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Multiasset financial bubbles in an agent-based model with noise traders’ herding
described by an n-vector ising model
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We present an agent-based model (ABM) of a financial market with n > 1 risky assets, whose price dynamics
result from the interaction between rational fundamentalists and trend-following imitative noise traders. The
interactions and opinion formation of the noise traders are described by an extended O(n) vector model, which
generalizes the Ising model used previously in ABMs with a single risky asset. Efficient rejection-free transition
probabilities are derived to describe realistic investment decisions at the microlevel of individual noise traders.
The ABM is validated by testing for several characteristics of financial markets such as volatility clustering
and fat tails of the distribution of returns. Furthermore, the model is able to account for the development of
endogenous bubbles and crashes. We distinguish three different regimes depending on the traders’ propensity
to imitate others. In the subcritical regime of the O(n) vector model, the traders’ opinions are idiosyncratic and
no bubbles emerge. Around the critical value of the O(n) vector model, cross-sectionally asynchronous bubbles
emerge. Above the critical value, small random price fluctuations may be amplified by noise traders herding into
a given asset, which then impels fundamentalists to reequilibrate their more valuable portfolios that have become
unbalanced, thus pushing the prices of the other assets upward. The resulting transient increase of the momenta of
these assets triggers a reorientation of the noise traders’ portfolios that further amplifies the burgeoning bubbles.
We have thus identified a mechanism by which the cautious risk-adverse contrarian rebalancing strategy of
fundamentalists leads to systemic risks in the form of cascades of bubbles spreading the whole financial market.

DOI: 10.1103/PhysRevResearch.5.013009

I. INTRODUCTION

One of the most important concepts in complex sys-
tems theory is the emergence of highly nontrivial collective
phenomena from the repetitive interactions between a large
number of agents. A clear analogy can be visualized between
the interactions of the spins in a ferromagnetic material, which
tend to align their orientations while the thermal agitation
tends to push the system towards a disordered state, with
the social imitation between agents that tends to polarize the
class of agents towards a common preference while stochastic
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idiosyncratic opinions among agents favor lack of consensus.
These two systems illustrate the ubiquitous fight between
order and disorder, be it in a ferromagnetic material or in
a group of investors, which leads to a rich phenomenology
and dynamics associated with transitions between different
regimes.

To describe decision making within social groups and
specifically their polarization, in the 1970s, Weidlich [1] in-
troduced the idea of representing them as a physical ensemble
of interacting spins. The idea to use the Ising model to rep-
resent opinion dynamics was further developed for example
by Galam et al. [2] who applied it to a strike process in
a plant containing satisfied and dissatisfied workers and by
Grabowski and Kosiński [3] who took the spatial location
of individuals on a complex network into account. Another
application of Ising-based decision models is the voter model
by Holley and Liggett [4], in which the opinion of a voter is
a binary variable stochastically changing under the influence
of its neighbors’ opinions. Roehner et al. [5] have shown
that, under partial information, the rational optimization of ex-
pected payoffs under a utility function that considers cultural
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norm, as well as herding, can be described by the Ising model.
Many more Ising-like models have been developed to describe
collective behavior of animal and human societies. See, e.g.,
Ref. [6] for a review and references therein.

The approaches to model opinion formation in social sys-
tems are also useful to understand the investment decisions
of traders in a financial market. Neoclassical economic theory
is based on the assumption of agents’ rationality and helped
to describe many macroeconomic phenomena. However, the
assumptions of rational representative agents and general
equilibrium are hard pushed to explain extreme events such
as bubbles and crashes. For instance, the dynamical stochastic
general equilibrium (DSGE) models used by central banks
to inform their monetary policies were impotent during the
great financial crisis of 2008, as bubbles and crashes were
by construction assumed impossible. This realization has mo-
tivated renewed interest in agent-based models [7,8], which
emphasize the existence of many interactive decision makers
with bounded rationality and subjected to limited and possibly
asymmetric information.

To better understand financial markets, it is crucial to
embrace the fact that the world economy is a constantly
evolving multiagent complex system that can be studied with
agent-based models (ABMs). In ABMs, the asset prices are
endogenously defined by the agents’ investment decisions. De
Long et al. [9,10] show that irrational traders with stochastic
beliefs, so-called noise traders, can create endogenous finan-
cial bubbles from positive feedback in an ABM. Especially,
the interaction of agents with heterogeneous beliefs can repro-
duce some of the characteristic features of financial markets
known as “stylized facts.” For example, Brock and Hommes
[11] introduced an ABM in which traders switch between
several available predictors of the future return based on the
past performance of these predictors. In Lux and Marchesi
[12], the traders switch between being rational fundamental-
ists and noise traders by comparing the expected returns of the
strategies. Furthermore, the noise traders switch between op-
timistic and pessimistic mood influenced by the other traders’
opinions. The model can reproduce some of the “stylized
facts” such as excess kurtosis and volatility clustering.

The above introduction has emphasized a physics-inspired
approach (based on the Ising model and its variants) to the
modeling of imitative investors in financial markets. In the
last two decades, the concept that financial markets might be
better described by concepts borrowed from biology has pro-
gressively emerged [13,14]. In particular, the Adaptive Market
Hypothesis (AMH) [14,15] extends the Efficient Market Hy-
pothesis (EMH) [16] by applying the principles of evolution
to financial interactions, in particular with the actions of com-
petition, adaptation, and natural selection. According to the
EMH, the market, composed of optimally rational agents,
fully and instantaneously absorbs the flow of information and
faithfully reflects it in asset prices. In contrast, the AMH
attempts to reconcile the EMH with behavioral economics
by viewing the behavioral biases such as overconfidence,
overreaction, herd mentality, loss aversion, anchoring, and
confirmation bias as consistent with boundedly rational indi-
viduals [17] adapting to a changing environment using simple
heuristics. For an in-depth discussion on the limits of the
EMH and for theoretical and data-driven analyses related to

the AMH, we refer to [13,18,19]. We also note an alternative
formulation, called the emerging intelligence market hypoth-
esis (EIMH) [6], which proposes that the market as a whole
is more “intelligent” than the sum of the investment strategies
by the aggregation of their market impacts. This aggregate in-
telligence dwarfs the individual strategies, making them look
like “noise” [20] when applied to the price structures resulting
from the price formation process.

Agent-based models are ideal to test these ideas. But, the
vast majority of ABMs have been concerned with modeling
the dynamics of one risky asset, for instance, a financial index
or the stock of a firm traded in an organized exchange market,
coexisting with a riskless asset such as a treasury bill. But
a fundamental characteristic of investing is the possibility
to diversify one’s wealth among many assets. The typical
investor, especially the large institutional investors, mutual
funds, pension funds and the like that dominate the markets
in terms of asset value under management, is in large part
focused on diversifying his portfolio. Diversification of invest-
ments over the whole universe of assets has a vast literature in
modern portfolio theory and practice [21–25]. The realization
that idiosyncratic risks could be diversified away by optimally
constructed portfolios has led to many fundamental develop-
ments in asset pricing, starting with the Capital Asset Pricing
model [26], the Arbitrage Pricing Theory [27], and the whole
“industry” of factor models [28].

Some ABMs do model several assets. Xu et al. [29] de-
veloped an ABM in which both fundamentalists and noise
traders maximize their expected utility differing only in the
construction of the expected return. Similarly, Chiarella et al.
[30] introduced a model of heterogeneous agents that maxi-
mize a utility function and build their expectation of the future
return based on past observations. Here we extend this liter-
ature and address some of the limitations of previous works.
In the aforementioned ABMs, the traders individually opti-
mize their investment strategy without considering the other
traders’ decisions. However, phenomena such as bubbles and
crashes occur due to the tendency for traders to synchronize
their trades, either in their buying pattern during a bubble
or in their panic selling during a crash. In order to describe
realistic price dynamics, we consider the opinion formation
among a group of investors. In particular, our goal is to derive
a multiasset market model of interacting agents that is prone
to develop bubbles and crashes in order to understand bubble
formation among multiple assets. We are especially interested
in the formation of time-synchronous and asynchronous bub-
bles, because the synchronous emergence of a bubble among
multiple assets creates systemic risk, and the crash of one
asset can trigger the other assets to crash as well, potentially
resulting in a systemic crash of the whole stock market.

Our model is an extension of the ABM with Ising-like
characteristics introduced by Kaizoji et al. [31]. In that model,
fundamentalists and noise traders coexist in an ABM of a
financial market with fixed strategies (investors of a given type
are characterized by a fixed strategy and there is no switching
between the strategies as in some other models mentioned
above). The rational fundamentalists maximize their expected
utility whereas the noise traders invest based on momentum
following and social imitation. The noise traders’ decisions
are modeled by an underlying Ising model in which each spin
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represents one trader invested either in the risky or in the
risk-free asset. The noise traders’ decision to switch between
the assets is influenced by the other traders’ opinion and
their idiosyncratic opinion, as well as the price momentum,
which plays a role analogous to an external field of the Ising
model. The collective opinion of the noise traders exhibit a
phase transition that underpins the emergence of bubbles in
the asset price. Building on the ability of the Agent-based
model by Kaizoji et al. [31] to create endogenous superex-
ponential bubbles in one asset, while being able to reproduce
the most important features of financial markets, we present a
multiasset extension in which the social imitation and momen-
tum following of traders are represented by an O(n) vector
model. We propose this formulation of the interactions be-
tween agents deciding to invest among several assets as an
O(n) vector model because it appears as the most elegant and
richest description that naturally generalizes the Ising model.

