite Eq. (2) as

ψ̂reso,S (s) = 1

N
[
ψ̂S (s) + Prψ̂S (s)2 + P2

r ψ̂S (s)3 + . . .
]

= 1

N

∞∑
n=0

Pn
r ψ̂S (s)n+1. (5)

Because ψS (t ) is a probability distribution, it ensures ψ̂S (s =
0) = 1 and the normalization factor N is N = 1

1−Pr
. The

above geometric series then leads to

ψ̂reso,S (s) = (1 − Pr )ψ̂S (s)

1 − Prψ̂S (s)
. (6)

Analytically, we obtain the formal expression for the ap-
parent PDF such that ψreso,S (t ) = L−1[ψ̂reso,S (s)]. Although
performing the inverse Laplace transform is generally not
feasible, we are able to evaluate it numerically with the
Gaver-Stehfest algorithm [50] that has been proven to con-
verge exponentially fast if the function is analytic around the
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point of evaluation [51]. Then, Eq. (6) can be used to fit
the data and infer the parameters of the original PDF ψS (t ).
Equation (6) is valid for any alternating process; therefore it
can be applied to any distributions ψS (t ).

To investigate the effect of the temporal-spatial resolution,
let us consider a normalized power-law PDF

ψS (t ) = ατα
0

(t + τ0)1+α
(7)

and numerically obtain the event statistics limited by a given
resolution. Before the numerical study, we discuss the asymp-
totic behaviors of ψreso,S (t ) at the two limiting conditions
of t → 0 and t → ∞ by the virtue of the Tauberian theo-
rems: (1) The information of ψreso,S (t → 0) is obtained via
lims→∞ ψ̂reso,S (s) = α(1−Pr )

s , which gives the relation

ψreso,S (0) = (1 − Pr )ψS (0). (8)

(2) For the large-time limit and with τ0 = 1, we find that
ψ̂reso,S (s → 0) 
 1 − αsα

1−Pr
, which translates into the time do-

main

ψreso,S (t ) ∼ 1

(1 − Pr )t1+α
. (9)

These two limiting behaviors are the illustration of the ef-
fects of measurements on the real trajectory: it captures the
probability to fail to detect a change of states and, therefore,
to merge two short consecutive events into a longer single
one. In Figs. 2(d) and 2(g), we clearly see these effects. As
limt→∞ ψreso,S (t ) > limt→∞ ψS (t ), this means that the short-
duration events are likely to aggregate into longer events.
Oppositely, as ψreso,S (0) < ψS (0), the short-duration events
are also less likely to be the results of aggregation them-
selves. The result Eq. (9) also suggests that if it is possible
to observe a time series within a sufficiently long observation
time (t → ∞) one can obtain the power-law exponent of the
original PDF by measuring the long-time behavior even under
the temporal-spatial resolution limit with a decreased ampli-
tude by the factor of 1 − Pr . However, if a time series is not
sufficiently long, estimating α by means of the original PDF
(7) often results in an incorrect value, which is tested below.

In Figs. 2(d)–2(i), we simulated CTRW processes with
a power-law distributed waiting time PDF (7) for α = 1/2
(Pr = 0.5) and α = 3/2 (Pr = 0.69) and for several obser-
vation times. Figures 2(d)–2(f) show the observed PDFs
ψreso,S (t ) from the simulation (upper triangle) and two fitted
PDFs, one from our theory Eq. (6) (solid red line) and the
other one from the original PDF (7) (dashed blue line). In
Fig. 2(e), as the fitting range is six decades long [10−1, 105],
both fittings correctly estimate the input value of α. How-
ever, simply narrowing the fitting range to four decades long
[10−1, 103], the power-law fitting Eq. (7), while visually
agreeable with the simulations, fails to correctly infer the α

[Fig. 2(f)]. A similar observation can be made in Figs. 2(g)–
2(i) for the case of α = 3/2 as reducing the fitting range
for the power-law fitting Eq. (7) worsens the estimate of α

even though it seemingly explains well the data. Meanwhile,
we confirm that the estimated values of α with our theory
Eq. (6) are in good agreement with the input value regardless
of the observation window t of the data and regardless of the
resolution value.

