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Chimeralike oscillation modes in excitable scale-free networks
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A topological mechanism of the emergence of chimeralike oscillation modes (CLOMs) consisting of coherent
synchronous firings and incoherent nonsynchronous oscillations is proposed in excitable scale-free networks
(ESFNs). It is revealed that the topology heterogeneity of the network is responsible for forming and maintaining
the CLOM in the ESFN, which is definitely different from the mechanism of the normal oscillation mode (NOM)
possessing only a single dynamical mode in homogeneous excitable systems. An effective-driving approach
is proposed, which provides a criterion for the formation of the CLOM in excitable complex networks. Our
contributions may shed light on a perspective of CLOMs in complex systems, and can help us understand
competitions and self-organizations of NOM and CLOM in excitable systems with topological homogeneity
and heterogeneity.
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I. INTRODUCTION

An excitable cell is ubiquitous in nature [1,2], such as in
physical, chemical, and biological systems, for typical exam-
ples. It can implement a perfect spiking as stimulated by a
suprathreshold excitation. Although a single excitable unit is
dynamically passive and nonoscillatory, collectively perma-
nent spatiotemporal behaviors can self-organize to emerge in
complex excitable systems. Experimentally, researchers have
confirmed that self-sustained oscillations do exist in actual
biological systems consisting of excitable cells, especially in
neuronal networks and brain systems, and are closely related
to some vital physiological processes [3–6]. Theoretically,
the mathematical model of an excitable complex network has
been set up to carry out investigations on these issues, and
lots of interesting and important results have been obtained in
recent decades [7–14]. For example, sustained activities and
synchronous firings were reported in small-world networks
consisting of excitable units [7–9]. The propagation problems
of excitable waves were studied in Refs. [11,12]. Complex
self-sustained oscillation patterns were exposed in modular
excitable networks [14]. We have performed extensive stud-
ies on this topic in recent years and proposed the dominant
phase-advanced driving (DPAD) approach to explore the
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mechanism of sustained oscillations on networks of excitable
units. Specifically, we revealed the self-sustained target-wave-
group patterns and the corresponding transitions in excitable
small-world networks [15], the emergence of oscillations in
excitable Erdös-Rényi (ER) random networks [16], the Win-
free loop sustained oscillations in 2D lattices consisting of
excitable units [17], the optimal oscillation mode and its dy-
namical transition in excitable complex networks [18,19], and
the burst-oscillation mode in paced one-dimensional excitable
systems [20].

Chimera is a spatiotemporal oscillatory state consisting
of both coherent and incoherent clusters [21,22]. This phe-
nomenon was reported by Kuramoto and Battogtokh in a
nonlocally coupled phase oscillators system [23], which pos-
sesses the features of identical local dynamics and a fully
symmetric network structure, and can emerge as the sponta-
neous symmetry breaking. Over the past decades, there has
been extensive progress in this field, exhibiting an increasing
interest in chimeras. It has been exposed that chimera states
can be observed not only in coupled phase oscillators but
also in other systems with distinct local dynamics, such as
discrete maps [24], continuous chaotic systems [25], bursting
neurons [26], bistable models [27], and excitable cells [28].
Chimera states such as breathing chimeras [29], spiral-wave
chimeras [30], multichimeras [31], chimera death [32], as
well as amplitude and amplitude-mediated chimeras [33] have
been revealed. Importantly, in most cases, rotational cou-
pling scheme is considered as the mechanism in forming the
chimeras.

With these excellent contributions, the conceptual scope
of a chimera state has been extended to systems with-
out topological symmetry, especially in neuronal networks
and brain systems, where the phenomenon of chimeralike
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behavior (i.e., the behavior possessing multiple dynamical
modes) rather than the symmetry breaking is the focus of
exploration. In fact, the mechanism of the chimeralike be-
haviors beyond the spontaneous symmetry-breaking is still a
nontrivial issue because the potential applications of chimera-
like behaviors in these living systems are related to many vital
physiological processes, such as the unihemispheric sleep of
some marine mammals [34], the first-night effect in human
sleep [35], and epileptic seizures [36]. Consequently, stud-
ies of chimeralike behaviors in these vital complex systems
beyond perfectly symmetric structures and the corresponding
mechanisms have now become a central topic in the interdis-
ciplinary field of neuroscience and life science [37–41].

