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Quantum coherent control in pulsed waveguide optomechanics
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Coherent control of traveling acoustic excitations in a waveguide system is an interesting way to manipulate
and transduce classical and quantum information. So far, these interactions, often based on optomechanical
resonators or Brillouin scattering, have been studied in the steady-state regime using continuous waves. However,
waveguide experiments are often based on optical pump pulses, which require treatment in a dynamic framework.
In this paper, we present an effective Hamiltonian formalism in the dynamic regime using optical pulses that
links waveguide optomechanics and cavity optomechanics, which can be used in the classical and quantum
regime including quantum noise. Based on our formalism, a closed solution for coupled-mode equation under the
undepleted assumption is provided and we found that the strong coupling regime is already accessible in current
Brillouin waveguides by using pulses. We further investigate several possible experiments within waveguide
optomechanics, including Brillouin-based coherent transfer, Brillouin cooling, and optoacoustic entanglement.
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I. INTRODUCTION

Photons are known as one of the most promising quantum
information carriers in quantum communication, especially
for long distances [1] but also represent a major oppor-
tunity for quantum computation [2]. However, enhancing
photon-photon coupling is a challenge. Introducing optome-
chanical interaction is one of the possible ways to get photons
more interactive and therefore mechanical systems have a
profound impact on current quantum technologies. The com-
bination of matured MEMS (microelectromechanical system)
[3] technology and the diversity of mechanical systems offer
flexibility for transducing, delivering, and manipulation of
quantum information and moreover open new roads of ex-
ploring macroscopic quantum phenomena [4-6]. In addition
to the considerable effort invested in optomechanical res-
onators [6,7], some research has been conducted in waveguide
optomechanics [8], which may be a plausible platform for
quantum networks [9] and quantum nonlinearity [10] due to
its broad bandwidth and integrability into existing circuitry
[11-13].

Waveguide optomechanics can rely on the interaction
of optical waves with mechanical breathing modes of the
transverse section of the optical waveguide or on traveling
longitudinal acoustic waves or on hybrid versions of both of
them. Brillouin scattering, which describes a variety of these
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optoacoustic and optomechanical interactions has been exper-
imentally investigated in detail in optical fibers and photonic
integrated waveguides [14,15] and several classical coupled-
mode equations [16] have been analytically developed in
the classical regime to understand those phenomena. Also
quantum approaches have been studied, including Hamilto-
nian [17] and Lagrangian treatments [18], which propose a
quantum field description for optomechanical interactions in
waveguides. Treating the waveguide as an array of cavities
is another way towards optomechanical waveguide theories
[19]. Current research on quantum regimes in an analytical
way, however, focuses on steady-state behaviors and treat
continuous-wave (CW) interactions. Studying dynamic pro-
cesses including optical pump pulses involve challenges such
as the contradiction between finite control length and the
infinite expanded nature of phonons. This makes it chal-
lenging to analyze the time-dependent quantum evolution in
optoacoustic processes stimulated by a pulsed pump such as
Brillouin-based memory [20-22].

Compared with the well-studied zero-dimensional cavity
optomechanics, where the mechanical or acoustic excitations
are localized, the one-dimensional extended-waveguide sys-
tems with traveling acoustic waves present several intriguing
features. Firstly, the continuous phonon spectrum in contin-
uum optomechanical waveguides provides a remarkably large
bandwidth for optomechanical interaction [23], which is an
ideal platform for multimode optomechanics. Furthermore,
the resonator-free structure in extended waveguide systems
enables phase-preserving manipulation of the traveling waves
[20,21,24]. Moreover, this one-dimensional optomechanical
interaction offers new physics that was unseen in zero-
dimensional cavities like polariton band structure [25,26] and
topological transport [27,28].

In this paper, we formulate a framework in which backscat-
tered Brillouin scattering in a waveguide is treated as a
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FIG. 1. Principle: The backward Brillouin interaction can be
separated in different wavevector channels. In each channel, the
backscattered nature contributes to a cavity-like localized interaction.

continuous cavity array in the momentum space (Fig. 1). With
this framework, many techniques well developed in cavity op-
tomechanics can be applied to the continuum optomechanical
systems.

We introduce comoving coordinates that move together
with the optical pump pulse, which enables a simple formu-
lation of the pulsed dynamical regime, in which propagating
optical pulses interact with traveling acoustic waves, respec-
tively. Under the assumption of sufficiently short undepleted
pump pulses, the framework maps the dynamic pulsed case in
a waveguide into a cavity-like system, which greatly simpli-
fies the treatment of different scenarios of coherent control.
We find that due to the larger depletion threshold for shorter
pulses, the strong coupling regime can be achieved using cur-
rent platforms in the pulsed regime. With this framework, we
explore several challenging problems in backward Brillouin
scattering in waveguide systems, such as coherent transfer
between photons and phonons, Brillouin cooling, and entan-
glement in Brillouin waveguide systems.

First, we analytically demonstrate that by delicately con-
trolling the pump pulse length, coherent transfer and Brillouin
cooling with high efficiently using the backward Brillouin
process is possible. More specifically, we use an anti-Stokes
Brillouin process in the backward regime to show that the
quantum state can be transferred between photons and acous-
tic phonons. This transfer can be used for cooling the acoustic
phonons in longer fibers with higher efficiency than those
based on continuous waves [8,29]. Note that previous papers
were mostly based on forwarding Brillouin scattering, which
is related to transverse mechanical vibrations and presents a
different operation regime [8,29]. Secondly, we analytically
show that entangled pair generation is possible by using the
backward Brillouin scattering Stokes process. Our evalua-
tion suggests that these regimes can be attained by existing
waveguide systems such as chalcogenide fibers and nanoscale
waveguides.

The paper is organized as follows: In Sec. II we briefly
summarize the conventional backward Brillouin interaction
and then present the effective Hamiltonian formalism, which
is the main result of this paper. In Sec. III, we investigate three
challenging problems in waveguide optomechanics using our
formalism: coherent transfer, Brillouin cooling, and entangled
pair generation. In the last Sec. IV, we summarize our result
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FIG. 2. The phase-matching diagram. The black corn and black
curve refer to the dispersion relation of photons and acoustic
phonons. The black-dotted line is the copy of the phonon dispersion
relation. For the Stokes process, the phase-matching condition can
only be satisfied when the pump photon emits a forward traveling
phonon (the green arrow pointing to the top right corner). In contrast,
the anti-Stokes process can only be stimulated when absorbing a
backward traveling phonon (the green arrow pointing to the top left
corner).

and discuss several open questions in waveguide optomechan-
ics.

II. EFFECTIVE HAMILTONIAN FORMULATION

A. Waveguide optomechanical system

We consider an optomechanical waveguide system, which
allows the guidance of both electromagnetic and acoustic
waves with different wave vectors and in different spatial
modes. A typical optomechanical interaction in such a waveg-
uide system treats a mechanical oscillation with frequency
Q(k), a light field with optical frequency w(k), and the
optomechanical coupling go, which refers to the coupling
between two photons with wave vectors kg, k, (p, ¢) and one
acoustic phonon with wave vector g(k). The optomechanical
coupling can originate from different physical processes such
as electrostriction [30] and radiation pressure [31]. Consider-
ing the three-wave-mixing optomechanical coupling (usually
the dominant ones), the system can be described by the Hamil-
tonian [17,19]

+o00 . +o00
H = / dq ho(q)ala, + / dq hQ(q)b}b,

—00

+00

+h / / dqdp (8p.4a}, ,apby + H.c.) (1)
—00

where a; and by are annihilation operators of the electromag-

netic and mechanical modes. For the interactions within the

narrow frequency band of interest, the coupling factor g, , can

be approximated by a coupling constant gg.

This Hamiltonian can be derived from combining elastic
theory and Maxwell’s equations by introducing an optome-
chanical coupling as the interaction part [17]. To treat this
quantum mechanically, it is then quantized on the normal
modes. The first two/three terms are the energy for photons
and acoustic phonons (the free Hamiltonian part Hy) and the
last two terms are the interaction Hamiltonian Hj.