Note that the fitting range dependence for the simple
power-law (7) is a consequence of the asymptotic behavior
Eq. (9) of our theoretical result Eq. (6): as the upper boundary
of fitting range increases, the behavior of the distribution
Eq. (6) tends to the regular power law (7). Therefore, for an
infinitely long fitting range, both fittings will give the same
estimate of α because the resolution only affects the short-
argument behavior. For any other cases, the fitting with the
regular power law (7) will depend on the choice of the fitting
range; it is known as a major difficulty to properly identify
the range of power law [11]. However, our result suggests that
if the breakage of the power-law behavior is solely due to the
resolution, we no longer need to identify this power-law fitting
range and the distribution Eq. (6) can be used over the entire
range of data.

B. Time window

Here, we examine how the original PDFs are modified
by the sole effect of the time window. By analyzing how
the duration of a state is recorded during an experiment, we
establish the relation between the original and observed PDFs
of state duration.

To measure the duration time of a state S, an event has to
occur within the time window [0, T ] of the experiment. Thus,
the time window will strongly affect the measured PDF as no
event longer than the time window itself will be registered;
when a duration time PDF has a characteristic timescale such
as an exponential distribution, a proper choice of the time
window could constitute a solution. However, if tuning a time
window is not possible or if the PDF has no characteristic
timescale as for power-law distributions, the time-window
effect has to be taken into account explicitly.

In Fig. 3(a), we schematically depict the typical situation to
be considered. Assume that during our observation in [0, T ]
an event occurs at time τ with a probability P(τ ). This event
will last for a duration t distributed according to ψS (t ) [or
ψS′ (t )]. If t + τ is larger than the time window T , then it
cannot be registered in the statistics. For a given time τ for
an event to start, the probability of observing the complete
event is Prob(t < T − τ ) = ∫ T −τ

0 du ψS (u). Therefore, each
event registered in the distribution will be weighted by this
probability

ψtime,S (t ) = ψS (t )

N

∫ T −t

0
dτ P(τ )

∫ T −τ

0
du ψS (u)�(T − t ),

(10)
where the step function �(T − t ) ensures t < T . The mathe-
matical expression (10) is applied to any time series regardless
of the exact form of the distribution ψS (t ) and the probability
P(τ ). Assuming the process is almost time-translation invari-
ant, the probability P(τ ) becomes a constant, absorbed into
the normalization. This is typically the case in Lévy walks
when the aging time becomes large enough [52]. Evaluating
the integrals for the power-law case Eq. (7) [53], we obtain for
t ∈ [0, T ]

ψtime,S (t ) = ψS (t )

N

[
T − t + τα

0
(T + τ0)1−α − (t + τ0)1−α

α − 1

]

= W (t, T )ψS (t ). (11)

013011-5



DURANG, AHN, SHIM, PARK, AND JEON PHYSICAL REVIEW RESEARCH 5, 013011 (2023)

10−6

10−5

10−4

10−3

10−2

10−1

100

10−1 100 101 102 103 104

(b)

ψ
ti

m
e,

S
(t

)

t

Sim. T = 10
Sim. T = 60

Sim. T = 600
Sim. T = 3000
Orig. α = 0.4

10−3

10−2

10−1

100 101

(c)

ψ
ti

m
e,

S
(t

)

t

Orig. α = 0.4
Sim. α = 0.4

Eq.(11) α � 0.42
Eq.(14) α � −0.13, tr � 15

FIG. 3. (a) Scheme of a typical experiment: ta represents the
beginning of the experiment where the measurements start. T is the
duration of the experiment. An event occurs at a random time τ fol-
lowed by another event at time τ + t . The interevent time t is drawn
from a given distribution ψS (t ). (b) The observed PDFs of wait-
ing times from the CTRW processes with a power-law distributed
waiting time with α = 0.4. The solid line is the original power-law
distribution ψS (t ) used to generate trajectories. The symbols are
the distribution observed through different window sizes ψtime,S (t ).
The normalization is such that ψS (0) = ψtime,S(0). (c) The original
PDF (orange dashed line) of the process we simulated is displayed
with the observed waiting time PDF of a CTRW process recorded
within a finite observation time window T . The data from simulations
(symbols) is compared with the fit by our theory (solid line) Eq. (11)
of ψtime,S (t ) with τ0 = 1 and by an exponentially truncated power law
Eq. (14) (dashed line). The CTRW was simulated with the waiting
time PDF (7) with α = 0.4 and τ0 = 1. The observation time window
was T = 60. Even though the exponentially truncated power law
Eq. (14) gives visually a reasonable fit, it fails to capture the correct
exponent. However, the fit based on our theory Eq. (11) displays an
excellent agreement with the simulations and recovers the correct
exponent.