The paper is organized as follows. In the next section,
the extension of the original market model by Kaizoji et al.
[31] to a multiasset framework consisting of one risk-free and
multiple risky assets is introduced. This includes the gener-
alization of the dividend process, the wealth dynamics, and
the traders’ decision process. A special emphasis is put on the
noise traders’ stochastic dynamics for the investment derived
from an O(n) model. The price equation is derived from the
market-clearing conditions according to Walras’s theory of
general equilibrium [32]. The market-clearing condition equi-
librates supply and demand, as each trader formulates their
excess demand for the next time step and the price is deter-
mined as the equilibrium in which supply equals demand. In
Sec. III the time series resulting from the traders’ interactions
are analyzed and the “stylized facts” of financial markets are
tested. Section IV examines the emergence of bubbles among
the risky assets focusing on three different regimes of the
noise traders resulting from the phase diagram of the O(n)
model. Section V concludes.

II. THE AGENT-BASED MARKET MODEL

The market model evolves according to a discrete-time
dynamics, where each time step represents one trading day.
The market is constituted of two types of agents, the fun-
damentalists and the noise traders. They invest according to
different strategies into one risk-free and n risky assets, with
the possibility that the weight in one or more assets is zero.
Their investment decisions enter in the price equations, which
govern the dynamics of the prices of the risky assets. In the
following, we explain in detail the different components of
the model.

A. The assets and the wealth dynamics

The model features one risk-free asset, representing a zero-
coupon government bond with constant unitary price, yielding
a constant rate of return r f , and n risky assets, represent-
ing n stocks with time-varying prices Pk,t , paying stochastic
dividends dk,t with k ∈ {1, . . . , n}. Allowing for possible cor-
relations of their dynamics, we describe the time evolution
of the dividends through n standard multiplicative growth

processes (geometric Brownian motions)

d1,t = (
1 + rd,1

t

)
d1,t−1

d2,t = (
1 + rd,2

t

)
d2,t−1

...

dn,t = (
1 + rd,n

t

)
dn,t−1

, (1)

where the stochastic growth factors follow a multivariate nor-
mal distribution(

rd,1
t , rd,2

t , . . . , rd,n
t

) ∼ N (�μ, �d ), (2)

with mean �μ = (rd,1, rd,2, . . . , rd,n) and covariance matrix
�d . The stochastic dividend processes represent the impact of
the real economy on the values of the stocks. Consequently,
the covariance matrix embodies the exogenous effect of both
volatilities and correlations coming from the real economy on
the price formation mechanism. This will also have an effect
on the presence or absence of synchronization between bub-
bles that can develop in different assets. In the following, the
variances and correlations of the dividend processes are taken
to be small in order to focus on the endogenous dynamics
resulting from the traders’ decisions and interactions.

The vector containing the total returns of the risky assets is
given by

�rtot
t = �y d

t + �r p
t , (3)

where the dividend yields �yd
t are defined as

�y d
t =

(
d1,t

P1,t−1
, . . . ,

dn,t

Pn,t−1

)
, (4)

Pk,t is the price of risky asset k at time t , and the price returns
are defined as

�r p
t =

(
P1,t

P1,t−1
− 1, . . . ,

Pn,t

Pn,t−1
− 1

)
. (5)

The traders’ investment decisions are described in terms of
the fraction of their wealth they invest into each asset. Thus,
the portfolio of a trader i is constituted by n risky fractions
(xi

1,t , . . . , xi
n,t ) and one risk-free fraction xi

r f ,t . Borrowing and
short selling are not admitted in the market model, hence
the wealth fractions including the risk-free fraction are con-
strained to xi

k,t ∈ [0, 1]. Moreover, the fractions must sum to
one at each time step t : xi

r f ,t + ∑n
k=1 xi

k,t = 1. The wealth of
trader i evolves according to

W i
t = W i

t−1

(
1 + r f +

n∑
k=1

xi
k,t−1rk,excess

t

)
, (6)

where

rk,excess
t =

(
dk,t

Pk,t−1
+ Pk,t

Pk,t−1
− 1 − r f

)
(7)

represents the excess return of the risky asset k with respect to
the risk-free return r f .

B. Fundamental value traders

The fundamentalists are rational risk-averse traders who
at each time step maximize the expected constant relative
risk aversion (CRRA) utility function of their future wealth
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in terms of the risky fractions and for a given level of risk.
The derivation of the wealth allocation of fundamentalists
follows the description for one risky asset in [31] whereas
the multiasset extension follows Chiarella et al. [33]. At each
time step, each fundamentalist trader constructs its portfolio
(x f

1,t , . . . , x f
n,t ) solving the maximization problem

arg max
(x f

1,t ,...,x
f
n,t )

Et
{
U

[
W f

t+1

(
x f

1,t , . . . , x f
n,t

)]}
, (8)

where U represents the CRRA utility function with constant
risk aversion γ

U (W ) =
{

log(W ) γ = 1
W 1−γ

1−γ
γ �= 1

. (9)

Each fundamentalist trader solves the same optimization prob-
lem. Hence, the investment impact on prices can be considered
at the aggregate level through a representative agent, whose
wealth is equal to the sum of the wealth of all fundamentalists.
Expanding the CRRA utility function to quadratic order, the
maximization problem (8) has been solved in Xu et al. [29],
and we report here the final solution. The fundamentalist
portfolio allocation strategy is given by⎛

⎜⎝x f
1,t
...

x f
n,t

⎞
⎟⎠ = 1

γ
Cov−1

⎛
⎜⎜⎝

Er,1 + d1,t (1+rd,1 )
P1,t

− r f
...

Er,n + dn,t (1+rd,n )
Pn,t

− r f

⎞
⎟⎟⎠, (10)

where Cov−1 is the inverse matrix of the expected covariances
of the future price returns estimated by the fundamentalist
traders. Furthermore, the fundamentalists build an expectation
(Er,1, . . . , Er,n) of the price returns of the risky assets. These
expectations could in principle depend on time, but are as-
sumed time-independent in the following for simplicity.

C. Noise traders

1. Structure of the model of noise traders

As in Kaizoji et al. [31], the intrinsically stochastic in-
vestment strategy of the noise traders is driven by social
imitation and trend following; see also [12]. The central fea-
ture characterizing the noise traders is an Ising-like structure
of interactions between them, which accounts for the compe-
tition between the ordering force of social imitation and the
disordering impact of idiosyncratic opinion. It is the existence
of such an Ising-like structure that explains the emergence
of bubbles and governs their dynamics. As shown in [31,34],
bubbles appear as the result of the progressive polarization of
opinions among noise traders via a genuine phase transition
from a disordered state where all noise traders place indepen-
dent random orders to an ordered state where they herd. In
the following, we extend the Ising-like structure of the noise
traders described in [31,34] to a multiasset framework. Specif-
ically, to model the noise traders, we introduce an n-vector
Ising model [also known as the O(n) model] on the fully
connected graph with an external field whose components
represent the price momenta.

Each of the N noise traders is associated with a spin vector

�Si = (si1, . . . , sin) ∈ Sn−1 (11)

representing its portfolio allocation. The positive components
of the spin vector represent investments in the risky assets and
the negative components represent investments in the risk-
free asset, while zero components represent no participation
neither in these assets nor in the risk-free one. More precisely,
the risky fraction invested in a, if sia is nonnegative is

xia = s2
ia if sia � 0. (12)

The sum of all the negative components squared represents at
the aggregate level the risk-free fraction

n∑
a:sia<0

s2
ia = xr f . (13)

This definition ensures that the condition of wealth conserva-
tion

n∑
a=1

xia = 1 (14)

is always satisfied as a consequence of the normalization of
the spin vector.

Each noise trader, i.e., spin, interacts with all the others.
Additionally, a vectorial external field �H acts on each spin,
modeling the trend-following attitude of the noise investors.
In particular, each component of the vector �H corresponds to
the price momentum Hk ,

Hk,t = θHk,t−1 + (1 − θ )

(
Pk,t

Pk,t−1
− 1

)
, (15)

associated with the respective risky asset k. This expression
(15) defines an exponential moving average of the past price
changes and is an indicator of the asset performance. In
(15), θ ∈ [0, 1) is a parameter that controls the characteristic
timescale over which past returns are shaping the price mo-
mentum.