The optomechanical interactions in the waveguide are con-
strained by the phase-matching condition. As shown in Fig. 2,
there are two points [30] where the phase-matching condition
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is satisfied when the waveguide is pumped by an optical field
with wavevector k, and frequency w(k,). These two points
refer to the Stokes process/anti-Stokes process with photon
wavevector kg, photon frequency w(ks/qs), phonon wavevec-
tor ¢gy/45, and phonon frequency £2(g,/qs). Since the two kinds
of phonons corresponding to the Stokes and anti-Stokes pro-
cess are separated in directions, we can selectively apply
the Stokes process or anti-Stokes process on the directional
traveling phonons by choosing the pump pulse direction.

The wave package operators are defined by integrating the
wavevectors around the phase-matching points [17],

1 +00
Apjas)s(2, 1) = E/ dk
—0oQ

X ake*i(k*kp/ax/x)Zel'w(kp/ax/x)t ,

1 ~+00
bas/s(zvt) = E/ dq
—00

X bqe—i(q—f/s/as)zeiw(qs/m)l , 2)
where the first equation corresponds to the optical waves and
the second equation to the acoustic wave. The fiber is placed
on the z axis in the laboratory frame and the pump wave is
assumed to be propagating along the positive z axis. It can be
verified that the wave package operators and the correspond-
ing Hermite conjugates are well-defined quantum operators
that preserve the commutation relations. Utilizing the wave
package operators, the interaction part H; can be written as
the products in both Stokes process (H; s) and the anti-Stokes
(Hr as) process,

+00
Hio=soh [ dzal(@a@b@) + He..
—00

(3)
+00
Hj o5 = goh/ dz a,(z)al (2)bes(z) + Hee. .

oo

From the Heisenberg equation of the optomechanical
Hamiltonian, we can derive the approximated motion equa-
tion for a,/s/4s(2,t) and bys4(z, t), which are the coupled-
mode equations for the stimulated Brillouin scattering pro-
cess. Here, we write the coupled-mode equations for the
backward Brillouin process, which will be the important pro-
cess throughout this paper.

For the Stokes process, the equations are

oap + cg0.a, = —igoasb; —y /2 ap ,

da; — cy0;a, = —igoapbj, —y/2a, (Y]
dbs + ugd.by = —igoapal — /2 by + VTE .
For the anti-Stokes process, the equations are
oap + cgo.a, = —iggaasbzs -v/2a,,
0ylgs — Cg0,a4s = —180apbas — V /2 ays 5)

bas — Ugd-bas = —igoabas — I'/2 by + VTE .

The ap, a,, a,s refer to the optical wave packets for the
pump wave, Stokes wave, and the anti-Stokes wave respec-
tively. The b, and b, refer to the acoustic wave packets related
to the two processes. The optical excitations and the acoustic

excitations travel in the fiber in different group velocities de-
scribed by ¢, u, and suffer a dissipation rate with y, I". Since
the acoustic excitations travel much slower than the optical
ones, therefore we can omit this effect by setting u, = 0 in
the following discussion. The thermal noise of the acoustic
field is taken into consideration with the Langevin term +/T&.
& = £(z, t) obeys the relations

(@ 1)E (22, 1)) = nud(z1 — 22, 1) — 1),
£, 1), £ (22, 02)] = 8(z1 — 22,11 — o). ©6)

ny, is the averaged thermal phonon number at the given
temperature

1
efp/kBTE —1 >

Ny = )
where €, is the energy of a single phonon, kg is the Boltzmann
constant, and T is the temperature of the environment.

The coupled-mode equation above can be used for nu-
merical simulations. However, finding an analytical solution
for the dynamical cases of optical and acoustic pulses and
investigating analytically quantum phenomena are both not
straightforward with this set of equations. In the following
sections, we will show that the coupled mode equations can
be exactly solved under the undepleted assumption.

B. The undepleted assumption

In the following discussions, we consider the undepleted
case. The undepleted assumption refers to the condition where
the waveform function of the pump light a,(z,t) remains
unchanged during the scattering process. This assumption is
valid for quantum Brillouin experiments, where the amplitude
of the quantum-level acoustic field and backscattered field like
Stokes and anti-Stokes wave are too small to deplete the pump
significantly.

Defining

®)

since the pump waveform a,(z, t) remained unchanged during
the propagation, the g(z, t) would remained unchanged too,

8z, 1) = golay(z, 1)) ;

ap(z,t) = a,(0,t —z/c,) <= g(z,1) = g(0,1 —z/cy) . (9)

Under the undepleted assumption, the first equation in the
coupled mode equations, which refers to the pump dynamics,
can therefore be omitted. For example, the coupled mode
equation for the Stokes process can be linearized as

0ras — cg0;a; = —igbjf —v/2ay,
(10)
by = —igal —T'/2 by +TE .

Under the undepleted assumption, the equations are now
linearized. The effective coupling strength g(z, ) describes
the coupling between the acoustic and optical fields, which
is tunable by changing the pump power. This tunable cou-
pling strength enables us to control the acoustic phonons
and photons traveling in the waveguide system coherently.
Furthermore, as discussed later, we will show that the strong
coupling conditions g > I' are possible by applying strong
short pump pulses under the pulse Brillouin threshold. The
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FIG. 3. The region of interest in backscattered Brillouin scatter-
ing problems. Besides noise, three boundary conditions need to be
specified for both Stokes process and the anti-Stokes process so that
the coupled mode equation can be mathematically complete: (1) the
initial phonon states at ¢ = 0. (2) the input pump waveform at z = 0.
(3) the input backscattered waveform at z = L.

detailed strong coupling condition and the pulsed threshold
are discussed later in Sec. II F 4.

C. Boundary value problem

Considering a fiber of length L, we assume that there is
no light in the fiber at + =0 and all the light waves are
input at either the end at z =0 or the end at z = L of the
fiber at t > 0. To determine to whole evolution of all wave
packets functions in the fiber att > 0,0 < z < L, we need to
know (1) the initial acoustic states by/4s(z, t = 0); (2) the input
pump waveform a,(z = 0, t), when linearized, this terms can
be fully described by g(z = 0, ¢); (3) the input backscattered
waveform ay),5(z = L, t); and (4) the detailed form of the
noise function &(z,t). If we only care about the statistical
result, the detailed form of the noise function is not needed.

The scattering process can be described in a space-time
diagram like the following, in this space-time diagram, the
above requirements all appear at the boundaries, as shown in
Fig. 3.

D. Exact solution under undepleted assumption

By defining the coordinates transformation

n=t—2z/cg, T=t, (11)

the distribution coupling strength g(z,7) can be directly
related to the boundary conditions g(z =0,1) = go(a,(z =
0,1)),

8z, 1) = g(0,1 —z/cg) = g(n) . (12)

Take the Stokes process as an example, the linearized coupled
mode equations for the Stokes process can be further written

as (the derivation is detailed in Appendix A)
(0 + 20y)a, = —igh} —y /2 a; ,
(3 + 8,)b! = iga;, — T /2 bl + VTE" .

Since g only depends on 7, the variables in the above equa-
tion can be separated by performing a Fourier transformation
on variable t,

13)

L/cg

C .

as (A, n) = Zg/ dt ay(t, n)e AT
0

. c L/eg .
bi(A,n) = Zg/ dt bl (t, m)e AT (14)
0

L/cg

Eam=2[ " dar & meiasr.

L Jo
Then the equation can be written as the following Langevin
form:

AN e IV AN
n E: = ig _2icg§+r bz «/Fé* .