We note that, contrary to a naive expectation, ψtime,S (t ) is not
an exponentially truncated power law which might behave
as ψtime,S (t ) 
 exp(−C × t/T )ψS (t ). The truncation factor
behaves as

W (t, T ) 
 1

N

[(
T + (T + 1)1−ατα

0 − τ0

α − 1

)
− α

2τ0
t2

]
(12)

when t is small. This means that ψtime,S (t ) ∝ ψS (t ) up to a
prefactor. When t → T , the truncation factor is approximated
to

W (t, T ) 
 1

N

[
1 − τα

0

(T + τ0)α

]
(T − t ). (13)

That is, the truncation by the finite observation time T is not
an exponential cutoff but a linear decay with T − t .

In Figs. 3(b) and 3(c), we test our theory with simula-
tions of a CTRW process with power-law distributed waiting
times with the exponent α = 0.4. We record the events that
happened during the time window [0, T ] and we plot the ob-
served waiting times PDF (symbols). In Fig. 3(b), we plot the
observed waiting time PDF for increasing the time window
T , along with the original distribution. It clearly displays the
effect of the cutoff on the waiting time PDF; as T is larger, the
observed PDF gets closer to the original PDF. In Fig. 3(c),
we also infer the value of α from the observed data using
our theoretical expression Eq. (11) and using an exponentially
truncated power law

ψETPL(t ) = tα
r

�
( − α, tmin+1

tr

) − �
( − α, T +1

tr

) e−(t+1)/tr

(t + 1)1+α
.

(14)

Here, ψETPL(t ) is normalized for t ∈ [tmin, T ]. While appar-
ently both fits explain well the simulation data, the extracted
value of α is very different. We confirm that our theory
Eq. (11) correctly recovers the original exponent. How-
ever, the empirical approach with the exponentially truncated
power law produces an unrealistic estimation for α, which was
α = −0.13 and a cutoff time tr = 15.

To sum up, when looking for a power-law behavior in data
from any experiments with a definite time window, Eq. (11)
should be used instead of the regular power law (7).

C. The combined effects of the resolution and time window

Based on our theoretical studies in Sec. II A and II B, here
we seek to find the expression of the observed PDF ψobs,S (t )
limited by the resolution and time window simultaneously.
Combining the two main results Eq. (6) and Eq. (10), we find
that ψobs,S (t ) satisfies the following formal expression

ψobs,S (t ) = ψreso,S (t )

N

∫ T −t

0
dτ P(τ )

∫ T −τ

0
du ψreso,S (u),

(15)

where ψreso,S (t ) is the inverse Laplace transform of the func-
tion given in Eq. (6). Unfortunately, it is almost infeasible to

013011-6



ACCESSING POWER-LAW STATISTICS UNDER … PHYSICAL REVIEW RESEARCH 5, 013011 (2023)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Pr

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
α

0%

1%

2%

3%

4%

5%

FIG. 4. Maximum of the relative error of the approximation
Eq. (16) with respect to the numerical inverse Laplace transform of
Eq. (6) for t ∈ [1, 100]. The approximation Eq. (16) can be consid-
ered reasonable in the lower left diagonal part, when α + Pr � 0.65.

obtain the analytic expression of ψreso,S (t ) for a power-law
PDF. Therefore, we have to proceed with an analytical approx-
imation of ψreso,S (t ) to evaluate Eq. (15) or conduct numerical
evaluations of Eq. (15) to get ψobs,S (t ).

Let us first proceed in the former method. For the two
extreme limits (t → 0 and t → ∞), we can separately find
the analytic expression of ψreso,S (t ) for a power-law PDF (7)
with τ0 = 1. By empirically matching the two limiting results,
we end up with the following approximation of ψreso,S (t ):

ψ reso,S (t ) 
 ψS (t )

1 − Pr
+

α(1 − Pr ) − ψS (0)
(1−Pr )

(t + 1)2+αPr

+
[1/α]∑
n=2

αn�(−α)nPn−1
r

(1 − Pr )n�(−nα)

×
(

1

(t + 1)1+nα
− 1

(t + 1)2+αPr

)

+ 2Prα�(−α)

(1 − Pr )2(1 − α)�(−α − 1)

×
(

1

(t + 1)2+α
− 1

(t + 1)2+αPr

)
. (16)