The interactions between the spins are defined via the
Hamiltonian

H({�S1, . . . , �SN }) = − 1

2N

N∑
i �= j=1

�Si · �S j −
N∑

i=1

�H · �Si, (16)

which assumes the same uniform tendency for imitation
among any pairs {i, j} of traders. A given configuration of
spins, i.e., of portfolio allocations of all the traders, is assumed
to occur with a probability given by the standard Boltzmann
weight (or logit function)

P({�S1, . . . , �SN }) = e−κH. (17)

In this expression (17), the parameter κ quantifies the propen-
sity for herding: indeed, the larger κ is, the larger is the
likelihood that the traders choose the same portfolio alloca-
tion corresponding to the minimum of H({�S1, . . . , �SN }); in
contrast, for small or vanishing κ , all portfolio allocations
become equally probable and noise traders allocate randomly
their wealth to the assets. The parameter κ was introduced
in [31]. In the language of spin systems, it corresponds to the
inverse temperature β of the standard O(n) model and governs
the relative importance of the common investment preferences
shared by the noise traders with respect to the idiosyncratic
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opinion of each agent. See, e.g., [6] for a justification from
and parallel with the random utility formalism.

2. Derivation of the transition probabilities

We are interested in modeling the investments’ dynamics
of the noise traders and not just their average properties, hence
in the following the transition probabilities characterizing the
stochastic dynamics of the model are derived. Our goal is
to construct a Markov chain Monte Carlo (MCMC) having
(17) as its equilibrium distribution, which defines realistic
dynamics for the traders’ investments. The latter constitutes
a crucial point of the following derivation, because we cannot
rely on standard methods to generate a stochastic dynamics for
the O(n) model unless they give rise to a realistic description
of the investment strategy of the noise traders from the finance
point of view. No standard method was found that well fitted
the task, hence in this and in the following two sections, we
derive an original method to generate a stochastic dynamics
for the O(n) model that allows for a realistic investment de-
scription from the finance perspective.

On each trading day, each noise trader updates her invest-
ment decision based on the information available up to the
previous trading day. She first decides whether she wants to
hold her previous portfolio or actively trade in the market,
which will be defined in the following. The portfolio update
is encoded mathematically by the time-dependent conditional
transition probability

P
(�St

l | {�St−1
1 , . . . , �St−1

l−1, �St−1
l+1, . . . , �St−1

N

})
(18)

that the agent l chooses the portfolio allocation �St
l at time

t , given the allocations {�St−1
1 , . . . , �St−1

l−1, �St−1
l+1, . . . , �St−1

N } of all
other agents at time t − 1, which can be represented as a
point on the (n − 1) sphere Sn−1. For ease of notations, we
denote P( �A, t ) the specific value of the transition probability
(18) for �St

l = �A. P( �A, t ) is a solution of the general dis-

crete time master equation P( �A,t )−P( �A,t−�t )
�t = ∫

�B∈Sn−1 W ( �B →
�A)P( �B, t − �t ) − W ( �A → �B)P( �A, t − �t ), where the unit
time increment �t = 1 corresponds to one trading day.

Noise traders update their portfolio allocations according
to the transition rates W ( �A → �B), which are specified in the
following. We assume that the transition rates obey the condi-
tion of detailed balance, which reads

W ( �A → �B)

W ( �B → �A)
= P( �B)

P( �A)
∀ �A, �B ∈ Sn−1, (19)

where P( �A) = limt→+∞P( �A, t ) is the equilibrium con-
ditional probability distribution that the set of noise
traders adopt a given set of portfolio allocations {�Sl = �A |
�S1, . . . , �Sl−1, �Sl+1, . . . , �SN }. Since the conditional probabili-
ties P( �A) and P( �B) are defined on the same conditioning
sets {�S1, . . . , �Sl−1, �Sl+1, . . . , �SN } in expression (19), we have
P( �B)
P( �A)

= P({�S1,...,�Sl−1,�Sl =�B,�Sl+1,...,�SN }
P({�S1,...,�Sl−1,�Sl = �A,�Sl+1,...,�SN } . Using (17) with (16), we

obtain P( �B)
P( �A)

= 1
Z e−κ (− 1

2N
∑

i �= j �=l �Si ·�S j − 1
N

∑
i �=l �Si · �B−∑

i �=l �H ·�Si− �H · �B)

1
Z e−κ (− 1

2N
∑

i �= j �=l �Si ·�S j − 1
N

∑
i �=l �Si · �A−∑

i �=l �H ·�Si− �H · �A)
. Simplify-

ing the common factors in the numerator and denominator,

we get

P( �B)

P( �A)
= e−κ (− 1

N

∑
i
�Si · �B− �H · �B+ 1

N

∑
i
�Si· �A− �H · �A)

= eκ[
∑

i �Si ·( �B− �A)
N + �H ·( �B− �A)] (20)

up to a constant term of order 1
N negligible for large N . From

(19), we obtain the ratio of the transition probabilities as

W ( �A → �B)

W ( �B → �A)
= P( �B)

P( �A)
= eκ[

∑
i �Si ·( �B− �A)

N + �H ·( �B− �A)]. (21)

Since expression (21) provides only the ratio W ( �A→�B)
W ( �B→ �A)

, we
need another equation or condition to specify the transition
rate W ( �A → �B) [and thus W ( �B → �A)]. By analogy with spin
system dynamics in Physics, one could imagine to use the
standard Metropolis-Hastings rule [35], which assumes that
the transition probabilities can be decomposed into a uniform
move proposal probability P and a move acceptance proba-
bility A:

W ( �A → �B) = P ( �A → �B)A( �A → �B). (22)

Using (21), this would yield

A( �A → �B) =
{

1 if
[∑

i
�Si ·( �B− �A)

N + �H · ( �B − �A)
]

> 0

eκ[
∑

i �Si ·( �B− �A)
N + �H ·( �B− �A)] otherwise

.

(23)
The uniform proposal probability together with Eq. (23) de-
fine an unrealistic dynamics where, at each time step, each
noise trader chooses at random a new investment portfolio to
switch to and this trade decision is accepted according to the
probability A( �A → �B) given by expression (23).

In order to obtain a more realistic investment allocation
dynamics for the noise traders, we impose

A( �A → �B) = A( �B → �A) = 1 ∀ �A, �B ∈ Sn−1. (24)

Hence, from the detailed balance condition (19), it follows
that

P ( �A → �B)

P ( �B → �A)
= P( �B)

P( �A)
= eκ[

∑
i �Si ·( �B− �A)

N + �H ·( �B− �A)]. (25)

This equation is satisfied by setting

P ( �A → �B) = 1

Z
eκt (

∑
i �Si · �B
N + �H · �B), (26)

where Z is a normalizing constant. Normalizing, we finally
get the following expression for the transition probabilities

W ( �A → �B) = eκ (
∑

i �Si · �B
N + �H · �B)∫

�K∈Sn−1 eκ (
∑

i �Si · �K
N + �H · �K )

. (27)

Note that the transition probability from state �A to state �B is
independent of the initial state �A, which is a typical property of
mean-field models [indeed, the fully connected O(n) model is
equivalent to the correspondent mean-field version in the large
N regime]. From a financial perspective, the independence of
W ( �A → �B) with respect to �A makes the noise traders imper-
vious to the so-called “disposition effect” [36,37]. In order
to account for the disposition effect and the status-quo bias,
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we reintroduce the path dependence in the portfolio dynamics
through a Bernoulli random number.

Each trading day, before proceeding with her trading de-
cisions, the noise trader first decides to adjust her portfolio
allocation or to be inactive on the financial market for that day
and hold the previous portfolio allocation which she considers
solid and profitable.

The trader decides to be active in the financial market to
modify her portfolio allocation with a probability

P(active) = min

{
1,

1

th
eκ‖ �M‖

}
, (28)

where we have defined �M = (1/N )
∑

i
�Si + �H , and holds her

previous portfolio allocation otherwise. When there is no clear
momentum and the noise traders have heterogenous opinions,
P(active) reduces to 1

th
, showing that the parameter th rep-

resents the average number of trading days the noise trader
keeps her assets in absence of herding behavior. In this way,
we can directly control the trading frequency of the time series
characterizing the resulting market dynamics while allow-
ing for a realistic behavior of the agents at the micro level.
When noise traders herd, they tend to be constantly active.
The expression in (28) constitutes a natural generalization to
the multiasset framework of the parameter p controlling the
average holding time in the single risky asset case [31].

Summarizing, the investment decision of each noise trader
boils down to a two-step decision process. First, the investor
decides to be active for that trading day or to just hold its
previous portfolio, according to a Bernoulli trial described
by Eq. (28). In case the trader decides to be active, then
her new portfolio is constructed according to expression (27).
In the following two sections we focus in particular on the
second step of the decision process, when the trader actively
reallocates her investment.

3. Decision-theoretic interpretation of the transition probabilities

In this section, we show that Eq. (27) defines realistic
investment strategies for noise traders by connecting the Ising-
like O(n) model with the framework of decision theory.