(15)

It has to be noted that the closed solution for anti-Stokes

process can be obtained in the same way. For the anti-Stokes
process, a similar Langevin form can be obtained,

~ y+2icA ig ~
- (5 2L ()
7 bas —lg _w bas \/FS
(16)

The matrices in the above equations can be made Hermitian
by variable substitution: A = %a, B = b. The initial phonon
states and backward laser injections (Stokes and anti-Stokes
part) are included in the initial conditions at n = 0. The above
equations, describing the evolution of each Fourier component
A, are similar to the Langevin equation in optomechanics
cavities. The only difference is the time evolution in optome-
chanics cavities is now replaced by the n evolution on a
copropagating framework. Each Fourier component with off-
resonance variable A can be written with the corresponding
equation of 1 evolution, and the equations are independent
of each other. This separability indicates a new viewpoint
of waveguide optomechanics that by separating the interac-
tions to different frequency/wavevector channels, cavity-like
behavior can be recovered. The detail of this similarity is
depicted in Fig. 1 and is discussed in detail in Sec. II E.

The Langevin equations above are exactly solvable, which
means that once we obtained the boundary conditions at n =
0, then the exact solutions can be obtained in the solvable
region as shown in Fig. 4. As with the conventional Langevin
equations, a Green’s function, also called the time-evolution
operator, can be introduced to obtained the exact solution. The
Langevin equation in a general matrix form reads

dyy(n) - ~
dn P(mM(n) + R(n). (17)
We now introduce the Green’s function
n
G2, m) = T{exp/ dv P(v)} : (18)
m
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FIG. 4. The exact solvable region. Under the undepleted assump-
tions, separation of variables could be applied to the coupled mode
equation after variable transformation (z,¢) — (z, ). In this case,
the exact solution of the scattering process can be obtained in the gray
triangle region shown in this figure. To obtain the exact solution in
this region, two boundary conditions are needed: (1) the phonon and
backscattered waveform at n = 0, a,.,(t,n = 0), bys(T, n =0).
(2) The coupling strength at every n, g(n) = goa,(0,t = n).

The T{...} is the time-ordering operator to ensures the ex-
ponential is time ordered, which in context means 7 ordered:
any product of P(v) that occurs in the expansion of the expo-
nential must be ordered such that the value of v is increasing
from right to left of the product. The solution can be written
as

N N n N
M(n) =G(n,0)M(0)+/ dv G(n,v)R(w).  (19)
0

As shown in Eq. (8), the pump laser can be fully described
as a modification of the effective coupling. Under the un-
depleted assumption, the pump pulse travels along the fiber
without changing its waveform. Therefore all points on the
fiber experience the same effective coupling waveform. In our
formalism [Eqgs. (15) and (16)], this can be fully described by
8(z,t) =g(0,t —z/cy) = golap(0,t — z/c,)) using the pulse
waveform at the input port. Therefore we can claim that all
undepleted situation has been solved.

To demonstrate the formalism developed here, we consider
a rectangular pump shape, where

gmn) =ge®mO(T —n). (20)

In this case, the solution can be written as (whent < T)
1
MM = G(1n)y(0) +/ dv G(n —v)p () (21
0
with
G(n) =exp(Pn) . (22)

E. Physics interpretation: Comoving conditions

In this section, we show that the physics behind the
variable-separated equations [Eqgs. (15) and (16)] reveals a
similarity between waveguide systems and cavity systems:

The interaction can be separated into cavity-like interactions
in different wavevector channels.

We choose the Stokes interaction as an example. Consider
the initial state at + = 0, which can be written as

a5(z. 1 = 0) =) Ae™
k

. . (23)
biGz.t =0)=) Bje* .
k

When the noise and dissipation are omitted and there is no
pump light in the waveguide at # = 0, this initial state leads to
a solution at z = ¢, (which corresponds ton = Ointhe n — ©
coordinates) and yields

ag(z = Cel, t) = a,(z+ Ct, 0) = ZAk€2ikcgt,
k

. ' 24)
bi(z = cyt, 1) = bi(z,0) = ZBZelkcgz.
k
Applying Eq. (14) results in
ay(t,n=0) =Y a(A,n=0)",
° | 25)
bi(r.n=0)= ) bl(A.1=0)",
A
with
as(A,n =0) =Axp,
(26)

b'(A, n =0) = B}.

From Eq. (26) we can see that the physics interpretation of
as(A, n) and EZ(A, n) in Eq. (14) corresponds to the ampli-
tude in the wavevector picture. Therefore, the separation of the
original coupled mode equation Eq. (4) [Eq. (5)] into Eq. (15)
[Eq. (16)] indicates the interaction in waveguides can be
separated into cavity-like interactions in different wavevector
channels, by only pairing each optical wave components with
the acoustic wave components with twice the wavevector. One
of the main differences between optomechanical waveguides
and optomechanical cavities is the Hilbert space. In optome-
chanical resonators, the phonon states and the photon states
are discrete. In waveguides, the phonon and photon spectrum
is continuous. Therefore, we have to consider a spectrum-
dependent interaction in the optomechanical waveguide. In
our case, the interaction is only significant near the phase
matching point, and A here is the wavevector deviation from
the phase matching point.

Furthermore, for a special initial plane wave initial state as

Cls(Z,l — O) — Ako/zeikOZ/z,
. 27)
bi(z.t = 0) = B} ™=,

only A = ko would lead to nonzero &, and b!. Therefore, for
every 71, we have

Vit > 0,
as(n, T + 87) = ay(n, T)e k",
bi(n, T 4 87) = bl(n, T)e' . (28)
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FIG. 5. The physics behind the solutions: Comoving conditions.
If we omit the noise and depletion, a comoving condition Eq. (28)
can be derived once the plane-wave-like initial conditions in Eq. (27)
is satisfied. (a) In the z — ¢ coordinates, or the laboratory frame, both
the backscattered light and the acoustic waveform (in terms of am-
plitudes) are comoving with the pump. (b) In the n — 7 coordinates,
all the waveforms are constant along the t axis. The phase factor
is omitted in both (a) and (b). This comoving condition means that
in the comoving frame of the pump pulse, the waveform of both
acoustic and backscattered waves will remain unchanged except for
a phase factor ¢*2%. This makes the nonlocalized interaction process
in the waveguides similar to the localized interaction in the optical
cavities, and this is the physics reason why we can treat waveguides
using similar methods in the cavities.

Converting this back to the z — ¢ laboratory frame, we have a
nontrivial observation

Vot > 0,
as(z + cgdt, t + 8t) = a(z, t)e' k"
bi(z+ cgdt, 1 + 81) = bl (z, )€’ 29

This condition means that the waveform of both the acous-
tic field and the backscattered optical field remain unchanged
in the comoving frame along with the propagating pump ex-
cept for an additional phase factor ¢’?*, as shown in Fig. 5.
This comoving frame in a special case A =0 is also dis-
cussed in Ref. [32]. This turns the nonlocalized interaction
in waveguides into a cavity-like localized interaction in the
comoving frame. Figure 1 depicts the consequence of this as-
sumption: The whole scattering process in the waveguide can
be separated into different frequency channels. In each of the
channels, translational invariances hold, and that enables us
to build a mathematical framework to connect the waveguide
optomechanics and the cavity optomechanics.

This result indicates that the pump pulse length can be
used to control the evolution time for phonons and photons in
waveguides. Exactly controlling the interaction time enables
us to control the optoacoustic interaction coherently, which
makes the dynamic regime more interesting for coherent con-
trol applications, in contrast to the steady-state regime. In the
following sections, we will discuss some predictions derived
from this formalism.

F. Waveguide optomechanics in the perspective of cavity
optomechanics: With backward Brillouin scattering as an
example

1. The beam-splitter-like and down-conversion-like interaction

The Brillouin interaction Hamiltonian is described in
Eq. (3). In the case of linearizing the interaction using
undepleted pump assumption, different phase matching condi-
tions lead to different effective Hamiltonians. The interaction
Stokes Hamiltonian H; g describes a down-conversion-like
process between the Stokes photons and the phonons, which
corresponds to the blue-detuned regime in cavity optomechan-
ics. The anti-Stokes part Hj 45 describes a beam-splitter-like
process, which is similar to the red-detuned regime in cavity
optomechanics [6].