Considering that the approximation is valid if the relative

error |ψreso,S (t )−ψ reso,S (t ))|
ψreso,S (t ) < 5%, we estimate that the domain of

validity is such that Pr + α 
 0.65. In Fig. 4, we plotted the
maximum of the relative error of the approximation Eq. (16)
in the domain t ∈ [1, 100] with respect to the numerical in-
verse Laplace transform of Eq. (6). The heat map is plotted
such that the color displayed is yellow when the relative error
is >5%. Therefore, all the remaining area corresponds to the
case that the approximation is considered valid. We note that
the approximation Eq. (16) consists of a sum of power-law
terms; therefore replacing each power law by its correspond-
ing expression Eq. (11), we obtain the final approximated
expression for the combined effects ψobs,app given in Eq. (B4)
in Appendix B.

Alternatively, we can obtain ψobs,S (t ) by numerically eval-
uating the formal expression Eq. (15). For this, we rewrite the

10−4

10−3

10−2

10−1

100 101

(a)

ψ
ob

s,
S
(t

)

t

Sim. α = 0.4
Eq.(17) α � 0.42
Eq.(B4) α � 0.36
Eq.(11) α � 0.25 10−4
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FIG. 5. The observed waiting time PDF of rest events in the
model of a Lévy walk with rests [Fig. 1(c)] under the limitation of
the resolution and time window. The Lévy walk process is gener-
ated with an exponentially truncated power-law PDF of run times
ψrun(t ) ∝ e−t/tr

(t+1)1+η and a power-law PDF of rest times ψrest (t ) given
by Eq. (7). See the schematic of this process in Fig. 1(c). The sim-
ulation parameters are (a) η = 0.1, tr = 20, α = 0.4, and r�t = 1;
(b) η = 0.4, tr = 20, α = 0.24, and r�t = 0.6. In both panels, the
symbols represent the simulations results. The solid line shows the
fit using our exact theory Eq. (17) while the dotted line is the fit
using the approximated PDF, ψobs,S (t ), from Eq. (B4). The dashed
line represents the fit using ψtime,S (t ) [Eq. (11)] that incorporates the
effect of the time window in the absence of the resolution limitation.
While all the fit curves seemingly show good agreement with the
simulations, only the one based on our complete theory Eq. (17) gives
the correct exponent.

integral expression in Eq. (15) as

ψobs,S (t ) = L−1[ψ̂reso,S](t )

N

×
(
L−1

[
ψ̂reso,S

s2

]
(T ) − L−1

[
ψ̂reso,S

s2

]
(t )

)
.

(17)

We then use the Gaver-Stehfest algorithm [50] to evaluate
the inverse Laplace transform in the above expression nu-
merically. We note here that the validity of Eq. (15) is not
restricted to a power-law distribution and can be used with
any distribution.

We test our theory with an example of Lévy walk with
rests schematically explained in Fig. 1(c), which will be our
dynamic model in the next section for the application of the
developed theories to an experimental system. The simulated
process and its event time PDFs can be understood as those of
a CTRW process with the Pr defined in Eq. (3). In Fig. 5, we
simulate a Lévy walk with rests where the run (ballistic phase)
event is generated with random sojourn times governed by a
truncated power law and the rest event with random waiting
times governed by a power-law PDF. For further information,
see Appendix A for the simulation detail. Here, we extract the
(power-law) rest time PDFs from the simulated trajectories in
the presence of the resolution and time-window limits.

Shown in Fig. 5 are the observed rest time PDFs of the
Lévy walk process for two distinct parameter cases. To infer
the power-law exponent α we fit the simulation data with the
following three theoretical expressions (S = “rest”): (i) the
expected PDF ψobs,S (t ) based on the exact theory Eq. (17),
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(ii) the approximated PDF ψobs,S (t ) via Eq. (B4), and (iii)
ψtime,S (t ) based on Eq. (11), which is the theoretical PDF that
only takes into account the effect of time window. The results
show that although the data seem to be fitted well with the
three expressions the fitting values greatly differ. It is demon-
strated that the exact expression (i) estimates the underlying
exponent successfully for the two data set [(a) and (b)] even
though the observation time window is not sufficiently long.
Using the approximated PDF ψobs,S (t ), we can infer α in good
agreement with the ground true value when the resolution
is high (i.e., r is small) [Fig. 5(b)]. However, the estimation
becomes inaccurate when the resolution is low (i.e., r is small)
[Fig. 5(a)]. Finally, we confirm that without incorporating the
resolution effect the PDF ψtime,S (t ) fails the correct estimation
of the power-law exponent. Thus, Eq. (17) is the pinnacle
of this study as it encompasses the two main constraints of
experiments and gives us how a distribution is transformed
when subjected to these constraints.