Until now, as we know, almost all studies on the issue of
chimeralike behaviors in this field have been focused on sys-
tems with oscillatory local dynamics, such as the FHN model
in the oscillatory parameter region, the Hodgkin-Huxley (HH)
neuron with persistent spiking behavior, and the Hindmarsh-
Rose neuron with bursting dynamics. Very little attention
on chimeralike dynamics has been paid to systems with
nonoscillatory local dynamics. It is important to investigate
whether similar chimeralike oscillation modes (CLOMs, i.e.,
the oscillations possessing multiple dynamical modes) can
self-organize to emerge in complex systems consisting of
nonoscillatory excitable units. We have revealed in previous
works that, for most homogeneous excitable complex net-
works, such as ER random networks, homogeneous random
networks, and small-world networks, the system possesses
the typical normal oscillation mode (NOM), i.e., only a sin-
gle dynamical mode, and the Winfree loop is revealed as
the source in maintaining this type of oscillation mode. The
CLOM has never been found in these homogeneous systems.
For heterogeneous networks, such as excitable scale-free net-
works (ESFNs), both hubs with extraordinarily high degrees
and nodes with very low degrees can coexist. This topology
heterogeneity of scale-free networks implies a chance to find
the oscillations with multiple dynamical modes. So it is valu-
able to study whether CLOMs can self-organize to emerge
in excitable complex networks with topological heterogeneity
and the mechanism for this kind of oscillation mode.

In this paper, we propose a topological mechanism giving
rise to the CLOM in networks of excitable cells. By exploring
the ESFN dynamics, we reveal that the topology heterogeneity
of the network plays a key role in forming and maintaining the
coexistence of coherent and incoherent motions.

The remainder is organized as follows. The mathematical
model and the order parameters are introduced in Sec. II.
Section III reports our observation of the emergence of
the CLOMs in the ESFNs. In Sec. IV, the corresponding
mechanism is discussed in detail. Section V proposes an
effective-driving approach to theoretically analyze the emer-
gence of the CLOMs in excitable systems. We give the
conclusion in the last section.

II. MATHEMATICAL MODEL AND ORDER PARAMETERS

Let us construct the ESFN dynamics by adopting the Bär-
Eiswirth model [42] as the representative excitable dynamics
on nodes. In fact, the following discussions and the revealed
mechanism in this paper can be naturally realized in excitable

networks with other node dynamics. The evolution of the
considered ESFN is governed by the following equations:

dui

dt
= 1

ε
ui(1 − ui )

(
ui − vi + b

a

)
+ D

N∑
j=1

Ai, j (u j − ui ),

(1)

dvi

dt
= f (ui ) − vi. (2)

In Eqs. (1) and (2), the subscripts i, j (i, j = 1, 2, . . . , N)
label the nodes in the network, where N is the size of the
system. Variables u and v are, respectively, the activation and
the recovery variables of the local cell that can imitate the
membrane potential and the recovery current of neuronal dy-
namics. Symbol f (u) represents a piecewise function and fol-
lows the form f (u) = 0 for u < 1

3 , f (u) = 1 − 6.75u(u − 1)2

for 1
3 � u � 1, and f (u) = 1 for u > 1. The three dimension-

less parameters a, b, and ε are the characteristic quantities of
the Bär-Eiswirth model that can effectively regulate the local
dynamics.

The influence of the network structure is described by the
diffusion coupling term D

∑N
j=1 Ai, j (u j − ui ), where D is the

coupling strength. Ai, j is the adjacency matrix element be-
tween any pair of cells (i, j), which is defined as Ai, j = Aj,i =
1 if there is an edge linking cells i and j, and Ai, j = Aj,i = 0
otherwise. The scale-free network in this paper is constructed
according to the Barabási-Albert procedure with the charac-
teristic parameters m0 and m, where m0 indicates the initial
number of cells in the network and m represents the number of
edges of the new added cell at each time step [43]. According
to the property of the scale-free structure, the average degree
can be calculated as 〈k〉 = lim

N→∞
2[C0+m(N−m0 )]

N ≈ 2m, with C0

being the number of edges of the m0 initial cells. This means
that the average degree of a node in a scale-free network
approximatively equals to 2m. More importantly, the links of
an ordinary cell are largely connected to the hubs. In the fol-
lowing, we fix node dynamics in the excitable regime by fixing
parameters as a = 0.84, b = 0.07, ε = 0.04, and the coupling
strength D = 0.45. The scale-free network parameters are set
as m0 = 2 and m = 2. Initial values of {ui(t = 0), vi(t = 0)}
(i = 1, 2, . . . , N) are randomly given between 0 and 1.