In terms of cavity optomechanics, the beam-splitter-like
interaction (the anti-Stokes process here) describes a state
transfer between the anti-Stokes photons and phonons [33].
Such conversion process is the Rabi oscillation and can be
used to achieve coherent transfer. The area dependency rule
in Brillouin memory is exactly the result of area dependency
in Rabi oscillation [34], as explained later.

As for this down-conversion-like interaction, i.e., the
Stokes process is a parametric amplification process [4], the
scattered Stokes field can grow much more quickly than the
anti-Stokes field when the pump power is high enough, which
causes asymmetric Stokes and anti-Stokes sidebands.

2. The Brillouin gain and the strong coupling regime

In this section, we relate our approach to commonly used
experimental parameters in backward stimulated Brillouin
scattering (SBS) experiments.

In SBS, the Stokes process is dominant. We consider the
steady state in which both aai, and % equal to zero in Eq. (4)
and introduce the acoustic dissipation rate I'. Then we get
9 4g2a’a, .
a_z(a;as) - —;—Cz’”a;as . (30)

In SBS generated by a continuous pump, it holds 8%(agax) =

—GPalas. The G refers to the Brillouin gain whose unit is
[m~'W~!] and the P refers to the pump power, whose unit is
[W1]. Therefore the effective gain we introduce can be obtained
from the pump power directly [16]

GPl'c,

gl = 7 3D

A dimensionless effective coupling ratio |g|/I" can be intro-
duced by utilizing Eq. (31). Coherent control is only possible
when the effective coupling ratio is larger than one,

lgl _ [GPe,
r 4T

Generally the strong coupling regime in cavity optomechan-
ics denotes that the intensity of the optomechanical coupling
strength exceeds the dissipation rates of the optical and me-
chanical modes [6]. For the backward Brillouin scattering in
typical waveguides, as the acoustic dissipation generally ex-
ceeds the optical dissipation, the system enters into the strong
coupling regime when the coupling strength becomes larger

> 1. (32)
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than the acoustic dissipation rate, i.e., |g| > I'. As shown
in Eq. (16), the Rabi period is inverse proportional to |g|.
Therefore the strong coupling regime here can be interpreted
as a longer phonon lifetime than the Rabi period.

In reported waveguide systems, when pump pulse power is
IW, a coupling ratio as high as |g|/I" = 8.3 can be achieved
in the integrated chalcogenide waveguides [35]. Other po-
tential platform to demonstrate the predictions in this paper
are nanowaveguides [36,37] where radiation-pressure-based
Brillouin gain enhancement was proven by carefully engi-
neering the geometry and fiber systems, such as chalcogenide
and photonic crystal fibers with reported large Brillouin gain
coefficients [38,39]. Moreover, due to the reduced phonon
dissipation and enhanced Brillouin gain at low temperatures
[40,41], demonstration of this strong coupling regime could
be possible on more platforms in a cryogenic environment.

3. Area dependency

SBS can be used to coherently transfer information
from the optical domain to acoustic waves. This con-
cept has been experimentally shown as Brillouin memory
[20,21]. In Brillouin memory, the write/read efficiency at-
tains a maximum when the effective coupling area ©(T) =

fOT dt go+/ |a}:(t )a,(t)| satisfies the following area dependency
equation [20,21,34,42]:

®=(2n+1)@ (neZ). (33)
This result can be recovered by our formalism in a straight-
forward way. The readout process in Brillouin memory
experiment is the anti-Stokes process, which is described by
Eq. (16). We consider the perfect phase-matching case where
A = 0 and omitting the dissipation I', y = 0 as in Ref. [34]. If
the system is driven by a rectangular pump pulse as described
in Eq. (20), the matrix elements of the propagator in Eq. (22)
that describes photon-phonon transfer reads

1

§|G21(n > 1) =G >T)
sin (?gT)
sin (?@(T))

The |G;;| and |G| attains maxima if and only if the area
dependency in Eq. (33) is satisfied.

(34)

4. The undepleted condition

Our formalism is built based on the undepleted pump ap-
proximation. When the pump power is strong enough and the
pulse length is sufficiently long, the pump power might be
significantly depleted by the Stokes process. The anti-Stokes
process is much weaker than the Stokes process, and therefore
it is enough for us to only consider the Stokes process.

For a short pulse length in the Stokes process, the sec-
ond term in the solution of Langevin equation (21) can be
omitted, since the first term in Stokes process described by

Eq. (15) has an exponential growing term, which significantly
surpasses the second term [32]. From a physical point of view,
the Stokes process is a stimulated amplification process. The
amplification of the initial state fluctuation is going to be much
greater than the additional noise added during the evolutionary
process,

@y (A, mas(A, m) ~ 1Gia(A, p)Png, . 35)

The n,, is the average thermal phonon number, n,, ~
kgTg/(h2). The undeplected condition requires that the
Stokes power is much smaller than the pump power, Is < Ip.
For a rectangular pulse with pulse length 7 as defined in
Eq. (20), the requirement can then be simplified to

V2 1
ML« —1
2 8 <y

271 2
n 327°1,Q2 . 36)
GTc k2T ?

The detailed derivation can be found in Appendix B. The
left-hand side of Eq. (36) refers to the Rabi area, which
equals to 2w for a complete Rabi period. As an example,
for a chalcogenide waveguide [35] pumped by 1W at room
temperature, the right-hand side of Eq. (36) is 10.27 > 2,
which means that for those pulses within the first Rabi period,
the undepleted condition holds. This result also implies that
increasing the pump power while decreasing the pulse length
makes the undepleted assumption more robust while keep-
ing the effective coupling area unchanged. The significant
increase of depletion threshold using short pulses, which is
also the Brillouin threshold, is also predicted and verified
experimentally in Ref. [32].

III. APPLICATIONS OF COHERENT CONTROL

In this section, we will use the techniques developed in the
previous section to discuss coherent transfer, cooling, and en-
tangled pair generation in backward Brillouin scattering. For
simplicity, we only consider the case where the waveform of
the pump light is a rectangular wave, although the method we
proposed earlier is not only applicable to rectangular waves.

A. Coherent transfer

The most critical task of optomechanical systems is the
manipulation of phonon states. How to store information into
phonons, read out the phonon states, and convert them into
measurable physical quantities therefore becomes an impor-
tant issue. Coherent transfer has been demonstrated in cavity
optomechanics [33,43,44], here we show that a similar for-
malism can be applied to waveguide optomechanics in the
pulsed regime.

The main idea to implement phonon readout is to use the
anti-Stokes process: The beam-splitter-like Hamiltonian of the
anti-Stokes process describes a Rabi oscillation between pho-
tons and phonons. Thus, coherent transfer between photons
and phonons is possible by controlling the Rabi oscillation.
The coherent transfer process can be illustrated using the
space-time diagram in Fig. 6. The classical Brillouin coherent
readout has been demonstrated experimentally on photonic
chips [21]. As shown in the previous sections, due to the
lack of resonating structures in optomechanical waveguides,
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FIG. 6. Illustration of the coherent transfer and cooling process.
The anti-Stokes interaction H; 45 describes a Rabi-oscillation be-
tween the anti-Stokes photons and phonons. Thus a 7 /2 Rabi pulse
can be used to transfer the phonon into photons coherently (vice
versa), and once the phonons are transferred into photons, cooling
is attained.

we must consider the entire continuous phonon spectrum to
derive the spectrum dependent coherent-transfer efficiency.

The spectrum dependent read out efficiency B(A, n) is
defined as the following: Assume that the phonon number at
wavevector A at the beginning of the readout process t = 0
is Np.o(A, ) = (bl (A, 0)b,s(A, 0)), which is the coherent
part we want to readout. After applying the coherent readout
process, the phonons will be converted into photons, because
of the existence of thermal noise, such readout process is
only partially coherent, Ns(A, n) = Ny (A, n) + N, (A, 1),
where the N, (A, ) = (Gg(A, 1)V aus (A, 1)) is the coher-
ent part and Ny o (A, 1) = (Gag(A, 1) aas(A, 1)) — Nao(A, )
is the noise part.