III. AN EXPERIMENTAL APPLICATION:
THE TRANSPORT OF mRNP PARTICLES

IN NEURONAL CELLS

As an experimental application of our theory, we de-
termined the statistics of the dynamics of β-actin mRNP
complexes transported along the dendrites of neurons by mo-
tor proteins [Fig. 6(a)]. Previously, we have shown that the
motion of β-actin mRNP complexes consists of an alternation
of rests and runs. See the kymograph of mRNP particles
in Fig. 6(b). We performed experiments following a similar
protocol used in [10] except for the use of bicuculline for
neuronal stimulation. Briefly, we cultured hippocampal neu-
rons from the MCP×MBS mice [54], in which every single
endogenous β-actin mRNA is labeled with multiple green
fluorescent proteins. At 12–15 days in vitro, we stimulated the
neurons by treating them with 50 μM bicuculline for 20 min.
At 40–60 min after the onset of the stimulation, we imaged the
movement of individual β-actin mRNP particles in proximal
dendrites (0–50 μm from the cell body) at 200 ms intervals
over a one-minute time course. Being fluorescently labeled,
the individual mRNPs appear as bright spots in Fig. 6(a).
Kymographs of the time-lapse images were generated, from
which the positions of fluorescently labeled mRNPs were
detected and registered; see Fig. 6(b).

As observed in the kymograph, the stochastic diffusion
dynamics of single mRNP particles are described by the Lévy
walk with rests introduced in Fig. 1(c). The motion of mRNPs
is an alternating dynamics of the run and rest phases. Here,
the run is a ballistic movement with random sojourn times
while the rest is the stop state with waiting times governed
by a PDF distinct from the run’s. After the identification
of the trajectories {Xi, i = 0 . . . N} from the kymographs,
we proceeded to the determination of their states. For this, we
calculated the velocity Xi+1−Xi

�t where �t = 0.2 s was the time
interval of imaging. After averaging and filtering this velocity
profile, we determined the dynamic state of the mRNP par-
ticle by applying the following criterion: if the velocity was
< vthreshold = 0.3 μm/s then the particle was considered in a
rest state; if not it was considered in a run.
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10−1

101

(c)

ψ
ob

s,
S
(t

)

t

Exp. data
Eq.(17) α � 0.22

Eq.(14) α � 0, tb � 31.1
Eq.(7) α � 1.80, τ0 � 12.27

FIG. 6. (a) Live-cell image of a hippocampal neuron showing
fluorescently labeled β-actin mRNPs. Images were taken every time
interval �t = 200 ms. (b) A typical kymograph for an ensemble of
mRNP particles spotted along an observed dendrite as in (a). The
single mRNP motion is composed of run and rest phases, which are
marked in blue and red colors, respectively. (c) Distribution of the
duration of rest events ψrest (t ). Symbols: Experimental PDF. Solid
line: The best fit using our theory Eq. (17) with α ≈ 0.22. The
resolution has been estimated to be such that Pr 
 0.45. Dashed line:
The best fit using an ETPL Eq. (14) with an additional constraint of
α > 0 results in α ≈ 0 and tb ≈ 31.1 s. Dashed-dotted line: The best
fit using a simple power law Eq. (7) with α ≈ 1.80 and τ0 ≈ 12.27.
The power-law function was normalized to unity on the range of the
plot.

We now focus on the PDF ψrest of the waiting time of the
rest event. For the run event, it was shown that the sojourn time
PDF was not of a power law [10], which was explained well
by an exponentially truncated power law ψrun(t ) ∼ e−t/tr

(t+1)1+η

with η = 0.52 and tr = 12.5 s. Using this information, we
calculated the probability Pr that a run is too short to be
detected. Estimating that the resolution is about nmin = 5
data points or about 1 s (see Appendix C), this gives Pr =∫ nmin�t

0 ψrun(t ) dt = 1 − �(−η,(nmin�t+1)/tr )
�(−η,1/tr ) 
 0.45.