To characterize the coherence and incoherent parts of the
CLOM, one first introduces the local order parameter Zi to
measure the local phase ordering of the cells as [44]

Zi =
∣∣∣∣∣∣

1

ki

N∑
j=1

Ai, je
√−1� j

∣∣∣∣∣∣, i = 1, 2, . . . , N. (3)

Here ki is the degree of the ith cell, and � j is the instanta-
neous phase of the jth unit that can be measured as � j =
arctan(v j/u j ). For the coherence domain, the local order pa-
rameter Zi ≈ 1, while Zi < 1 indicates the incoherent part.
To further testify the frequency coherence, the mean phase
velocity ωi is introduced as the long-time average of the phase
velocity of each cell, i.e.,

ωi = 2πMi

�T
, i = 1, 2, . . . , N. (4)

013006-2



CHIMERALIKE OSCILLATION MODES IN EXCITABLE … PHYSICAL REVIEW RESEARCH 5, 013006 (2023)

FIG. 1. (a) A typical excitable scale-free network (ESFN) with
N = 200 cells. The parameters are fixed as a = 0.84, b = 0.07,
ε = 0.04, D = 0.45, m0 = 2, and m = 2. The three pink nodes i = 1,
2, 3 denote the hubs in the network. (b) The chimeralike oscillation
mode (CLOM) pattern realized in the ESFN of (a) with a suitable
set of initial values. (c), (d) The corresponding local order param-
eter Zi [(c)] and the mean phase velocity profile {ωi} [(d)] of the
CLOM (b).

In Eq. (4), �T is a sufficiently long sampling time interval and
Mi denotes the number of excitations of the ith cell during
this time interval. The emergence of CLOM in an excitable
network can also be implied by the existence of several bands
in the frequency profile, while a unique band of {ωi} indicates
a global coherence and furthermore a NOM.

III. CLOMS EMERGING IN THE ESFNS

A typical ESFN with N = 200 nodes is constructed and
shown in Fig. 1(a). Three hubs labeled by i = 1, 2, and 3 in the
network are indicated by pink circles. Topology heterogeneity
is the unique attribute of a scale-free network. Starting from
random initial conditions, different oscillation patterns can be
observed. Figure 1(b) exhibits a typical spatiotemporal pattern
of sustained oscillation emerging in the ESFN of Fig. 1(a). It is
shown that the global dynamics of the network consists of two
distinct dynamical modes, where some cells execute coherent
synchronous firings (illustrated by the evident lines), while
the others perform incoherent non-synchronous oscillations
(denoted by the messy dots). One can further observe the
spatial profiles of the local order parameter Zi and the mean
phase velocity {ωi}, as shown in Figs. 1(c) and 1(d), respec-
tively. Both order parameters exhibit multiple spatiotemporal
behaviors of the cells, indicating that the oscillation pattern
shown in Fig. 1(b) is a CLOM consisting of both coherent and
incoherent parts.

It is important to study the key factors that can deter-
mine the emergence of CLOMs in ESFNs. As we know,
network structure is a determinant in deciding the spatiotem-
poral dynamics of system. In addition, other factors need to
be discussed. Here we use the network shown in Fig. 1(a)
as our example to carry out this issue preliminarily. We first
test the impact of random initial conditions on the emergence
of CLOMs. Within M = 104 samples, 24.51% CLOMs have
been observed in the given ESFN. Furthermore, the influence
of coupling strength D is also studied. For each D, M = 104

samples are also performed. It is found that this kind of
CLOM can emerge in a broad parameter region of coupling
strength (i.e., 0.25 � D � 0.70). Importantly, as D is increased
in this region, the emergent probability of CLOMs first in-
creases and then decreases, implying that an optimal coupling
strength (around D ≈ 0.55) may facilitate the emergence of
CLOMs in the ESFN.

As we have stated above, the key factor in the formation
of chimeras is largely related to the mechanism of a rotational
coupling scheme. However, in the case of the CLOM revealed
in Fig. 1, one didn’t introduce this kind of coupling. This im-
plies that the rotational coupling scheme is not the mechanism
in forming the CLOM in our case. We also tested the possibil-
ity of parameter-induced CLOMs by adjusting the parameters
of node dynamics and coupling strength. Numerical results
indicate that the emergence of the CLOM is robust. Moreover,
in the absence of rotational coupling scheme, this kind of
CLOM cannot emerge in homogeneous networks, such as
ER random networks, homogeneous random networks, and
small-world networks. Therefore, the CLOM in the ESFN
implies a unique mechanism of the topology heterogeneity
giving rise to this kind of oscillation mode in scale-free
networks.