Therefore, the readout efficiency could be divided into two
parts, i.e., the coherent readout efficiency and the thermal
noise term. The coherent readout efficiency corresponding to
the coherent transfer from phonons to photons can be given
by

Nao(A, 1)
Pe(Aim) = —1—, (37)
b,c
and the thermal noise-induced part can be expressed as
N ,n(A’ 77)
Bn(A, ) = ————, (38)
Nip

where we assume that the acoustic dissipation rate I" is much
larger than the optical dissipation rate y. Thus the total output
photon number after the readout process can be given by

Na(A, n) = Bc(A, n)Npc + BN (A, ), (39

where the first term corresponds to the coherently transferred
photons while the second term belongs to the noise-induced
photons.
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FIG. 7. The Brillouin coherent transfer. (a) Shows how the co-
herent transfer coefficient S¢c (solid line) and the noise coefficient
Bn(dotted line) changes as the pulse length increases. As the pump
length increases, the coherent part oscillates, and the body of the
phonon is dominated by the noise part when the pulse length is long.
(b) The transfer efficiency difference ¢ — By was calculated using
g = 8.3I" (Chalcogenide chip [35] with pump power equals 1 W). A
clear oscillating behavior due to the Rabi nature can be seen. Optimal
coherent transfer can be attained when the difference between S¢
and By is largest. (c) The transfer efficiency difference Sc — By
at different coupling strengths, when pump length equals the 7 /2
Rabipulset = 7/ V2g. As the coupling ratio g/I" increases, both the
transfer efficiency and the effective transfer spectrum bandwidth will
increase.

Figure 7(a) presents how the coherent part S¢ and the
noise part By changes as pulse length increases, at the perfect
phase-matched case A = 0. Due to the beam-splitter nature
of the anti-Stokes process, the coherent part oscillates while
the maximum is attained at the first peak due to the combina-
tion of Rabi-like oscillation and thermal dissipation. However,
the incoherent noise term accumulates and dominates later.
The result shows that effective coherent transfer can only be
possible when the 7 /2 Rabi pulse is shorter compared to the
phonon lifetime.

Solving the Langevin equation using propagator matrix G
in Eq. (22), the readout photon is

aas(Ay 7)) = GII(A7 n)aas(A7 O) + GIZ(A’ ﬁ)l;as(A, 0)
r’ ~
+JF/ dvGia(A,n—v)E(A,v).  (40)
0
Since we consider that there is no anti-Stokes light in

the waveguide at the # = 0 moment in the readout process,
das(A,0) = 0. The spectrum dependent readout efficiency
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Ben(A, n) for a rectangular pump pulse with length 7 reads

Be(A, 1) = |Gia(A, )
" ) (41)
Bn(A, 1) = F/O dv [Gia(A, V)]

where

. . 2
Gy = —ie~ iTwn—iccdn 8 gy £ge,as’l - (42
de,as 2

The resonance-modified effective coupling strength g, and the
effective acoustic dissipation is defined as

8e,as = \/gZ - (F + ngA)2/8 s
Ceas =T +icgA .

(43)

The detailed derivation of G, can be found in Appendix C.

We present the numeric result for 8¢(A, n) — By (A, 1) in
Figs. 7(b) and 7(c) to illustrate the competing effects between
the coherent part S¢ and the noise-induced part By of the
phonon-photon transfer efficiency. As shown in Fig. 7(b),
the readout efficiency oscillates as the pulse length increases,
which agrees with the area dependency law in Brillouin
memory [42]. As the pulse length increases, noise phonon
dominates and the coherent readout becomes inefficient. The
optimal coherent readout can be achieved when

~ 1 44

V2g s
This is exactly the /2 Rabi pulse length slightly modified
due to the dissipation effect. Figure 7(c) shows the read-
out efficiency difference S — By calculated at n = 7 /(+/2g),
which is the /2 Rabi pulse length. It can be seen that both
larger readout bandwidth and higher maximum readout effi-
ciency can be achieved by increasing the coupling strength
g. Figures 7(a) and 7(b) show oscillating behaviors along the
wave vector A, which is related to the higher harmonics com-
ponents in the Fourier transformation of rectangular waves.

Moreover, as depicted in Eq. (41) and Figs. 7(b) and 7(c),
we can see that the transferred anti-Stokes wave includes pho-
tons with a continuous band of accessible states without the
requirements of optical or acoustic resonators. Thus compared
with the state transfer in cavity optomechanics [33,43,44],
which operates with single optical and mechanical modes, the
state transfer generated by Brillouin interaction in waveguides
has a broader bandwidth, which is important for applications
in photonic information processing, quantum computing and
quantum information.

B. Brillouin cooling

Many quantum experiments can only be carried out at low
temperatures (passive cooling) in order to reduce the deco-
herence effect introduced by thermal noise. Laser cooling is
one of the most promising active cooling techniques [6] to
reduce thermal noise in a specific frequency band. Recently,
laser cooling induced by anti-Stokes Brillouin scattering,
i.e., Brillouin cooling, has been explored in optomechanical
waveguides [8,29] by utilizing forward Brillouin scatter-
ing where phonons experience lower damping than photons.

However, Brillouin cooling generated by backward Brillouin
scattering where the acoustic dissipation exceeds the opti-
cal dissipation in typical Brillouin-active waveguides is still
largely unexplored. In this section, we propose a cooling
mechanism by using pulses rather than continuous waves. We
claim that this cooling mechanism might attain higher cooling
efficiency and can be used in long fibers.

Conventional laser cooling is based on increasing the effec-
tive dissipation of phonons by using a damping laser. Here we
propose an alternative cooling mechanism based on coherent
transfer. As shown in the previous section, the anti-Stokes
process can be regarded as a photon-phonon Rabi oscillation
using the linearized effective Hamiltonian. The main idea of
coherent transfer-based cooling is to use a carefully designed
laser pulse to convert phonons to photons through the phonon-
photon Rabi oscillations. In this section, we will show how
to use our formalism to investigate the Brillouin cooling in
waveguides. Such Brillouin cooling approach in waveguides
in the pulse regime is similar to the dynamical cooling method
in cavity optomechanical systems [45]. The convenience in
experiment of this dynamical Brillouin cooling approach in
waveguides will prompt the elegant transient cooling tech-
nique to become an effective experimental tool in continuum
optomechanical systems. Our laser pulses at the appropriate
pulse length will avoid reverse conversion, thus leaving fewer
phonons in the waveguide system. By using a pulsed pump,
the pump depletion effect due to the Stokes process can also
be avoided. The cooling process is illustrated using space-time
diagram in Fig. 6.

The cooling effect can be quantified by counting the
remained phonons. We introduce the spectrum remained
phonon rates x (A, 1),

(" (A, Mb(A, 1))
(bT(A, 0)b(A, 0))

k(A m) =

n
— Gn(A P 4T / dv [Goa(A, )
0

= K¢ + Kn, (45)

which is defined as the ratio of the cooled phonon occupation
at 1) to the initial thermal phonon occupancy (7). The smaller
the x (A, n), the better cooling effect is achieved.

Equation (45) consists of two terms: the first term «,
describes how fast the coherent transfer/cooling is able to
convert the phonons into photons (which are then removed
from the system); the second term «,, describes how fast the
phonons are restored due to the interaction with the thermal
environment, which is the thermal noise term that obstructing
the cooling of the system. Figure 8 shows the two terms and
the whole «(A =0,t) at the perfect phase-matching point
A = 0. One can clearly see the Rabi oscillation behavior of
the coherent part, which contributes to cooling, and the ac-
cumulating thermal noise counterbalances the cooling effect,
which eliminates the cooling effect when the pulse length
increases.