The form of the probability distribution (27) coincides with
a continuous version of the logit probability distribution for
the arrival states. The logit distribution is throughout used
and studied in discrete choice theory. McFadden has shown
that the logit probability distribution models individuals who
maximize a utility function which has an implicit random
idiosyncratic part [38]. If each agent makes a choice s∗ ac-
cording to the following maximization program:

s∗ = arg max
s

{βus + ηs}, (29)

where s represents a possible choice taken from a finite set, us

is the deterministic part of the utility function, ηs is a random
variable, and β plays the role of the inverse temperature,
McFadden proved that Pr(s∗ = s) coincides with the logit
distribution if the random variable ηs is distributed accord-
ing to the Gumbel distribution with cumulative distribution

function

Fη(x) = e−e− x−μ
λ

. (30)

The result of McFadden has been extended to continuous
spaces of choices (see, e.g., [6,39]) and therefore applies to
our setup with a continuous space of choices �B, located on the
hypersphere Sn−1. Hence, modeling the investment decisions
with the multivariate distribution (27) amounts to considering
traders who solve the maximization problem

�B∗ = arg max
�B∈Sn−1

{κu �B + η �B}, (31)

where the deterministic part of the utility function is given by

u �B =
(∑

i
�Si

N
+ �H

)
· �B. (32)

This expression (32) implies that the decision �B chosen by a
trader tends to align with (i.e., imitate) the average decision
of all the other traders (first term in the parentheses in the
r.h.s.) and is also favoring stocks that have higher momentum
(second term in the parentheses in the r.h.s.). Imitation is
often the rational, or boundedly rational, attitude in the case
where a single individual does not have access to sufficient
information, and when there are reasons to believe that other
individuals might have complementary knowledge from dif-
ferent sources; see, for example, Chater et al. [40]. Imitation
can also become the optimal strategy in the case where the
stock prices are dominated by endogeneity [5], such as during
self-fulfilling prophecies. The second term η �B in (31) repre-
sents the random idiosyncratic part, specific to each trader,
which enters in the decision process. Formula (31) exemplifies
how the herding propensity κ governs the relative importance
of the deterministic part of the utility function common to all
traders, hence pushing traders towards the same investments,
in comparison with the random part modeled by the Gumbel
distribution representing the importance of the idiosyncratic
opinion of each individual.

This interpretation is useful to construct an algorithm to
simulate the noise traders’ investment decisions. Computa-
tionally, we need to sample realizations of the random vector
�B = (B1, . . . , Bn) from the multivariate probability distribu-
tion (27). This is unfeasible due to the high dimensionality
of the distribution and the relation

∑n
k=1 B2

k = 1 between the
components of the random vector. We propose to replace this
direct sampling problem by discretizing the space of choices
Sn−1 and considering the discrete version of the maximization
problem (31).

At the beginning of the simulation, we discretize the space
of choices Sn−1 once and for all in such a way that the detailed
balance condition (19) holds. Then, at each time step, the
trading decision of each noise trader is generated according to
the following algorithm. The conditional statement accounts
for the first step of the trader’s decision process discussed
in the previous section, when the investor decides to actively
trade or to just hold her previous portfolio.
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Algorithm 1. Simulation of the noise traders’ investments
(decision-theoretic approach).

Notwithstanding the fact that the deterministic quantities
entering the decision process refer to the previous trading day
and are common to all traders, the method suffers from the
curse of dimensionality. The computational cost of the simu-
lation is exponential in the number Npoints used to discretize
the hypersphere. As a large number of points are needed to
ensure a good discretization and a realistic simulation, this
constitutes a significant bottleneck. Moreover, the problem
aggravates when augmenting the investment universe, i.e.,
when increasing the number n of risky assets. In order to
have a realistic description of financial markets, one would
like to eventually consider tens to hundreds of stocks. Thus,
the simulation algorithm should be scalable as the number
of risky assets n increases. To overcome the computational
problems of the present method, in the next section, we derive
a different algorithm to generate the stochastic dynamics of
the noise traders’ investments. This algorithm overcomes the
computational problems of the present one, being well scal-
able in the number n of risky assets.

4. Symmetry-based approach

To sample efficiently from the probability density function
(27), we develop a method that exploits its symmetry.

Let us denote θ the angle between the two vectors �M =
(1/N )

∑
i
�Si + �H and �B, which belong to the Euclidean space

Rn. Hence, the dot products in the exponential terms in ex-
pression (27) can be written

κt �M · �B = κt‖ �M‖ cos θ, (33)

accounting for the normalization of �B to unity. This normal-
ization condition means that the tip of the vector �B needs to be
sampled on the hypersphere Sn−1. In other words, the sets of
equiprobable choices, i.e., equiprobable vectors �B, are defined
by the conditions

1

‖ �M‖
�M · �B = cos θ

‖ �B‖ = 1
. (34)

The first condition defines an hyperplane in Rn. In fact it can
be written as

m1b1 + m2b2 + · · · + mnbn = cos θ, (35)

where m1, . . . , mn are fixed coefficients. The second condition
enforces the choice vectors to belong to the hypersphere Sn−1.
The intersection of a hypersphere Sn−1 and an n-dimensional
hyperplane is a hypersphere Sn−2. Indeed, the system (34)
defines a hypersphere Sn−2 in Rn, with center

�C = cos θ
1

‖ �M‖
�M (36)

and radius

r =
√

1 − cos2 θ = sin θ. (37)

Then, sampling the transition rate W ( �A → �B) amounts to
sampling an angle θ with the probability

P(θ ) ∝ eκt ‖ �M‖ cos θ (sin θ )n−2, (38)

where the term (sin θ )n−2 stems from the Jacobian over the
degrees of freedom on the hypersphere Sn−2 orthogonal to �M.
We have thus reduced the sampling of the hypersphere Sn−1

to the sampling of a single variable θ ∈ [0, 2π ).
Having effectively overcome the computational problem

related to the dimensionality, we can directly sample the angle
θ with the rejection sampling method, which is presented in
the following algorithm.

Algorithm 2. Rejection sampling from the univariate P(θ )
distribution.

After sampling the angle θ , we choose a vector uniformly
at random from the equiprobable set defined by that an-
gle. This set of choices is the hypersphere Sn−2 defined by
Eqs. (36) and (37), resulting from the conditions in (34). We
can rely on an efficient algorithm to perform the sampling.
Due to the spherical symmetry property of the multivariate
normal distribution, the normalized random vector whose
components are sampled in an i.i.d. manner from the standard
normal distribution N (0, 1)

�Bunnorm = (N1(0, 1), . . . ,Nn−1(0, 1)), (39)

�B∗
n−1 = �Bunnorm

‖ �Bunnorm‖ (40)

is uniformly distributed on Sn−2. To immerse the vector in Rn,
we have to add one extra zero component, for example at the
beginning of the vector, effectively increasing its dimension-
ality by one. The new vector is

�B∗
n = (0, �B∗

n−1). (41)

Moreover, the hypersphere has to be translated and its ra-
dius rescaled according to (36) and (37). Finally, in order
to correctly represent the intersection between the higher di-
mensional Sn−1 hypersphere and the hyperplane, the Sn−2
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hypersphere needs to be rotated in such a way that the unit
versor, corresponding to the extra component added in (41), is
put along the direction of the normalized vector 1

‖ �M‖ �M.
We construct the orthogonal matrix R representing the ro-

tation of the unit versor

�X = (1, 0, 0, . . . , 0), (42)

to the direction of the vector 1
‖ �M‖ �M. The matrix R has to

satisfy

1

‖ �M‖
�M = R �X . (43)

In two or three dimensions, such a rotation is given by the
standard matrices containing sine and cosine functions. In
the general case of n dimensions, we use an approach based
on Givens rotations to construct an efficient and numerically
stable algorithm. In order to construct the rotation, we refer to
Zhelezov [41].

Eventually, the choice vector �B sampled from the distribu-
tion (27), representing the noise trader’s portfolio reallocation,
is given by

�B∗ = sin θR �B∗
n + cos θ

1

‖ �M‖
�M. (44)

In summary, the noise trader either decides to hold his pre-
vious portfolio as described in Sec. II C 2 or decides on a new
portfolio allocation according to the probability density func-
tion (27) following a symmetry-based sampling approach.
This results in the following overall sampling algorithm.

Algorithm 3. Simulation of the noise traders’ investments
(symmetry-based approach).

D. Market clearing and price equations

The market price is set according to a Walrasian auction,
i.e., at each time step, supply and demand must equilibrate
[32].

Setting the aggregate excess demand to zero in the model
with only one risky asset leads to a second-order algebraic
equation in the unknown Pt [31,34]. The equation can be
solved explicitly giving a unique positive price, which rep-
resents the new price of the risky asset resulting from the
new set of demands. Extending the model to n risky assets,

TABLE I. Set of parameters and initial values used in the simu-
lations. These are values that can be interpreted from our proposed
correspondence between one time step and one trading day. An
average holding time of ten trading days is imposed (th = 10).

Parameters

Assets n = 4 r f = 4 × 10−5

rd,i = 1.6 × 10−4 ∀i di,0 = 1.6 × 10−4 ∀i
Pi,0 = 1 ∀i �d

i,i = 1.6 × 10−5 ∀i
Fundamentalist W f

0 = 109 Er,i = 1.6 × 10−4 ∀i
traders �

f
i,i = 0.0004 ∀i

Noise W n
0 = 109 N = 1000

traders θ = 0.99 Hi,0 = 1.6 × 10−4 ∀i
Market T = 5000

the equilibrium condition has to hold simultaneously for each
asset.