To reveal the mechanism of the CLOM in the ESFN, it is
more tractable to perform a topology reduction of the network
by discarding the minor cells in Fig. 1(a) to get a minimal
network that preserves the CLOM. The principle of this re-
duction is that the CLOM should be preserved on a minimal
structure and any redundant cells and their corresponding
links should be removed as many as possible. By starting from
discarding different initial nodes, this reduction scheme may
lead to different minimal networks. Figures 2(a)–2(d) present
two typical examples. Two reduced minimal networks are,
respectively, displayed in Figs. 2(a) and 2(c), with both con-
taining a unique hub and other remaining nodes. Figures 2(b)
and 2(d) give the corresponding spatiotemporal patterns ob-
served on these two minimal structures, where one starts from
the network structure shown in Fig. 1(a) and the oscillation
mode displayed in Fig. 1(b) and switches to the minimal
network at t = 200. Similar CLOMs to that in Fig. 1(b) can
be observed, where the black regions represent the rest state
of the discarded cells.

Here we use the case shown in Figs. 2(c) and 2(d) for
subsequent discussions, where the minimal scale-free network
contains a unique hub and 52 ordinary cells, among which
four typical nodes are highlighted by other colours, i.e., the
pink hub i = 3, the blue and green neighbours of hub i = 66
and 75, and the orange hub-distant cell i = 89. Figure 2(e)
displays the corresponding mean phase velocity profile {ωi} of
the CLOM shown in Fig. 2(d). Two distinct frequency bands
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FIG. 2. (a) An example of the minimal network structure with scale-free property containing the unique hub node i = 1 that preserves the
CLOM by discarding the minor nodes from the original ESFN in Fig. 1(a). (b) The corresponding CLOM pattern preserved on the minimal
structure of (a). The reduction is implemented at t = 200, which is denoted by the light grey dashed line. The black regions in (b) represent the
rest state of the discarded cells. (c), (d) The similar minimal scale-free network with the unique hub node i = 3 [(c)] and the CLOM pattern
[(d)] as (a) and (b). Four typical cells i = 3, 66, 75, 89 in (c) are highlighted by other colours. (e), (f) The mean phase velocity profile {ωi} [(e)]
and the time series of the four highlighted cells [(f)] of the CLOM (d).

can be clearly found, where the constant basic frequency
band corresponds to the synchronous coherent part, while the
scattered dots around the doubling frequency denote the non-
synchronous incoherent part. The details of the coherent and
incoherent dynamics are further shown in Fig. 2(f) by plotting
the time series of the highlighted cells in Fig. 2(c). It is shown
that the coherent synchronous cells i = 3 and 66 excite once in
an oscillation period, whereas the incoherent nonsynchronous
ones i = 75 and 89 can inspire twice. Therefore, a two-mode
dynamics with a basic and a doubled frequency is identified
on the minimal scale-free topology, which forms the CLOM
in the ESFN.

The above discussions indicate that to maintain the CLOM
in an excitable network, a minimal network should still
possess the topology heterogeneity property. This strongly
implies the key role of topology heterogeneity intrinsically
rooted in scale-free networks as the mechanism resulting in
CLOMs in ESFNs. Moreover, the reduced minimal heteroge-
neous network provides a convenient platform in excavating
the mechanism of this topological-heterogeneity induced
CLOM. In the following, we will use the examples revealed in
Figs. 2(c) and 2(d) to further discuss in detail how this topo-
logical mechanism leads to a coexisting coherent-inherent
CLOM.

IV. TOPOLOGICAL MECHANISM
OF THE CLOM IN THE ESFN

Because an individual excitable node is dynamically
nonoscillatory, a sustained-oscillatory mode as well as the
CLOM emerging in the ESFN should originate from topologi-
cal mechanism of the network. Here we use the DPAD method
to explore this issue. The DPAD approach was put forward to
expose the mechanism of the persistently oscillatory behav-
iors in complex networks consisting of nonoscillatory nodes.
The central idea and the detailed implementation procedure of
the DPAD method have been proposed in our previous contri-
bution [15]. It should be noted that, for the regular oscillation
with a single dynamical mode, there only exists a unique
DPAD pattern. However, for the CLOM with two spatially
distinct dynamical modes, there will be a dynamic alternation
between multiple DPAD patterns because of the nonstationary
and irregular dynamical property of the incoherent motion.
Furthermore, to explicitly reveal the key factor of topology
heterogeneity responsible for the formation of the CLOM in
the ESFN, all the phase-advanced drivings (PADs) of the hub
node should be taken into account, while for other ordinary
cells, one needs only to plot the corresponding unique DPAD.