In conventional fiber optic systems, the dissipation rate
of the optical channel is much smaller than the dissipation
rate of the acoustic channel, y <« I'. With this approximation,
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FIG. 8. The Brillouin cooling. (a) The remained phonon consists
of two parts: the coherent part determined by the initial state and the
noise generated part. Optimal cooling can be achieved by choosing
appropriate pump length to be /2 Rabi period. (b) The transfer
efficiency was calculated using g = 8.3I" (Chalcogenide chip [35]
with pump power equals 1 W). A clear oscillating behavior due to
the Rabi nature can be seen. (c) The cooling effect on different pa-
rameters, when pump length equals the 77 /2 Rabi pulse n = 7 /+/2g.
As the coupling strength increases, the effective cooling bandwidth
will increase.

spectrum remained phonon rate reads

w 8g2e,as + Fez,as SiIl2 (ge,asn)
8% as V2
The g..s and I', 4 is defined in Eq. (43). The detailed

derivation for the above result can be found in the Appendix
C. Equation (46) shows that choosing

k(A,m)~1—|e”

. (46)

n=0Cn+1)— (nelZ), A7

f 28
leads to the minimum « (A, n), which is equivalent to the
maximum cooling efficiency. Due to the accumulating thermal
noise, minimum « (A = 0, ) can be achieved near the first
Rabi 7 /2 pulse at n &~ 7 /(+/2g), this is the same as the maxi-
mum coherent transfer efficiency shown in Eq. (44), which is
also based on the same photon-phonon Rabi oscillation.

In Figs. 8(b) and 8(c), we present the calculated « (A, 1)
for different coupling strength and pulse length by assuming
rectangular pump pulse. Due to the decoherence effect of
thermal noise, the optimal cooling pulse is the 5 Rabi pulse,
which refers to n = 1 case in Eq. (47). From Fig. 8(c), one
can clearly see that the cooling bandwidth becomes wider for
stronger coupling, which indicates a wider interaction band-
width. We claim that this has the same mathematical roots
as the general power broadening effect in all atomic systems

1 W
< 08}
<
=
406
=
N 1.0
D04t » V\/V
13 0.6
02 | 0.4
0.2
0.0
=20 -10 0 10 20
O 1 1 1 |
-20 -10 0 10 20

ch (in units of GHz)

FIG. 9. The remained phonon spectrum after a /2 cooling
pulse. This figure is obtained by the first-principle simulation using
the algorithm from Ref. [46,47]. In the simulation, a chalcogenide
waveguide [35] with length L = 1 m is assumed. A /2 Rabi pulse
with pump power I, = 10 W, pulse length ¢ = %g is used as the
cooling pulse. The phonon spectrum is calculated when the pump
pulse leaves the fiber at + = L/c,. The shaded area indicates the 3o
error, and the theoretically predicted result is shown in the lower
right corner. By applying a rectangular cooling pulse, the remaining
phonon spectrum is sinc like, and around 50% of the initial phonon
number at the central wave vector has been removed.

[48]. The thermal noise can be represented by zero-mean
space-time white noise [46] in the simulation of the cou-
pled mode equation [47]. We simulate the pulse propagation
process in a chalcogenide waveguide [35] and calculate the
phonon spectrum after one cooling pulse passes. The result
is shown in Fig. 9, which is consistent with our analytical
expressions.

C. Entanglement

Quantum entanglement is one of the fundamental building
blocks of today’s quantum technologies, especially quan-
tum communication. The generation of entangled quantum
pairs is the basis of quantum state teleportation and quantum
repeaters. Classical information networks based on optical
fibers are one of the most promising infrastructures for future
quantum teleportation, which means that generating entangled
pairs in an all-fiber system is a fruitful challenge. Apart from
the application-based perspective, achieving the generation
of entangled pairs is also one of the vital experiments to
demonstrate the ability to do quantum experiments in optome-
chanical waveguides.

In this section, we show that the photon-phonon entangled
pair generation can be achieved by utilizing the Stokes pro-
cess, and the entangled photon-phonon pairs can be further
transformed into photon-photon entangled pairs by the co-
herent transfer technique described in Sec. III A, as shown
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FIG. 10. Illustration of the entangled pair generation process.
First, a blue-detuned pump pulse (S pump) should be applied to gen-
erate the entangled phonon-photon pairs via the Stokes interaction
H; ;. Then, a red-detuned pump pulse (AS pump) should be applied
to stimulate the coherent transfer process via anti-Stokes interaction
H; s described in the previous sections to readout the phonon into
a photon. By combining these two processes, the measurable entan-
gled photons pairs (Backscattered-1 and Backscattered-2) could be
generated.

in terms of the space-time diagram in Fig. 10. Choosing the
Stokes process to generate photon-phonon pairs is motivated
by the down-conversion nature of the Stokes process. In the
Stokes process, a higher energy photon is annihilated, produc-
ing a lower energy phonon and a lower frequency photon. In
this process, both momentum and energy conservation must
be satisfied, which leads to the phase-matching condition. As
a direct result of this phase-matching condition, there is some
shared information between the produced phonon and photon,
which leads to quantum entanglement.

We introduce the quadrature operators for the acoustic field
and the optical field

a+at at—a
V2
X b+ bt b —b
pb=—r7, Lp=1—r—
V2 V2

To prove the existence of quantum entanglement, we use
Duan’s two-mode entanglement criterion [49]. The main idea
of the Duan’s criterion is to choose two EPR variables and
calculate the variance sum. It can be shown that once the
correlation variance is less than a specific quantum limit, the
density matrix of the two quantum modes cannot be separated
by any means, thus leading to quantum entanglement.

The two mode EPR variables we choose are

X, =
(48)

1 1
u=-X,+aY,, v=-Y,+aX,, (49)
o o

with @ = 2714, This particular & value is obtained by trying
to minimize the EPR variance. The Duan’s entanglement cri-

terion [49] for it is

2 olu + o2v

Ogpr = m <1. (50)

After some calculations, the expression of oéPR reads

2no + 1 .
03 IV2G; 4 iGoy|?

2n, + 1 n )
+ %F/ dv|V2G1, + iGa|?
0

2n 2n, + 1 "
<1 + —)|G(n>|2 + hTr/ dv [GW)|*,
0

0
3
619}

1
Ofr = §|ﬁG11 + iG> +

%

,% Fe,s inh (ge,sfl) (52)
— Sin. .
2v28e.s V2

The detailed calculation can be found in Appendix D. The ng
is the phonon number expectation at the initial state n = 0,
and the ny, is the thermal phonon expectation number de-
termined by the temperature of the environment. When the
system is cooled by the cooling technique we proposed in
the previous sections, ng < n;, can be achieved. The off-
resonance effective coupling and the effective dissipation for
the Stokes process shown here are slightly different from what
we defined in the anti-Stokes process in Eq. (43),

Sen = 8 + (T +icA)/8,
Ty =T +iceA .

(53)

The G(n) consists of two competing terms. The first term
shows an exponential depressing of the EPR variance with
rate g, ; while the sinh-like second term will refer to the deco-
herence effect that will destroy such entanglement. Therefore
the photon-phonon entangle can be achieved by choosing
adequate pump length in the Stokes process.