Defining the excess demand from time t − 1 to t for each
risky asset k for the trader i with i ∈ {F, N} as

�Di,k
t−1→t = W i

t xi
k,t − W i

t−1xi
k,t−1

Pk,t

Pk,t−1
(45)

together with the risky fractions defined in (10) for the fun-
damentalists and in (12) for the noise traders, the equilibrium
condition translates into the system

�DF,1
t−1→t + �DN,1

t−1→t = 0

�DF,2
t−1→t + �DN,2

t−1→t = 0
...

�DF,n
t−1→t + �DN,n

t−1→t = 0

. (46)

The system (46) is a nonlinear system in the n unknowns
P1,t , . . . , Pn,t , where each equation is a polynomial equation of
degree n + 1 in all the unknowns. The system is solved
numerically with an iterative method, based on the hybrid al-
gorithm proposed in Powell [42,43], derived from the classical
Newton-Raphson algorithm. Using the prices at the previous
time step as initial condition for the numerical solver, the
method consistently converges to the correct solution with
positive prices, for a wide range of parameters compatible
with real markets.

E. Parameters

The market parameters and initial values are chosen such
that each time step represents a typical trading day. This trans-
lates into the fact that the standard deviation of returns over
one time step is approximately equal to the daily volatility of
1%–2% observed in real markets, here following the logic in
[31]. For details on the parameter choice we refer to [31,34].

The complete set of parameters is reported in Table I. All
rates such as the risk-free return r f , the initial dividend di,0,
the dividend growth rate rd,i, and the expected returns Er,i, as
well as variances are reported as daily values. Note that we
focus our attention here on a market with four risky assets
(n = 4). We work with a rather small number of risky assets
because, as we show below, four risky assets already lead to
qualitatively novel behaviors compared with just one risky
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asset. Moreover, with four risky assets, we can analyze in
detail each set of time series for each asset so as to identify
the time evolution of their interdependence. It should be kept
in mind however that the model implementation allows us to
easily increase the number n of risky assets.

Fundamentalists and noise traders are initialized with equal
wealth W n

0 = 109 and the simulations are conducted over
T = 5000 time steps, which corresponds to 20 years assuming
that one year contains approximately 250 trading days. No
correlation among the dividend processes is assumed.

Regarding the fundamentalist traders, the expected covari-
ance matrix is determined by combining a vector of expected
variances and a matrix of expected correlations. The variances
are

�
f
i,i = 0.0004 i = 1, . . . , n = 4, (47)

and the correlation matrix C f is assumed to be diagonal (there-
fore with ones along the diagonal and zeros elsewhere).

The initial investment decisions for fundamentalists and
noise traders are as follows:

�x f
0 = (0.075, 0.075, 0.075, 0.075), (48)

�xn
0 = (0.125, 0.125, 0.125, 0.125), (49)

where each component represents the investment into one of
the n = 4 risky assets. The remaining fraction of each traders’
wealth is invested into the risk-free asset. This means that each
fundamentalist (resp. noise) trader puts initially 70% (resp.
50%) of her wealth in the riskless asset and the remaining
30% (resp. 50%) in the four risky assets.

The constant risk aversion is endogenously computed at the
beginning of the simulation from the initial conditions as

γ =
Er,1 + d1,0(1+rd,1 )

P1,0
− r f

Cov1,1x f
1,0 + · · · + Cov1,nx f

n,0

, (50)

which constitutes a natural generalization of the original
model’s formula in [31], also adopted in [44,45].

Following Kaizoji et al. [31], Westphal and Sornette [34],
we analyze the impact of both constant herding propensity κ

and time-varying κt , in several ranges of values. The time-
varying herding propensity parameter models the impact of
a changing geopolitical and economical situation on the ten-
dency of the noise traders to herd and is defined by an
Ornstein-Uhlenbeck stochastic process as

κt = κt−1 + ηκ (μκ − κt−1) + σκνt , (51)

with νt ∼ N (0, 1). The mean reversion strength ηκ and the
standard deviation σκ are explicitly indicated for each differ-
ent simulation.

The core of the model is implemented in C++, following
an object-oriented programming paradigm. To have repro-
ducible results, a pseudorandom number generator with a
random seed specified as a run-time parameter is used.

III. TIME SERIES ANALYSIS AND STYLIZED FACTS
OF FINANCIAL MARKETS

A. Time series analysis

In this section, we present the time series resulting from a
simulation characterized by the set of parameters introduced
in the previous section. Figure 1 shows characteristic price
time series of the four assets resulting from the traders’ in-
vestment decisions. In this simulation, the herding propensity
follows an Ornstein-Uhlenbeck process (51) to represent time-
varying susceptibility to herding and momentum. The mean
value μk = 0.98 × κc in expression (51) is defined slightly
below the critical value κc = 4 at which a transition of the
underlying O(n) model occurs between a disordered phase for
κ < κc to an ordered regime for κ > κc of noise traders con-
verging to the same opinion, as explained in the introduction.
Given μk = 0.98 × κc in expression (51), κt transiently fluctu-
ates above κc and thus the system of noise traders temporarily
enters into the ordered regime. The mean reversion strength
η = 0.013 and the standard deviation σκ = 0.25κc

√
2η are

defined such that κt returns from two standard deviations
above the mean to the subcritical regime in approximately
�T = 250 time steps; see [31] for the derivation.

The price time series exhibit volatile and stable regimes
while demonstrating a long-term growth rate that is similar
for all four assets. The long-term growth rate is equal to the
growth rate of the dividend process as verified in the case
of a single risky asset [34]. The paper studies the short-time
and medium-term interdependencies and cascades of bubble
behaviors across assets, which are not influenced by the long-
term growth rate. Choosing the same mean growth rate for the
dividend processes means that we consider assets as belong-
ing to the same industry. This choice is justified as we focus
on the deviations from the long-term trend and do not want to
add additional degrees of freedom by allowing different long-
term growth rates across assets. Figure 2 exemplarily presents
the dynamics of relevant variables for one of the assets in
more detail. Comparing the time series of the price and of
κt shows that the noise traders create bubbles by polarizing
their opinion when κt is above the critical value. This is, for
example, the case between t = 4000 and t = 4500 where the
increase of the noise traders’ fraction of wealth invested in
the asset results in a bubble that grows over a time interval of
two years. When κt is below the critical value, for example
between t = 1000 and t = 1500, the noise traders’ opinions
are heterogeneous [corresponding to the disordered regime of
the underlying O(n) model], the price is stable and mainly
controlled by the growth of the dividend.

One can also observe bursts of increased as well as reduced
return amplitudes, corresponding to the well-documented
phenomenon of volatility clustering [46–48]. The phe-
nomenon is analyzed in Sec. III B 2. It can be traced back
mainly to the trend following and imitative strategy of the
noise traders. During phases of high herding propensity, ap-
proaching or even exceeding the critical value κc, the trading
decisions of this class of investors become polarized. This
collective behavior is associated with critical dynamics and
large susceptibility to random fluctuations, in turn impact-
ing the price dynamics, pushing it towards periods of high
volatility. The alternating regimes of low and high herding

013009-9



CIVIDINO, WESTPHAL, AND SORNETTE PHYSICAL REVIEW RESEARCH 5, 013009 (2023)

FIG. 1. Price time series obtained by a simulation with four risky and one risk-free assets featuring an Ornstein-Uhlenbeck process given
by expression (51) for the imitation strength parameter κt , stochastically fluctuating near the critical value κc of the underlying O(n) vector
model. The simulation parameters are given in Table I. Several bubbles are identifiable as superexponential growths of the prices (note that the
vertical axes for the prices are in logarithmic scale).

propensity is reflected into period of low and high volatility
in the prices. We refer to Sec. IV B 1 for a detailed analysis of
the phenomenon.

The price momentum for each asset used in the noise
trader’s investment decision is calculated as the exponential
moving average of returns according to expression (15). Thus,
it exhibits similar peaks and troughs as the price time series
but lags a few time steps behind. The lag is controlled by
the memory length ∼1/(1 − θ ) the noise trader uses to cal-
culate the momentum. Similarly, the fraction of wealth the
noise trader invests in the asset contains peaks and valleys.
The invested fraction controls the price changes and the price
changes introduce a positive feedback on the risky fraction via
the momentum. The fundamentalists invest countercyclically
by investing proportionally to the dividend-price ratio. This
means that they decrease their wealth fraction invested in the
risky asset during a bubble and return to their normal risky
fraction after the crash. Interestingly, one can observe that the
fundamentalists become wealthier than the noise traders in the
long term. During bubbles, the noise traders’ wealth increases
due to their larger exposure to the risky asset. However, during
a crash, they lose most of their transiently acquired wealth
while the fundamentalists are less affected by the crash and
tend to buy the risky asset when it is undervalued.

B. Stylized facts of the financial markets

Financial time series feature the presence of ubiquitous
statistical properties independent of the details of the series
itself [47,48]. These emerging empirical properties have been
observed across a wide range of instruments, markets, and
time periods, and they constitute the so-called stylized facts
of the financial markets.

As an important step towards validating the model, it is
crucial to check if the time series generated by the simulation
of our model obey some of these stylized facts. We consider
in particular two of them, the fat tailedness of assets’ returns
and the long memory in the autocorrelation of the amplitude
of returns. The time series analyzed are obtained from the
simulation presented in the previous section.