Figure 3(a) displays the improved DPAD pattern of the
CLOM before the hub node i = 3 is excited. It can be clearly
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FIG. 3. (a), (b) The improved dominant phase-advanced driving (DPAD) patterns of the CLOM of Fig. 2(d) obtained before [(a)] and after
[(b)] the hub node i = 3 is excited. In panel (b), the blue nodes represent the synchronous coherent part, the grey cells indicate the positions
where the hub-reflected waves collide with an opposite wave from other paths, and the purple ones are the neighbors of the hub with antiphased
oscillation. (c) The time series of the hub node i = 3 and one of its antiphased neighbor cells i = 155. (d) The evolution of the phase differences
between the hub node i = 3 and its three typical neighbors i = 66, 75, and 155, which are defined as �φi = φ3 − φi (i = 66, 75, and 155). The
light grey dashed rectangles in (c) and (d) denote the period in which the hub is in the rest state prior to the next stimulation.

found that the hub receives the excitable waves propagated
from all its neighbor nodes (denoted by the pink arrowed
lines) in this stage. Under the coherent stimulations from
these upstream driving neighbors, the hub can perform a
suprathreshold excitation. On the other hand, Fig. 3(b) ex-
hibits a completely different improved DPAD pattern after the
hub node is aroused. It is shown that the excitable waves now
propagate from the hub to its neighbor nodes and then the
entire network as the hub experiences a firing (also demon-
strated by the pink arrowed lines). Therefore, the hub behaves
as a mirror to reflect the excitable waves. Some of these
reflected outward waves arouse incoherent nonsynchronous
cells (indicated by the red circles), while the others inspire

the downstream coherent synchronous ones (marked by the
blue circles). The grey cells indicate the positions where the
hub-reflected waves collide with an opposite wave from other
paths.

In addition, the two nodes i = 150 and 155 labeled in
purple can also be observed, which are the neighbor cells of
the hub with antiphased oscillation. Here we use the neighbor
i = 155 to further explain the key factor of these anti-phased
cells in sustaining the CLOM. Fig. 3(c) shows the time series
of the hub node i = 3 and the neighbor cell i = 155. By
comparing with that of the other neighbors, such as the blue
neighbor i = 66 and the green neighbor i = 75 displayed in
Fig. 2(f), the purple neighbor i = 155 can undergo an extra
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excitation during the rest state of the hub, which is denoted
by the light grey dashed rectangle. This means that, during
the rest period of the hub prior to the next stimulation, the
neighbor cell i = 155 can execute an antiphased oscillation
and sustain the system. To explore the phase relation between
the hub and its neighbors explicitly, the evolutions of the phase
differences between the hub node i = 3 and its three typical
neighbors (i.e., the cells i = 66, 75, and 155) are exhibited
in Fig. 3(d). It is shown clearly that, during the rest period
of the hub, only the purple neighbor i = 155 is antiphased
(also indicated by the light grey dashed rectangle). Due to
the existence of these few antiphased cells in the incoherent
part, several hub-reflected waves can survive in the process
of wave collisions, and can propagate back from all around
to intrigue the hub again as Fig. 3(a). The combination of the
hub and these antiphased neighbors provides a deterministic
mechanism in sustaining the nonsynchronous oscillation.

The above two distinct excitation processes exposed in
Fig. 3 also lead to an interesting consequence that the inco-
herent nonsynchronous cells can be stimulated twice in one
period, while the coherent synchronous nodes experience only
one fire. This well interprets the coexistence of two distinct
dynamical modes in one system shown in Figs. 2(e) and 2(f),
which forms the CLOM in the ESFN.

It is necessary to reflect on the studies of sustained oscil-
lation in excitable networks and make a comparison of the
present mechanism with previous explorations. The hetero-
geneity property in networks usually prevents the sustained
oscillatory dynamics and wave propagation. Therefore, this
mechanism in sustaining the CLOM in excitable complex
networks is completely different from the traditional peri-
odic oscillation mechanism in excitable networks discussed
before [15], where the Winfree loop serves as the source in
maintaining the NOM with a single dynamical behavior. This
explains why this kind of CLOM can not be observed in
homogeneous excitable networks.