We present the numerical result for the photon-phonon
entangled EPR variance in Fig. 11. The dashed lines in
Figs. 11(b) and 11(c) refer to the quantum nonseparation
limit o3pz = 1. The generation of photon-phonon entangle-
ment pairs is based on a down-conversion-like Stokes process
rather than a beam-splitter-like anti-Stokes process. There-
fore, unlike the coherent transport and cooling discussed in
the previous sections, there is no Rabi oscillation behavior. As
shown in the Fig. 11(a), the longer pulse will induce a stronger
entangled effect while decreasing the entangled bandwidth,
and stronger coupling can still broaden the entangled band-
width. In practice, the optimal entangled pulse length should
be specified by taking the measurement bandwidth of the
experiment setup into consideration: The photon-phonon en-
tangled pair cannot be measured directly, the coherent transfer
process is needed to transfer the entangled phonon into a pho-
ton, in which the measurement bandwidth can be controlled
by manipulating the pump waveform as discussed in previous
sections. We show in Fig. 11 the results of photon-phonon
entangled pair generation obtained by direct computation with
the noisy Brillouin simulation algorithm [46]. The simulation
combines photon-phonon entangled pair generation with the

013010-11



ZHANG, ZHU, WOLFF, AND STILLER

PHYSICAL REVIEW RESEARCH §, 013010 (2023)

(a1) (a2)

cAjg=15

cA
I

-
-
=
s
-
-
-

j LcA/g=0
. (Y1 +Ya)/V2
V2

(X1 + X2)/

(c)

10

Inofpp(A, 9)

Inogpp(A, 1)

8

o

6

[

=~
>

4

N

2

&

-80 -40 40 80 -80 -40 40 80

0 0
cA/T cA/T
FIG. 11. The Brillouin entanglement. (al) The quadrature distri-
bution in different A is shown using algorithm from Ref. [46,47].
The simulation parameter is the same as Fig. 9. X;, X,, Y, Y, are
the quadrature components of the two backscattered pulses. Nonuni-
form distribution of quadratures can be seen when |A| < I', which
implies shared information between two scattered photons. When
|A| is large, the Brillouin interaction strength is limited by the
phase-matching condition, so the two-mode correlation between
quadratures gradually disappears. The discretization along the fre-
quency axis (c,A) is the result of the Fourier transform of the finite
numerical simulation time. (a2)—(a4) is the transection of (al) at the
three points of wavevector |A| from larger to smaller. [(b),(c)] The
EPR variance o2, . As the coupling increases, the effective entangled
spectrum bandwidth will increases. (b) is calculated using g = 8.3I
(Chalcogenide chip [35] with pump power equals 1W).

coherent transfer, which is directly computed for photon-
phonon entangled pairs.

Actually, the thermal noise of the acoustic field can
cause a destructive effect on the optomechanical entangle-
ment in the long time evolution of the system, as shown
in Fig. 11(b). However, different from the case discussed
in Ref. [50,51] in cavity optomechanical systems, which
considers the weak coupling regime, we generate the op-
tomechanical entanglement in the strong coupling regime
similar to the optical entanglement in optomechanical systems

discussed in Ref. [52,53]. This strong Brillouin optome-
chanical interaction in the pulsed regime induces an extra
suppression to the destructive effect of thermal noise, which
enables the robust optomechanical entanglement at a high
environmental temperature in continuum optomechanical
systems. In addition to that, Brillouin optomechanics op-
erates in the several GHz frequency range, which has the
advantage of a lower thermal phonon number from the
start.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed a formulation to treat trav-
eling phonons and traveling photons in a optomechanical
waveguide system as an array of multiple optomechanical
cavities. The possibility of realizing coherent control using
this formulation has been shown: Both the effective coupling
strength and the interaction time can be controlled easily by
manipulating the shape of the pump pulse. By applying the
formulation, we show that it is possible to achieve active
Brillouin cooling through the backward Brillouin scattering
process and quantum entangled pair generation in waveguide
systems. Experiments based on this formalism are shown to be
achievable using current technology and fabrication of optical
fibers and integrated waveguides.

Our paper mainly focuses on the backward scattering op-
tomechanical interaction and most of the calculations are
done using the assumption that the pump pulse is almost
nondepleted. The undepleted assumption leads to a linearized
Hamiltonian directly, which is similar to down-conversion
for the Stokes process and similar to a beam-splitter for the
anti-Stokes process. The available quantum operation time
approximately equals the ratio between the coupling strength
and the dissipation rate, N,, = g/I". There are two routes, in-
cluding the dissipation reduction and coupling enhancement,
towards a broader range of quantum applications within op-
tomechanical waveguides. In order to reduce the dissipation
rate, efforts have to be paid in designing waveguides that can
localize and trop acoustic phonons with high efficiency. In or-
der to increase the coupling strength, one method is to increase
the material-dependent coupling strength gy by optimizing the
waveguide structure or using more promising materials [54].
Another method to increase the coupling strength is to use
higher pump powers. In this case, the pump light may be
significantly depleted, so shorter light pulses are needed to
meet the requirements of coherent control. Therefore, the un-
depleted regime within the short pulses regime (below 100 ps)
need to be considered in future works.

Because all Brillouin backscattering processes under unde-
pleted conditions can be solved exactly based on the method
of this paper, future efforts should be spent on detailed mod-
eling of the Brillouin memory process, where information
is coherently stored in acoustic waves [20,21]. In particular,
the method can be the base for a model including quantum
noise and a study on how coherent information is destroyed
by different noise contributions.

The data and source codes for all the figures in this paper
are available as Supplemental Material [55].
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APPENDIX A: DETAILED DETIVATION OF THE
COORDINATES TRANSFORMATION

In this Appendix, we detailed coordinate transformation
for linearized Stokes process, from Eq. (10) to Eq. (13). The
derivation for the anti-Stokes process can be obtained in the
same way.

The linearized coupled mode equation for Stokes process
in Eq. (10) reads

0ras — Cg0.a5 = — igbj —y/2a,
dby = —igal —T'/2b, + VTE.

Since the pump pulse propagates along the fiber in a constant
velocity ¢, without changing the shape, the pump-related cou-
pling term g(z, t) satisfies the comoving condition

8(z,1) = 8(0,1 —z/cy).

To fully take advantage of this comoving relationship, we
introduced the coordinate transformation as in Eq. (11),

(A)

(A2)

n=t-—z/cg, T=t. (A3)
In this transformation, the derivative operators are related by
o= a4 2
t = . n o, Yt
ot ot (Ad)
5. = 05,4+ 2%
= — —0T,
ez T oz
which is
.\ _(—1/c, 0)(0,
(a,) = < o)) (A5)
By substituting d, and 9; in Eq. (10), we get Eq. (13),
(8 +20;)as = —igh —y /2 a; ,
(A6)

(3 + 0,)b" = iga, — T /2 bl + VTE .

APPENDIX B: DETAILED DERIVATION OF THE
UNDEPLETED CONDITIONS

The backscattered Stokes power is the integral of photon

densities
+o0
Is = / dA
—00

Using the technique we developed, we have

@A, may(A, m) =1G (A, )I*Bi(A, 0)by(A, 0))

hwcg |y
5 (ag(A)as(A))
T

(BI)

t
bl / dvIGi(A VP . (B)
0

For the system driven by short pulses n ~ 1/g < 1/I" in
strong coupling regime, the second term, which is the noise

contribution can be omitted. The average thermal phonon
number at t = 0 reads

o - 1 kpT;
(B(A.0B(A,0) = ——5——~ = (B)
Xp m —1
Therefore the spectrum density of Stokes photon reads
' kpT;
@l (A, ma(a,m) ~ = =(Gu(a i (B4)
For g « T, the following approximation holds:
2gsinh 1./8g2 — c2A%t
Gio(A, )~ S . (B3
8g2 — (2A2
The peak of G12(A, n) is
isinh £L  ; en/v2
Gu(A=0n=—722~5 (B6)

V2 22

The width of the central peak can be approximated by solving
8¢ — A2 =0,

24/2
W ~ax 2% (B7)
C
Finally we have
+oo howc kBTE
Is ~ dn —=£ Gy (A, n))?
s /_OO s |G21(A, )|
an)cg kBTE (Wd |G (A 0 )|2) eﬁg"ngTEa)
=~ . X =0, =
ar K ? 7 227
(B8)

The undepleted condition is satisfied if and only if the bakscat-
tered Stokes power is much smaller than the pump power,
Is « Ip. Since the effective coupling g is related to the pump

power Ip by
_ GIPFCg
8=y Y

where the G is the Brillouin gain with unit [m~'W~!], the
above undepleted condition can be simplified to

| 327,97
n .
2V2  GUekzTrw?

(B9)

gn < (B10)

APPENDIX C: DETAILED DERIVATION FOR BRILLOUIN
COOLING

In this section, we present the detailed derivation process
for Brillouin cooling. Because the phonons in the anti-Stokes
process and Stokes process are separated by their opposite
travel direction, we can only consider the anti-Stokes process,
which describes the photon-phonon transfer.