1. The fat tailedness of the distribution of the amplitude of returns

In this section, we compare the shape of the distribution of
the amplitude x of the returns in our simulations of the market
model to the observed leptokurtic behavior of their empirical
counterparts. Empirical distributions exhibit a power tail

p(x) ∼ x−1−α (52)
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FIG. 2. Several time series characterizing the risky asset 0. From top to bottom, one can see the price, actual return, and return expected
by the fundamentalists, price momentum, fraction of the wealth that fundamentalists and noise traders invest into the asset, ratio of the wealth
of noise traders divided by the wealth of fundamentalists over time, and herding propensity κt . The market is simulated over T = 5000 time
steps with the parameters given in Table I. For a comparison with the prices of the other assets, see Fig. 1.

with an exponent α in the interval (2,4) [47,49–51]. As shown
in Fig. 3, the fitted parameter from the simulated time se-
ries shown in Fig. 1 falls in this interval over a range of
approximately one decade corresponding to the 20% largest
return amplitudes. We exclude the ten largest values for the
calibration as the seemingly faster decay for these ten largest
values is compatible with careful comparisons of different
families of distributions calibrated on empirical observations,
which suggest that the extreme tail of the distribution may be
characterized by a decrease faster than a pure power law (see
[51] and chapter 2 of [52]).

2. The long memory in the autocorrelation of absolute returns

The daily returns are not independent random variables. In
financial markets, periods of tranquility alternate with periods
of high volatility. This is referred to as volatility clustering
and intermittency [46–48]. Figure 4 shows the autocorrelation
functions (ACFs) of the signed returns and of the absolute
returns for the time series of returns for the four risky assets
simulated with our model. One can observe that the statistical
estimations of the ACFs of the signed returns are fluctuating
around 0, ensuring an approximate absence of arbitrage using
linear factor decomposition. The absence of linear autocorre-
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FIG. 3. Log-log plot of the complementary cumulative distribu-
tion functions of the amplitude of the returns of the four risky assets
from the simulation presented in Fig. 1. The exponents are deter-
mined by fitting data from the last 20th percentile of the cumulative
distribution, and disregarding the ten largest values.

lation is a prerequisite for the often required “efficient market
hypothesis.” In contrast, the ACFs of the absolute returns are
significantly positive and decay very slowly: for most assets,
the ACFs are still visibly nonzero and above their counterparts
for the signed returns at time larger than 250 time steps. This
later behavior is qualitatively agreeing with empirical facts
[46–48]. However, we are not interested in reproducing a
detailed quantitative agreement as we are cognisant of the fact
that our agents lack a sufficient large set of time scales for
their investments. Moreover, considering four risky assets is
still a far cry from a real market made of thousands of stocks.
Nevertheless, given that the implementation of our model is
well scalable in the number n of risky assets, testing the model

FIG. 4. Autocorrelation functions (ACFs) of signed and absolute
returns of the four risky assets from the simulation presented in
Fig. 1. The ACFs are computed for the data after the 500th trad-
ing day to minimize the possible biases resulting from the initial
conditions.

for larger values of n represents a feasible and interesting
further direction of analysis.

IV. EMERGENCE AND DEGREE OF SYNCHRONIZATION
OF BUBBLES IN THE RISKY ASSETS

The analysis of the simulated time series shows the pres-
ence of three distinct regimes characterizing the dynamics of
the market model. The three regimes depend on the range of
values of the herding propensity κ and are determined by the
phases of the underlying O(n) model.

Our purpose is to provide a classification of the different
possible regimes, as a guide to further characterise real finan-
cial markets using this proposed typology. Since we do not
attempt here to calibrate our model to real data, we are not
in position to offer a quantitative assessment of the relative
importance of these three regimes in financial markets. We
hypothesize that the likelihood of each of these three regimes
strongly depends on the geopolitical and economic situation.
While each of these three regimes is likely to occur at one time
or another, their relative importance remains to be determined
by suitable empirical studies.

A. The subcritical market regime

The first regime corresponds to small values of κ far
below the critical value κc = n. In this subcritical regime,
the market model does not produce superexponential bub-
bles, as evident in Fig. 5. This is true for both constant κ

and Ornstein-Uhlenbeck κt processes, provided that the latter
moves stochastically in a range of values far from the critical
point.

The origin of this property can be found in the behavior
of the noise traders. Small values of κ correspond to a larger
impact of the random component specific to each agent com-
pared with the deterministic utility function common to all
traders, as observable in Eq. (31). A small herding propensity
corresponds to noise traders who formulate their investment
decisions based in large part on their idiosyncratic personal in-
formation, which varies randomly from one trader to the next.
Hence, there is no polarization of opinions, no consensus, but
rather a cacophony of views, ensuring that the market prices
exhibit a small volatility and grow steadily at the growth rate
of the dividends.

B. The critical market regime

The second regime occurs when the herding propensity
κ can approach the critical value κ ≈ κc. In this regime, we
observe the emergence of well-defined bubbles when κt fol-
lows an Ornstein-Uhlenbeck process (51) that fluctuates by
crossing the critical value, as presented in Fig. 6. Note that
κt does not need to stay close to κc but just have to approach
it and stay in its vicinity for a while for bubbles to emerge.
Tranquil periods of approximate exponential growth of the
prices with low volatility alternate with transient periods of
aggressive price growth, which can be associated with the
emergence of bubbles, in relation with where κt is compared
to κc.
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FIG. 5. The time series of a simulation with four risky and one risk-free assets featuring an Ornstein-Uhlenbeck process (51) for κt ,
characterized by a mean value μk = 0.98, far below the critical value κc = 4. The mean reversion strength η = 0.013 and the standard deviation
σκ = 0.25 × 1 × √

2η are defined analogously to Sec. III A, following [31]. The other parameters are the same as in Table I.

1. Phase transition and emergence of bubbles

The emergence of bubbles can be attributed to the imitation
between noise traders and the polarization of their trading
decisions embedded in the O(n) model. This collective be-
havior is associated with the underlying phase transition of the
O(n) model, which becomes critical for κ = κc. In the critical
regime or close to it, the noise traders exhibit continuously
rearranging hierarchical intertwined clusters of the different
possible opinions (corresponding to investing in different as-
sets), with critical dynamics and large susceptibility to random
fluctuations [53,54]. The influence of the critical transition
of the O(n) model is indeed undeniable, notwithstanding the
added complications resulting from the feedbacks of the noise
traders’ market impact on the price momentum and from their
interaction with the fundamentalists. This is verified in Fig. 7,
which shows that the average opinion (1/N )

∑
i
�Si of the noise

traders presents the well-known properties of a critical phase
transition characterizing the O(n) model.

The alternation of tranquil periods of approximate expo-
nential growth of the prices with low volatility that switch
to transient periods of aggressive price growth is controlled
by the dynamics of κt driven by the Ornstein-Uhlenbeck
process (51) that propels κt from values lower than κc to
values close to or larger than κc at which the strong imitation
between noise traders develops, leading to the bubble regimes.
When the bubbles develop in one or more risky assets, the
price momenta of these assets increase, pushing more and

more noise traders to invest into them, hence creating a self-
reinforcing loop. When the herding propensity κt reverts to
the subcritical regime, the polarization of the noise traders
starts to decrease, the idiosyncratic opinion starts to regain
importance and the noise traders move to the other assets.
The market impact of these sales pushes the prices of the
exuberant assets down. Then the price momenta turn negative,
pushing more and more traders to sell the assets with falling
prices. This leads to a burst of the bubbles and the prices
return quickly close to their fundamental values or overshoot
below the fundamental value before reversing to it eventually.
The above description applies to “positive bubbles,” i.e., over-
priced assets. Symmetrically, noise traders can also polarize
to sell the risky assets, and “negative bubbles” can thus be
created, developing as negative mirrors to the positive bubbles
(given their limited duration of typically no more than a few
hundred days, the symmetry-breaking positive dividend [55]
is of negligible effect for the development of each bubble).
The positive dividend just tends to lead to more positive than
negative bubbles being nucleated. These alternating regimes
of pessimistic and exuberant mood are described for example
in [56,57].

These properties provide additional motivations for our
choice to impose the detailed balance condition (19) in deriv-
ing the stochastic dynamics of the noise traders, in contrast to
the more general global balance rule. Choosing the detailed
balance condition corresponds to restricting all the sources
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FIG. 6. The time series of a simulation with four risky and one risk-free assets featuring an Ornstein-Uhlenbeck process (51) for κt ,
characterized by a mean value μk = 0.98κc, with κc = 4. The market is simulated with the same set of parameters used for the simulation in
Fig. 1; see Table I and Sec. III A.

of nonequilibrium to the stochastic wandering of the herd-
ing propensity parameter κt . Since we are interested in the
out-of-equilibrium effects deriving from a change in herding
propensity κt of the noise traders, which itself models the
changes in the geopolitical and economical situation, we as-
sume the system is constantly pushed out of equilibrium solely
by the parameter κt .