It is important to study the robustness of this topological-
heterogeneity induced CLOM in the ESFNs. To test this, we
further modify the network topology by discarding one of
the upstream driving neighbors, e.g., the green cell i = 75,
from the minimal network Fig. 2(c). This operation is im-
plemented at t = 1000, which is indicated by the light grey
dashed lines in Figs. 4(a) and 4(b), where the spatiotemporal
pattern and the time series of the other three highlighted cells
are, respectively, displayed. The black regions in the pattern
denote the rest state of the discarded cells. It is clearly shown
that, as one of the upstream driving neighbors is deleted, the
suprathreshold excitation of the hub will stop. This can be
clearly seen from the disappearance of the red-lined firings
in the spatiotemporal pattern of Fig. 4(a) and the dynamical
transitions of u3 and u66 from the suprathreshold excitation
to the subthreshold vibration shown in Fig. 4(b). Although
the oscillation of the network still persists, the hub-intrigued
large-amplitude firings of the original downstream coherent
synchronous cells are suppressed immediately. Furthermore
the dynamical behaviors of those nonsynchronous cells are
also modulated [see the orange trajectory of u89 in Fig. 4(b)],
from the period-2 excitation to the regular period-1 excitation.

Figure 4(c) displays the mean phase velocity profile {ωi}
corresponding to Fig. 4(a). By comparing this profile with

FIG. 4. (a), (b) The spatiotemporal evolution pattern [(a)] and
the time series of the other three highlighted cells [(b)] as the green
upstream driving neighbor i = 75 of the hub is discarded from the
minimal scale-free structure of Fig. 2(c). This option is implemented
at t = 1000, which is denoted by the light grey dashed line. The
CLOM of Fig. 2(d) is reduced to the traditional normal oscillation
mode (NOM) with a single dynamical behavior. (c), (d) The mean
phase velocity profile {ωi} [(c)] and the unique DPAD pattern [(d)]
of this NOM.

that shown in Fig. 2(e), the two-band frequency distribution
merges into a unique frequency band. This further confirms
that, as the excitations received by the hub from the upstream
driving neighbors are weakened by deleting an upstream node,
the topological-heterogeneity induced CLOM in the ESFN is
reduced to the traditional NOM with a single dynamical mode.
Figure 4(d) presents the DPAD pattern of this NOM, which
possesses a Winfree loop (labeled by the pink ring) as the
source maintaining the oscillation. This is in sharp contrast to
the doubly switched DPAD patterns of the CLOM in Figs. 3(a)
and 3(b). The above discussions reveal that the PADs of hub
(called the resultant drive in the following) from the upstream
driving neighbors need to accumulate to a critical threshold,
beyond which the hub can implement a suprathreshold exci-
tation to intrigue the downstream coherent synchronous part.
This incorporates with the topology heterogeneity to form the
CLOM in the ESFN.

V. THE EFFECTIVE-DRIVING APPROACH

To understand how the accumulated drive received by the
hub facilitates the formation of the CLOM in the ESFN and
to expose the corresponding critical drive, an analysis that is
independent of specific network structures is necessary. The
above discussions indicate that all the coherent synchronous
cells in the ESFN are connected directly to the hubs, and
those cells in the CLOMs are also excited by these hubs, i.e.,
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become the downstream nodes of the hubs. This is exactly
caused by the topology heterogeneity of scale-free networks
and, importantly, is the mechanism in forming the CLOM in
the ESFN. This inspires us to consider the following empirical
model consisting of a downstream synchronous cell (DSC)
connecting with kDSC hubs. A schematic diagram of this
model is illustrated in Fig. 5(a), where each hub receives an
independent effective resultant drive that equivalently presents
the accumulative PADs from its upstream driving neighbors in
real networks. The dynamical equations of the activation vari-
ables of the DSC uDSC and the ith hub uhub

i can be written as

duDSC

dt
= 1

ε
uDSC(1 − uDSC)

(
uDSC − vDSC + b

a

)

+ D

⎛
⎝kDSC∑

i=1

uhub
i − kDSCuDSC

⎞
⎠, (5)

duhub
i

dt
= 1

ε
uhub

i

(
1 − uhub

i

)(
uhub

i − vhub
i + b

a

)

+ D
(
Fi − khub

i uhub
i

)
. (6)

Here the subscript i = 1, 2, . . . , kDSC labels the ith hub, and
the time-dependent term Fi(t ) implies the equivalent resultant

drive received by the ith hub. kDSC and khub
i , respectively,

represent the degrees of the DSC and the ith hub. The
corresponding recovery variables vDSC and vhub

i still follow
Eq. (2).