In Fig. 6 we plot the rest time PDF from our experiment.
We infer the power-law exponent α of the PDF from the data
with ψobs,S (t ) that takes into account the combined effects of
the resolution and time window [Eq. (17)]. For comparison,
we also measure the best-fit values of α with power-law PDFs,
Eq. (14) (exponentially truncated power law) and Eq. (7)
(power law). We find that the fit with the single power law re-
sults in α ≈ 1.8, while the fit with the exponentially truncated
power law (ETPL) with the constraint α > 0 gives α ≈ 0 and
the truncation characteristic time tb = 31.1 s. Although the ex-
perimental data are well explained, at least visually, by both fit
curves, the two reference methods give inconsistent values for

013011-8



ACCESSING POWER-LAW STATISTICS UNDER … PHYSICAL REVIEW RESEARCH 5, 013011 (2023)

α. Moreover, neither of them turns out to be physically correct
in that the β-actin mRNP’s motion follows an aged Lévy walk
from our previous study [10]. Namely, the Lévy walk with rest
events governed by the above ETPL or by a power-law PDF
with α (≈ 1.8) >1 cannot age due to the finite first moment of
the rest times. Therefore, the fitted exponents α using the two
reference power-law PDFs have to be rejected for dynamical
reasons. Contrary to these empirical approaches, we obtain
α ≈ 0.22 from our theory based on ψobs,S (t ). The estimated
value not only explains well the data over the entire time win-
dow (red curve in Fig. 6) but it also satisfies the condition 0 <

α < 1 to be compatible with the reported aging transport dy-
namics of the β-actin mRNP particle. Note that the fit with our
equation (17), albeit a single-parameter fit, outperforms the
other ones via Eqs. (14) and (7) that have two fit parameters
[55]. We find that α ≈ 0.22 is smaller than the value α ≈ 0.32
obtained in the case of nonstimulated neuron experiments
[10].

IV. DISCUSSION AND CONCLUSIONS

Throughout this paper, we have demonstrated the necessity
to take into account the way data are collected in order to
proceed to a meaningful analysis. We have considered two
fundamental constraints that are intrinsic to experiments: the
spatiotemporal resolution and the time window (or duration).
We chose to deal with the constraints in the temporal do-
main but all the results presented can also be interpreted
and used in the spatial domain. Namely, the time-window
constraint represents the duration of the experiment but it
can also be interpreted as the spatial extension of the ex-
periment. For the resolution, we can view it as a probability
of error: if a change or a variation of the signal is below
a certain threshold, that change will not be detected. Then
the probability that the signal variation is below the thresh-
old is the probability of error. In the experimental example
we have investigated (Sec. III), the time window is the du-
ration of the experiment and the temporal resolution is the
minimum number of steps required to detect a change of
state.

The main results of this paper are recapitulated with the
following three equations: (1) Eq. (6) that tells us how the
distribution of interevents or state duration times is modified
in the presence of measurement errors; (2) Eq. (11) that gives
us the distribution of the duration times as a function of the
total observation time of the experiment; (3) Eq. (17) that
combines the two aforementioned equations and constitutes
the central message of the paper: The effects of the experi-
mental constraints cannot be discarded when determining the
exponent of the distribution of the state duration time, and we
show how to properly take them into account in order to infer
the correct power-law exponent.

Although we have demonstrated the application of our
theory to a real system in estimating the power-law expo-
nent and the characteristic time of related PDF duration time
in Sec. III, let us additionally discuss other examples. In
Ref. [45], the blinking of the quantum dots was reviewed.
Indeed, under illumination, colloidal nanocrystals exhibit an
intermittency in their photoluminescence referred as blinking.
To characterize this phenomenon, the photoluminescence is

measured at a constant rate and it displays rapid fluctuations
between the on and off states, defined as the sustained emis-
sion above a certain intensity threshold for the former and
below for the latter. For a certain type of blinking called B
type, the distribution of duration of the on state or off state
is a power law. As the determination of the on state and
off state clearly depends on a threshold and the resolution
constraint, it could be of interest to use our expression Eq. (6)
for the precise estimation of the power-law exponent from the
data.

In Ref. [44], the authors studied spontaneous activity
cascades called neuronal avalanches in superficial layers of
cortex and they characterized the distribution of avalanche
sizes. They showed that the PDF follows a power law within
a given range but is affected by the spatially windowed
recordings and therefore introduced a hard cutoff parame-
ter. However, they found that for upper values of the cutoff,
their PDFs with a cutoff deviate from experiments. Using
our framework and setting the observation window to the
number of electrodes or equivalently the spatial extension of
the detection window, one could use Eq. (11) to recover the
observed PDF.