The phenomenologically introduced effective Hamiltonian
for anti-Stokes process reads [Eq.(16)]

—ig/2
—icgA —T/2

i (Z}as(A’ 77))_ <_lch/2 - ]//4
87] bas(Av ’7) B _lg

aas(A, 1) 0
x (EGS(A, n)) + (fré) - @D
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The ¢, is the group velocity of the optical field near the
phase matching point. The g is the effective coupling strength
enhanced by the pump power, and n,, is the averaged thermal
phonon number. The relation between the effective coupling
and the well-known Brillouin coupling strength G is [Eq. (31)]

GPTc,
g= T (C2)

This can be obtained by calculating the steady-state behavior
of the coupled mode equation, as shown in the main context
of this paper. The £ describes the thermal noise, the thermal
behavior of phonon determines both the initial state and the
noise term, which could be described by a Wigner process

(BI (A1, nDbas(Az, 1)) = nnd(Ay — A8 — m2)
(ET(AL 1DE(A2, 1)) = nend (A1 — A)S(n1 — 12) -
(C3)

The equation is a Langevin equation. Therefore we
can solve the equation using the conventional method for
Langevin equations, which is the undetermined coefficient
method. Considering the rectangular pump wave, we intro-
duce the P matrix as

_[—icgAJ2 —y /4 —ig/2
P = ( : —ig —icyA — F/Z) ) (€9

For a Langevin equation in the form

d N N N
~“M=PM+R. (C5)
dn

The solution reads

N N n N
M(n) = exp(P7)M(0) +/0 exp[P(n — v)IR(v)dv .
(C6)

Therefore we need to calculate the matrix exponential of the
P matrix. The matrix exponential can be calculated by using
the formula

SPST — §ePS! (C7)
Where the Jordan decomposition is used
P=SDS'. (C8)
The S is the similar matrix, and D is the Jordan matrix. In
our case, D is diagonalized. By introducing the small optical
dissipation approximation

(CT+y)~T. (C9)

Under those approximations the matrix exponential can be
obtained,

G =exp(Py) . (C10)

The matrix elements read

_lpx g e 8e.asl Feas . 8e.as]
G =e sl easn—icgAn COos ( - )"‘f‘ , sin < - ) ’
" [ V2 ) 2V2gew \ V2

r

n—icgAn 8

sin (&,M)
ﬁge,as \/5 '
L lpx ooy 8 . 8e,asl]
Gy = —ie 1 ealiGAN s1n< : ) ,
\/Ege,us \/Z

_lpx 8e.as Feax . 8e,as]
Gy i Tiwn—icAn cos( : )_ . sm( - ) )
V2 ) 2V28eas V2
(C11)

s
e.as

L1
Glz = —le *

where

Seas = |2 — (T +ic,AP/8
Teas = I+ iceA .

(C12)

The remained phonon spectrum density can be explained
as

(B (A, mbas(A, 1))
(bis(A, 0)bys(A, 0))

k(A,n) =

t
= 1Gaa(A, ) + F/ |G22(A, v)ldv. (C13)
0

For the resonance case, when A = 0, we have

_w Sgg,as + r .2 (ge,asn)
—— S1n —_— ] .

882 4s V2
(Cl4)

kK(A=0,n)=1-—¢

As an approximation when g > I', g > |cA|, this result
can be extended to the general case by taking the norm and
replacing I' with I, 4,

_F&TGW nge,as + Fg,as SiIlz (ge,asn)
882 as V2

k(A,n)=1—|e

(C15)

APPENDIX D: DETAILED DERIVATION FOR BRILLOUIN
ENTANGLEMENT

In this Appendix, we present the derivation process
of the Brillouin interaction based optomechanics entangle-
ment. The entangled pair generation can be achieved by
down-conversion in quantum optics. In the optomechanics
waveguide systems, the Hamiltonian for Stokes process also
has a down-conversion like form, the only difference is the
states it acts on which are one photon and one phonon,
therefore the entangled pair it generated is a photon-phonon
entangled pair.

The phenomenologically introduced effective Hamiltonian
for anti-Stokes process reads [Eq.(15)]

—ig/2
—icgA —T/2

i(qs(Av 77)) o <_ich/2 - V/4

,(A, ) 0
. (CBII(A,ZQ " (ﬁé*) - P
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The thermal noise is introduced as the following:

(BE (AL, 1)Bs(Ag, m2)) = no8(A1 — A8 — M)
(D2)

(ET (AL MDE(A2, 1)) = npd(AL — A28y — 12) .

The ny is the phonon number expectation at the initial state
n = 0, and the ny, is the thermal phonon expectation number
determined by the temperature of the environment. When the
system is cooled by the cooling technique we proposed in the
previous sections, ny < n,;, can be achieved.

The quantum noise is introduced as the following:

Gy — i iTim-iean Y28 o <ge,s77)’
8e.s V2

_lps g e e,s1 Fes . 8e,sM
Goy = e alesliGAN | oooh <g, >— - smh( i ) ,
2 [ V2 ) 22, V2
(D4)

where

8o = /& + (T +ic,AP/8.

- . . (D5)
[Do(A1, 1), BL(A2, m)] = 8(A1 — A2)8(n1 —m2) 03 Ty =T +ic,A.
[ECAL 1), ET (A2, m2)] = 8(A1 — 82)8(m —12) - _
The two mode EPR variables we choose are
The no refers to the average thermal phonon at phase- 1 1
matching point at r = 0. It is possible for ng < n,; when the u=—-X,+a¥,, v=-Y,+aX,, (D6)
system is precooled by the laser cooling process, such as the o «
coherent transfer-based Brillouin coolir}g we present in this  \ith ¢ = 2-1/4 The u, v can be written as
paper. The exact expression for the matrix reads
_ A—1/2[(~1/4 —1/4.7%
N o r o u=2""2[(2"%a, +27"%ib7) + He],
— e alesn—icAn &S &S &S -
Gn=e cosh < /2 >+2«/§ges sinh ( NG > ’ v =222, + 27 4iB) + He]. (D7)
S § L, g . 8e,sN We have
Gy = —ie 3le ltgAn—smh( ’ ) ,
V28e.s V2 ‘
2'%a, (A, m) + 27 iby(A, ) = 27 V261 +iGan)ag(A, 0) + 274H(V2G 12 + iG2)Bl(A, 0)
1
+2*1/4\/F/ dv (vV2G 12 + iG)E (A, v). (D8)
0
The EPR variance is defined as
2 2
2 ocu+ov
= D9
OEPR T T3 (D9)
For the entangled state, the Duan’s criterion yields
oppr < 1. (D10)
Using the commutation relation, we obtained the Agpg as
2 1 . 2 1 . 2 1 ! . 2
Ol = §|«/§G11 +iGai* + 3 (2no + DIV2G, +iGnl* + 30 @ +1) dv|vV2G s + iGnl*. (D11)
0
We have
Ipr e . I . 8esT
«/an +iGy = V2 e aTin=icsAn | ook <ge,sn> - sinh <ge,sn> + & smh( il ) ,
\/i 8e,s «/5 Zﬁge’s «/5
(D12)
. . A . Pes . esT
V2G 1y + iGyy = ie™ i 71M | cogh <ge,m) — & sinh <ge,sﬁ) — —="sinh < o ) .
V2 ) 8es V2 ) 2428, V2
When g > ', we have
V2
7|\/§G11 +iGa1| & [V2G 12 + iGo|
(D13)
A gi%rj.y” 6‘_% —

Pes o (ge,sn)
Zﬁge,s \/z
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Therefore the EPR variance reads

1 2 2 n 2
Uépkzg‘\/zcll‘f'i(}zl) +§(2n0+1)‘\/§G12+iG22‘ +§F(2nth+1)/0 dv‘«/an-i-iGzz

2 1 n
~ <§n0 + 1>|G(z>|2 50+ 1>r/ v GO,
0

where

8e,sN

G(n) = e Tesn/4 |:e_ 7

(D14)

T o (&,m)
23280 V2 )|

(D15)
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