The key point of the simplified model Eqs. (5) and (6) can
be understood as follows. Suppose a hub receives an equiva-
lent resultant drive from its upstream driving neighbors—this
will change its dynamical behavior. As long as the resul-
tant drive surpasses a critical value, the hub will be excited.
This will consequently stimulate its downstream cells to ex-
perience a coherent and synchronous firing. By combining
with the incoherent nonsynchronous oscillations, a coexisting
coherent-incoherent CLOM will eventually emerge in the net-
work. This indicates that the transition to the suprathreshold
excitation of the hub and its critical threshold is the key point.
Based on Eqs. (5) and (6), we can conveniently unfold this
issue by effectively working out the necessary condition for
the emergence of the CLOM in the network according to the
resultant drive. Most importantly, this analysis is irrelevent of
network topology and applicable to various types of networks.

Enlightened by the features of resultant drives received by
hubs in networks, one empirically constructs the following
effective driving Fi(t ) to mimic the resultant drive received
by the ith hub:

Fi(t ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1
3 F max

i − f 0
i

)
sin

[
2π 5

4T t
] + f 0

i

(
0 � t � 1

3 Ti
)

(
2
3 F max

i − f 1
i

)
sin

[
2π 5

4T

(
t − 1

3 Ti
)] + f 1

i

(
1
3 Ti < t � 2

3 Ti
)

(
F max

i − f 2
i

)
sin

[
2π 5

4T

(
t − 2

3 Ti
)] + f 2

i

(
2
3 Ti < t � Ti

)
0 t > Ti,

(7)

where

f 1
i = Fi

(
1

3
Ti

)
and f 2

i = Fi

(
2

3
Ti

)
. (8)

In Eq. (7), the baseline f 0
i , the amplitude F max

i , and the du-
ration Ti are three key control parameters that can determine

FIG. 5. (a) The schematic diagram of the effective-driving ap-
proach, which consists of a downstream synchronous cell (DSC)
connecting with kDSC hubs. Each hub receives an independent re-
sultant drive Fi(t ) representing the accumulative PADs from its
upstream driving neighbors in real networks. (b) The time series of
the resultant drive Fi(t ) for f 0

i = 1.0, F max
i = 20, and Ti = 70.

the form of function Fi(t ), which can effectively mimic di-
verse resultant drives received by hubs in practice. Figure 5(b)
presents the time series of the resultant drive Fi(t ) for f 0

i =
1.0, F max

i = 20 and Ti = 70. In the following, we will focus on
how these vital parameters impact the excitation of the DSC,
and give the critical threshold for the formation of the CLOM.

Let us reveal the predictable parameter regions of CLOM
by analyzing Eqs. (5) and (6) for different network param-
eters and diverse forms of the resultant drives. The results
are presented in Fig. 6 as phase diagrams in the (Ti, F max

i )
plane for different situations. The white regions denote the
parameters (Ti, F max

i ) where the DSC can be excited and the
CLOM can form in an excitable complex network. In the grey
region, the DSC fails to be excited, and only an incoherent
NOM emerges.

Figures 6(a)–6(c) present the phase diagrams for only one
hub in the network with degrees khub

1 = 25 [Fig. 6(a)], khub
1 =

50 [Fig. 6(b)], khub
1 = 75 [Fig. 6(c)], and kDSC = 1, f 0

1 = 0.
This case is similar to the two reduced minimal network
topologies shown in Figs. 2(a) and 2(c). It can be found that
as the degree of the hub increases, the white firing regions
as well as the CLOM domains shrink dramatically, i.e., a
larger amplitude and longer duration of the resultant drive are
needed to form the CLOM. This means that a higher degree of
topology heterogeneity is adverse to the formation of CLOM
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FIG. 6. The phase diagrams in the (Ti, F max
i ) plane for different situations. Each phase plane is split by the black dash boundary

into two distinct parameter domains, i.e., the CLOM regions (white) and the NOM regions (grey). (a)–(c) For different hub degrees
khub

1 = 25 [(a)], khub
1 = 50 [(b)], khub

1 = 75 [(c)], with kDSC = 1 and f 0
1 = 0. (d)–(f) For different DSC degrees kDSC = 1 [(d)], kDSC = 5 [(e)],

kDSC = 8 [(f)], with khub
i = 50 and f 0

i = 0.

in the network. Figures 6(d)–6(f) exhibit the influence of the
degree of DSC for kDSC = 1 [Fig. 6(d)], kDSC = 5 [Fig. 6(e)]
and kDSC = 8 [Fig. 6(f)] with kubhub

i = 50 and f 0
i = 0, where

the CLOM regime first increases and then decreases with
increasing kDSC, implying an optimal kDSC that facilitates the
emergence of CLOMs, i.e., a moderate number of hubs in
a network is helpful to the formation of the CLOMs in the
ESFN.