2. Degree of synchronization of bubbles developing in the
different risky assets in the critical regime

When the herding propensity κt approaches κc or even
overpasses it, one can observe that most risky assets tend
to develop almost simultaneously significant deviations from
their previous low-volatility price trend growing at the divi-
dend growth rate. There is a large degree of variability in the
way these large deviations develop across the four different
risky assets. For instance, in the first bubble regime in the
first few hundred days in Fig. 6, assets 1 and 3 develop a
significant overpricing, asset 2 remains more or less flat while
asset 0 develops a negative bubble. After this first phase, a
quasisimultaneous negative bubble develops in all four assets.
This is followed by a positive bubble nucleating in asset 0, fol-
lowed by a smaller bubble in asset 1, while the two other assets
remain approximately flat in their price behavior. Around time
1400, assets 0, 1, and 2 develop simultaneous bubbles, while
asset 3 exhibits a negative bubble of rather small amplitude.

The fifth regime is more complex, with a first negative bubble
on asset 2, on top of which a later bubble on asset 1 develops,
followed by assets 0 and 4 also entering bubble regimes, and
so on. It is informative to compare the timing of these bubble
regimes with the periods when κt approaches and exceeds κc.
One can observe that all bubble regimes are indeed associated
with the times when κt is above κc. The complexity of some
bubbles can be understood as the result of an interplay be-
tween the exogenous dynamics of κt , which exhibit stochastic
patterns around κc and the endogenous collective behavior
of noise traders making decisions according to the rules of
the O(n) model. There is thus an intricate interplay between
the exogenous stochastic driving by the “control parameter”
κt and the exogenous response of the order parameter, i.e.,

the average opinion ‖
∑

i
�St

i
N ‖ shown in Fig. 7. This interplay

mirrors a typical real financial market whose endogenous
reflexivity [58] is also influenced by exogenous economic and
geopolitical conditions.

C. The supercritical market regime

1. Phenomenological description

The third regime is characterized by the herding propensity
κt always remaining well above κc. For κt > κc, the vectors of
the O(n) model are aligned, barring small fluctuations. This
means that the investment decisions of the noise traders are
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FIG. 7. Mean and standard deviation of the average opinion of
the noise traders defined as the norm of the average spin vector over

all trading days ‖
∑

i �St
i

N ‖ as a function of κ , the constant value of the
propensity to imitate in numerical simulations. This is the typical
picture of a continuous phase transition, characteristic of the critical
regime at the critical point κc. The three pairs of curves are obtained
from simulations with 3, 4, and 10 risky assets (top to bottom curves
for the means and left to right peaks for the standard deviations).
One can observe that the means (resp. standard deviations) exhibit
an inflection point (resp. peak) at the corresponding critical values
κc = 3, 4, and 10 of the underlying O(3), O(4), and O(10) models.

polarized, i.e., are closely aligned across all noise traders.
This is an extreme regime of very strong herding towards a
common investment preference. We study this regime as an
interesting theoretical state of the model, keeping in mind
that the extreme values of the herding propensity make this
regime unlike what can be observed empirically in real fi-
nancial markets. Nevertheless, this regime is instructive to
understand better the inner working of the model and inform
on the underlying mechanisms also at work in settings more
relevant to real markets.

This regime also presents bubbles, but these bubbles are of
a different origin than the bubbles in the critical regime. The
bubbles in the critical regime previously discussed result from
the phase transitions of the underlying O(n) model. In con-
trast, the bubbles for κt always well above κc are associated
with the strong polarization that moves along a degenerate
valley of minima driven by the momenta (playing the role of
effective magnitude fields). More precisely, the macroscopic
properties of the O(n) model are well known to be repre-
sented by an effective Mexican hat potential in the space of
polarizations for κ > κc. This Mexican hat shape succeeds to
a paraboloid shape for κ < κc corresponding to the disordered
phase. The single minimum of the potential, which represents
the macroscopic state of the system of spins, is located at the
origin of the paraboloid for κ < κc. It then transforms into a
degenerate valley of minima for κ > κc. The transformation
of the potential from paraboloid to a Mexican hat shape is
a very effective representation of the transition of the O(n)
model occurring at κc. In the supercritical regime κ > κc, the
presence of the degenerate valley of minima governs the oc-
currence of bubbles. Even very far from the critical point, the

system of spins is characterized by a diverging susceptibility
for fluctuations of the polarization that are perpendicular to the
nonzero magnetization vector. This makes the noise traders re-
act with a collective behavior in response to small changes in
the external field of price momenta. Then price momenta can
tilt the common investment preferences of the noise traders
at the “macro” level. This emerging collective behavior is
governed by the price momenta acting on a system that has a
very large susceptibility for fluctuations along the degenerate
valley of minima of the representative Mexican hat potential.
Thus, in the critical regime, the bubbles are governed by the
social imitation attitude, while in the supercritical one, they
are dominated by the trend-following attitude. In the first case,
it is the transition to the ordered phase triggering the bubbles.
In the second case, the noise traders are already polarized and
the tilting effect of the external field (momentum) drives them.
This leads to a much stronger synchronous behavior (with
phase shifts) of the bubbles developing in the four risky assets,
which are mainly driven by the trend-following attitude of the
noise traders.

Figure 8 presents the resulting time series from a setup
with an Ornstein-Uhlenbeck κt fluctuating around a mean
reversion level μk = 0.98 × 20, which is deeply inside the
ordered regime. As in the subcritical regime, both constant
κ and Ornstein-Uhlenbeck κt lead to the same market charac-
teristics as long as κt remains far away from the critical value.
At odds with the regime where κt crosses κc repeatedly, the
time-varying nature of the herding propensity is no more so
important while the strong polarization of the noise traders
becomes the dominant feature governing this regime.

During the first trading days, the noise traders polarize
towards the risk-free asset as a result of the initial imbalance
towards the risk-free asset defined by the initial condition for
the noise traders’ investment fractions in Eq. (49). The noise
traders initially invest half of their total wealth in the risk-
free asset and the remaining half, equally distributed among
the various risky investments. Consequently, the tendency to
polarize in this supercritical regime pushes the noise traders
to sell the risky assets and invest only in the risk-free asset.

To analyze the bubbles at the phenomenological level, we
focus on the first one, while observing that their structure is
similar, with a first bubble in one asset followed by a cascade
of bubbles in all the other assets. The only difference from one
specific bubble to the next is constituted by the velocity and
intensity of the phenomenon, which are stochastic. Around
trading day 1500, a first bubble develops in asset 0, triggered
by a stochastic fluctuation and then amplified by the positive
feedback of the action of noise traders implementing momen-
tum trading that acts as a magnetization leading to a first-order
transition of the polarization on that asset 0. Its price starts to
grow superexponentially. This bubble then cascades, around
trading day 1600, into bubbles in the other risky assets. This
cascade of bubbles results from investments following the
wealth increase of the traders produced by the first bubble
and develops due to the strong influence of the momentum.
More details of this cascade of bubbles are presented in the
following section.

At odds with the original single risky asset case [31], here
the noise traders never reach full polarization. This is due
to the exponential form of the transition probabilities, which
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FIG. 8. The time series resulting from a simulation with four risky and one risk-free assets featuring an Ornstein-Uhlenbeck process (51)
for κt , characterized by a mean value μk = 0.98 × 20, far above the critical value κc = 4. The noise traders are completely polarized in their
decisions. The mean reversion strength η = 0.013 and the standard deviation σκ = 0.25 × 20 × √

2η are defined analogously to Sec. III A,
following [31]. The other parameters are identical to those presented in Table I.

always guarantees a nonzero probability for each trader to
go against the tide, even in presence of extreme polarization
of the group. When the first bubble reaches its peak around
t ≈ 1670, the other assets’ prices have already started to grow
resulting in an increase of the price momenta of these assets.
This pushes the traders to sell the asset that is already at
its price peak to shift their investments towards the other
growing risky assets. In addition, the fundamentalist traders
tend to sell the asset whose price is skyrocketing, according
to their countercyclical strategy (10). They invest a fraction
of their wealth that is proportional to the dividend-price ratio.
Thus, assuming the dividends remain approximately constant
during the bubble, the invested wealth fraction decreases as
the asset price increases. Fundamentalists and noise traders
both selling the asset explains the decrease in price of the first
asset, which triggers a self-reinforcing loop through the price
momentum, in turn pushing more and more traders to sell
the falling price’s asset. This results in the crash of the first
bubble. The subsequent synchronous crashes of the cascade
of bubbles on the three other risky assets around t ≈ 1850 can
again be traced back to the self-reinforcing loop governed by
the price momenta. This time, however, the loop is triggered
only by the fundamentalists’ countercyclical strategy.

Over long times, the relative wealth of the noise traders de-
creases as shown in Fig. 2, which progressively decreases their
market impact. Thus, their opinion polarization and abrupt

shifts have progressively smaller and smaller effects, leading
to smoother and longer lasting bubbles.

2. Mechanism for the cascade of bubbles across assets
in the supercritical regime

Each of the three bubbles in Fig. 8 starts with a single asset
deviating from its long-term trend, accelerating in a typical
bubbly fashion. The other three assets remain for a while on
their long-term trend, approximately until the first bubble has
reached a level of the order of its maximum amplitude. Then,
one by one or simultaneously, the other assets start to nucleate
a bubble in their turn. This clustering or “cascade” of bubbles
is one of the striking property of the regime κ > κc and we
now elaborate on its origin.