We emphasize that our results do not directly apply to
the mean-square displacement analysis and the identification
and characterization of the anomalous diffusion exponent in
Eq. (1). However, in some special cases, one would be able to
use our mathematical formalism to estimate the exponent of a
given PDF and try to relate it to the anomalous exponent; for
example, in the LW process, the power-law exponent γ of the
flight time PDF is connected to the anomalous diffusion ex-
ponent α = 3 − γ if 1 < γ < 2 and α = 2 if 0 < γ < 1 [49].
For any other cases, where the anomalous diffusion occurs
due to physical mechanisms other than the power-law statis-
tics, such as the strong correlation among displacements and
heterogeneity of the environment, measuring the anomalous
exponent under experimental errors is completely a different
task.

While there are only a few papers that take into account the
spatiotemporal window effect on the cumulative distribution
function [14,40–42], our work is an in-depth study to derive
the expression of the observed PDFs that encompasses the res-
olution and time-window effects. Therefore, we believe that
our theoretical results will substantially improve the identifi-
cation of power-law distributions in PDFs from experimental
data, e.g., as we performed for the PDF of rest duration of the
mRNP particles in neuronal cells.

Finally, we emphasize that, even though we have solely
presented how the experiments modify the original power
laws of a phenomenon or a process, our mathematical frame-
work is general and can be applied to any distribution. The
equations (6), (10), and (17) that we obtained from our un-
derstanding of the experimental constraints are not restricted
to the specific case of the power-law distributions. Indeed,
many real-world process statistics are more complex than a
single power law [56–58] and our theory can still be applied
to such multiple power-law distributions or non-power-law
distributions. More generally, any process subjected to these
experimental constraints will have its original statistics mod-
ified according to our equations, regardless of the exact form
of their original distribution.
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APPENDIX A: SIMULATION DETAILS

In Fig. 5, we have simulated the process of a Lévy walk
with rests such that the rest time PDF is ψrest (t ) = α

(t+1)1+α

and the run time PDF is ψrun(t ) ∼ e−t/tr

(t+1)1+η . It consists of an
alternation of run and rest whose respective random durations
are drawn from the corresponding PDFs. At time t = 0, all
trajectories start with a run. The runs are set to be ballis-
tic motions at a constant velocity v = 1. The random times
governed by the two PDFs are generated using the inverse
transform sampling method [59]. We simulated N = 105 tra-
jectories consisting of points spaced by �t = 0.2 within the
observation time window [τa, τa + T ] where τa = 100 and
T = 60.

Once a trajectory is simulated, it is recorded with a given
resolution parameter r in the following way. Let us assume
that a Lévy walk with rests is simulated with a variation
of event times as schematically illustrated in Fig. 7(a). For
every event in the S and S′ states, if tevent > r�t , this state is
recognized to occur and the event is recorded with a duration
of tevent. However, if tevent < r�t (e.g., in S state), this event
fails to be detected. Then, the event (in S state) is recorded as
a part of the previous event (in S′ state) and, accordingly, the

FIG. 7. Example of sampled trajectories. During the sampling, if
a duration tS,S′ drawn from the corresponding distributions is smaller
than r�t , the change of event will not appear in the recorded trajec-
tory. (a) The trajectory created before taking care of time window or
resolution. (b) The observed or the recorded trajectory

latter state has an increased duration time by tevent. We repeat
the same protocol for the next events, obtaining the recorded
trajectory as in Fig. 7(b).

APPENDIX B: DERIVATION OF EQUATION (16)

The expression of Eq. (16) is obtained phenomenologically
by matching the initial behavior and the asymptotic behavior
of Eq. (6). The series expansion of Eq. (6) gives the large-time
behavior

ψasympt (t ) 
 1

1 − Pr

⎛
⎝ψS (t ) +

[1/α]∑
n=2

αn�(−α)nPn−1
r

(1 − Pr )n�(−nα)

1

(t + 1)1+nα
+ 2Prα�(−α)

(1 − Pr )2(1 − α)�(−α − 1)

1

(t + 1)2+α

⎞
⎠. (B1)

The asymptotic limit of Eq. (6) gives the t → 0 limit
ψ init (t ) = α(1 − Pr ). (B2)

We construct the final expression by requiring that it satisfies both limits and by imposing that it only contains power-law terms

ψ reso,S (t ) = ψasympt (t ) − ψasympt (0)

(t + 1)2+αPr
+ ψ init (t )

(t + 1)2+αPr
, (B3)

which gives Eq. (16).
To obtain the expression for the combined effects ψobs,S (t ), we replace every simple power law that appears in Eq. (6) by the

expression for the time-window effect Eq. (10),

ψobs,S (t ) 
 ψS (t )

1 − Pr

[
T − t + (T + 1)1−α − (t + 1)1−α

α − 1

]
+

α(1 − Pr ) − ψS (0)
(1−Pr )

(t + 1)2+αPr

[
T − t + (T + 1)−αPr − (t + 1)−αPr

αPr

]

+
[1/α]∑
n=2

αn�(−α)nPn−1
r

(1 − Pr )n�(−nα)

1

(t + 1)1+nα

[
T − t + (T + 1)1−nα − (t + 1)1−nα

nα − 1

]

−
[1/α]∑
n=2

αn�(−α)nPn−1
r

(1 − Pr )n�(−nα)

1

(t + 1)2+αPr

[
T − t + (T + 1)−αPr − (t + 1)−αPr

αPr

]

+ 2Prα�(−α)

(1 − Pr )2(1 − α)�(−α − 1)

1

(t + 1)2+α

[
T − t + (T + 1)−α − (t + 1)−α

α

]

− 2Prα�(−α)

(1 − Pr )2(1 − α)�(−α − 1)

1

(t + 1)2+αPr

[
T − t + (T + 1)−αPr − (t + 1)−αPr

αPr

]
. (B4)
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FIG. 8. The PDFs of rest duration extracted from a LW with
power law distributed rests over a time window of T = 60 (and α =
0.4). An experimental noise is added to each computer-generated
trajectory and the detection protocol is used to obtain the rest events
(black circle). Computer-generated trajectories with the resolution
constraint r�t = 1 but without an experimental noise (red triangle).
Fit of the black circle data with Eq. (17) (dashed blue line).

APPENDIX C: ON THE DETECTION OF RUN AND REST
EVENTS FROM THE KYMOGRAPH DATA

IN SECTION III

To segregate the runs from the rests, as we stated in the
main text, we calculate the instantaneous velocity vi = xi+1−xi

�t ,
where {xi} is a recorded trajectory and �t is the time elapsed
between two data points. The velocity profile vi we obtain
from an experiment is noisy and requires a smoothing treat-
ment. We use an edge-preserving nonlinear Gaussian filter
[60] called the bilateral filter,

v̂i = 1

N

6∑
j=−6

viGσs ( j)Gσv
(|vi− j − vi|),

where N is the normalization factor, and Gσs (Gσv
) is a do-

main (range) Gaussian weight of variance σs (σv). We iterate
this filter until a convergence criteria is satisfied. Then, we
identify rest events as the event that continuously satisfies
the threshold criteria v̂i < vthreshold. From the previous study
[10], it was found that the velocity distribution of the runs
displayed a maximum around 1.25 ms−1; therefore we chose
vthreshold = 0.3 to be as far as possible from the maximum but
not too small to avoid capturing fluctuations of the velocity
profile.

In order to validate this protocol, we simulate a LW with
power-law distributed rests, over a time window T = 60,
whose exponent is α = 0.4. The distribution of the runs is
an ETPL with the parameters η = 0.6 and tr = 20. We add
to each trajectory a noise coming from the experimental data
set. These noises are actually trajectories that were selected
visually because they simply consist of fluctuations around an
immobile position. Then, on the noisy trajectories, we apply
our protocol to segregate rests and runs. We plot in Fig. 8 the
resulting PDF of rest duration (black circle).

We also simulate another LW process with the same pa-
rameters but with a resolution of r�t = 1 (see Appendix A).
We do not add the experimental noise to these trajectories. As
the resulting PDF of rest duration (red circle) agrees with the
previous one, we consider that the noise and detection proto-
col can be modeled as a resolution constraint that prevents the
detection of events shorter than r�t = 1.

Using this resolution parameter, we can estimate the proba-
bility of not detecting a run event Pr 
 0.45 and we fit the PDF
from the noisy LW with our theory (dashed blue line). We
obtained α 
 0.41 in excellent agreement with the original
value α = 0.4 and thus consider the detection protocol valid.

This whole protocol is based on the natural idea that the
velocity distinguishes the “immobile” part from the “mobile”
ones. The smoothing algorithm we use for the velocity is also
common and broadly used, e.g., for image denoising or edge
detection, but it requires being tuned specifically for each
usage.
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