First, we list properties or characteristics of the model that
cannot be explanations for these cascades. By construction in
the present setup, the fundamentalists form an expectation that
no correlation exists between the assets and consequently al-
locate their investment according to independent equations for
the different risky fractions. The correlations between the ex-
ogenous stochastic dividend processes are also set to zero, so
this cannot be a source of coordination, clustering or cascade
of asset prices. The components of the spin vectors defining
the noise traders’ wealth allocation for each asset fluctuate in
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an uncorrelated manner and thus do not provide a source for
the cascades.

To identify the source of the cascades, let us look in
more details at the price dynamics of the assets and at the
wealth dynamics of the investors. Starting with the first bubble
that develops in one asset, triggered by a stochastic fluctu-
ation, it is then amplified by the positive feedback of the
momentum-based trading of noise traders that pushes the
price to accelerate and grow superexponentially. As a result
of their exposure to this bubbling asset, the investors, both
fundamentalists and noise traders, become wealthier as the
price of the shares they hold increases massively.

Since the traders’ wealth increases, in order for the Wal-
rasian equilibrium to be still satisfied, the other assets’ prices
must increase. This derives from the market-clearing condi-
tion characterizing the Walrasian equilibrium

�D f ,k
t−1→t + �Dn,k

t−1→t = 0 ∀k, (53)

where �D f ,k
t−1→t and Dn,k

t−1→t represent respectively the aggre-
gate excess demands of each trader type for the risky asset k.
Expressing the equation in a more explicit form

W f
t x f

k,t − W f
t−1x f

k,t−1

Pk,t

Pk,t−1
+ W n

t xn
k,t − W n

t−1xn
k,t−1

Pk,t

Pk,t−1
= 0

(54)
and assuming constant all the quantities not explicitly depend-
ing on the other assets’ prices, the effect of the bubble of a
specific asset on the other assets’ price equations is mediated
solely by an increase of the wealth of fundamentalists and
noise traders. Expression (54) shows that the effect of a bubble
of an asset i �= k on the price equation (54) of any other asset
k is working via an increase of the wealths W f

t and W n
t . As

a consequence, in order to satisfy the equilibrium equation,
the price Pk,t has to be larger than the the price Pk,t−1 at the
previous time step.

It is important to distinguish the roles of fundamental-
ists and noise traders. Using different strategies that respond
differently to a bubble, their wealth increase differs. Pushed
by their social imitation and trend-following tendencies, the
noise traders invest more and more in the asset developing
a bubble as its price rises. Following their risk-averse (or
optimal risk-adjusted return) strategy, the fundamentalists de-
crease their exposure to this bubbling asset as its price rises
and reallocate their wealth progressively to the other assets.
Hence, while both traders become richer during the build-
up of bubbles, the noise traders’ wealth increases transiently
much more than the fundamentalists’ wealth.

In financial intuitive term, the strong price appreciation of
the bubbling asset pushes the fundamentalists to sell it and
buy the other risky assets to ensure a good diversification of
their portfolio. Their increasing wealth tilted strongly towards
the bubbling asset requires a strong readjustment and thus
demand for the other risky assets, which pushes their price
up, given the limited supply provided by the noise traders. In
this way, a vigorous increase in one price eventually triggers
an increase in all the other prices, which results in a cascade
of growth of the prices of all assets. If this increase is strong
enough to have a relevant impact on the price momenta associ-
ated with the other assets, as in the case of a superexponential
bubble in the supercritical regime, the noise traders will shift

their allocations to these new growing bubbles as their increas-
ing price momenta lead to a large shift of their portfolio vector.
This triggers the emergence of the cascade of bubbles in all
the other risky assets, through the mechanism explained above
of the strong polarization of noise traders that moves along a
degenerate valley of minima driven by the momentum.

In summary, the pattern of bubble cascades shown in Fig. 8
is due to the following three steps:

(1) Some random fluctuation creates a transient momen-
tum fluctuation on one asset price that is amplified by the
underlying collective behavior of the noise traders making
investment decisions obeying the rules of the O(n) model
in the supercritical regime. This leads to the emergence of a
bubble in one asset and its superexponential price growth.

(2) As the fundamentalists see their wealth grow via the
explosive value of the bubbling asset, their portfolio opti-
mization requires rebalancing away from this bubbling asset
towards the other assets. As their wealth has increased sig-
nificantly and their demand for the other assets is growing to
compensate for the portfolio unbalance due to the bubbling
asset, they thus create a strong price increase in the other risky
assets.

(3) The resulting price momentum on these other assets
becomes noticeable to the noise traders who then rotate their
portfolio more and more towards them, thus creating the cas-
cade of bubbles via the strong polarization of noise traders
that moves along a degenerate valley of minima driven by the
momentum.

V. CONCLUSION

We have derived a market model with two types of agents
who trade n = 4 risky assets and one risk-free asset. The
model is a multiasset extension of an agent-based model with
fundamentalists and noise traders introduced by Kaizoji et al.
[31] and elaborated by Westphal and Sornette [34]. The funda-
mentalists allocate their portfolio according to a maximization
of an expected CRRA utility function. The noise traders’
investment decision is described by an O(n) vector model
in which the n components represent the different assets in
which the traders can invest. This allows us to define realistic
stochastic dynamics while having control over the statistical
properties of the model. The price momenta influence the
traders’ investment decisions in the form of the external field.
The stochastic dynamics is completely specified by a discrete-
time Markov chain, defined by the possible states and the
transition rates among them. We derived efficient rejection-
free transition probabilities in order to describe a realistic
behavior at the “micro” level of the single investor.

The price at each time step is defined by the traders’ de-
mand and supply for each of the assets. The resulting price
time series exhibits bubbles and crashes and reproduces sev-
eral “stylized facts” of financial markets such as volatility
clustering or fat tails of the return distribution. The bubbles
emerge when the noise traders polarize their opinions towards
one or more assets.

The model has been applied to understand the relationship
between bubbles in different co-existing assets. Three regimes
were found in which the mechanism responsible for creating
bubbles differ. The regimes are defined with respect to the

013009-17



CIVIDINO, WESTPHAL, AND SORNETTE PHYSICAL REVIEW RESEARCH 5, 013009 (2023)

traders’ propensity κ to herd. The critical value κc in the
fully connected mean field regime is known and equal to n
in the O(n) model. In the disordered regime with a herding
propensity smaller than n, no polarization and consequently
no bubbles emerge. Around the critical value, with a herd-
ing propensity transiently fluctuating above the critical value,
asynchronous bubbles emerge in various assets associated
with the critical behavior of the O(n) model. The bubbles
are largely driven by the polarization of the traders’ opinion.
In the third regime, where the herding propensity κ remains
above the critical value κc = n and the noise traders are
already polarized, cascades of bubbles emerge. This occurs
notwithstanding the fact that there is no phase transition and
the noise traders’ portfolios are well polarized. The bubbles
are instead driven by the momentum following strategies of
the noise traders. Small random price fluctuations can trigger
the noise traders to herd into a given asset. The cascades
of bubbles result from the reallocation of fundamentalists
reequilibrating their portfolios in the face of a bubbling asset
that tends to dominate the increasing value of their portfolios,
followed by a growth of these assets’ momenta that then
trigger a reorientation of the noise traders’ portfolios. Thus,
the risk-adverse rebalancing strategy of fundamentalists can
be seen as an important process in the creation of systemic
risks in the form of cascades of bubbles.

Our realistic multiasset market model that reproduces the
main stylized facts of financial markets can be applied to test
the market impact of various portfolio optimization strategies
in future research. Furthermore, the role of contrarian traders

modeled by a negative herding propensity in stabilizing mar-
kets or triggering crashes could be analyzed. The market
model also provides a framework to test policies intended to
decrease systemic risk or to prevent bubbles and crashes. It
can help to quantify the effect bursting one bubble has on other
assets.

A further direction of research is to introduce a feedback
of price onto the herding propensity κt , that would add to
the existing feedback, creating even stronger bubbles. We
have chosen an exogenous determination of kappa without
introducing a feedback of the price dynamics, to demonstrate
that the feedback from herding is sufficient to create realistic
bubbles and interesting dynamics. The idea of endogenizing
the dynamics of kappa should be investigated in a future
work. Another direction of further research would be includ-
ing heterogeneous values of the risk aversion parameter γ , to
represent fundamentalist traders who are following the same
fundamental approach but come out with different quanti-
tative allocations. Moreover, the model could be extended
by studying the impact of initializing traders with hetero-
geneous wealth. We would expect the emergence of fat tail
distributions of wealth, typically power laws [59]. The impact
of the heterogeneity of wealth on bubbles dynamics would
be an interesting area of research. In particular, it would be
interesting to study the effect of varying the ratio of initial
wealth assigned to noise and fundamentalist traders, for ex-
ample, considering that either fundamentalist or noise traders
dominate. Finally, testing the model for larger values of the
number n of risky assets representing more realistic market
settings constitutes an interesting further direction of analysis.
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