Now let us test the validity of this effective-driving ap-
proach by analyzing the above several cases. For the minimal
scale-free network of Fig. 2(c), the topology parameters in
the effective-driving method are kDSC = 1 and khub

1 = 27.
Figure 7(a) displays the time series of the effective resultant
drive received by the hub node i = 3. It is shown that F1(t )
oscillates periodically in a wide range. The baseline f 0

1 and
the amplitude F max

1 are, respectively, given as the minimum
(denoted by blue circle) and the maximum (indicated by green
square) values of F1(t ) before the DSC fires in one oscil-
lation period. Moreover, based on the driving function F (t )
in Eq. (7), the duration can be approximatively identified as
T1 = 15

13 ∗ (t2 − t1), where F1(t1) = f 0
1 and F1(t2) = F max

1 . In
Fig. 7(b), we plot the phase diagram (T1, F max

1 ) by adopt-
ing these parameters and label the values of T1 ≈ 10.06 and
F max

1 ≈ 4.94 by using the red cross. The present case clearly
shows that the actual resultant drive F1(t ) received by the hub
is located in the white firing region, indicating that the CLOM
can emerge in the network shown in Fig. 2(c).

A similar test can also be carried out for the case given
in Fig. 4. The time series of the effective resultant drive
and the CLOM regions by discarding the upstream driving
neighbor i = 75 at t = 1000 (see the grey dashed line) are,
respectively, displayed in Figs. 7(c) and 7(d). It is shown that
the driving F1(t ) changes dramatically as cell i = 75 is deleted
and falls into the grey domain [see the red cross (T1, F max

1 ) ≈
(6.32, 3.67)]. This means that as one of the upstream driving
neighbors of the hub is eliminated, the new PADs now cannot
surpass the critical threshold to excite the DSC. As a result,
the original CLOM degenerates and the system evolves to a
NOM, which agrees with the results shown in Fig. 4.

Let us further try to analyze the original scale-free net-
work with multiple hubs shown in Fig. 1, for which the
DSC is connected to kDSC = 2 hubs with degrees khub

1 = 93
and khub

2 = 133. The resultant drives received by these two
hubs are also different and displayed by the pink [F1(t )]
and purple [F2(t )] curves in Fig. 7(e), respectively. In this
case, we use F (t ) = F1(t ) + F2(t ) (red curve) to select the
moments t1 and t2 for the minimum and the maximum values
of F (t ) before the DSC fires in one period [F1,2(t1) = f 0

1,2 and
F1,2(t2) = F max

1,2 ]. Figure 7(f) exposes the CLOM domains in
the (F max

1 , F max
2 ) parameter plane. The actual resultant drives

received by these two hubs in the original ESFN of Fig. 1 are
(F max

1 , F max
2 ) ≈ (13.33, 16.83) (see the red cross), which falls

in the white firing region. This confirms the emergence of the
CLOM in the ESFN of Fig. 1.

013006-8



CHIMERALIKE OSCILLATION MODES IN EXCITABLE … PHYSICAL REVIEW RESEARCH 5, 013006 (2023)

FIG. 7. The time series of the effective resultant drives received by the hubs [(a), (c), (e)] and the corresponding CLOM (white) and NOM
regions (grey) [(b), (d), (f)] for the three real cases illustrated in the present paper. (a), (b) For the CLOM on the minimal scale-free structure
of Figs. 2(c) and 2(d). (c), (d) For the NOM of Fig. 4. (e), (f) For the CLOM in the original ESFN of Fig. 1. The red crosses in panels (b), (d),
(f) represent the actual resultant drives received by the hubs in these three cases.

The above examples strongly support the validity and ap-
plicability of the effective-driving approach we proposed here.
The present empirical method cannot only judge whether the
CLOM may emerge in excitable complex networks but also
predict the critical threshold for the formation of the CLOM.

VI. CONCLUSION

To summarize, in this paper, CLOM dynamics in the
ESFNs without rotational coupling scheme is reported. It is
found that CLOMs can emerge as a coexistence of coherent
synchronous firings and incoherent nonsynchronous oscilla-
tions. To explore the mechanism of this kind of CLOM, we
propose a topology-reduction scheme to simplify the network
to a minimal structure containing a unique hub by preserv-
ing the CLOMs with coexisting coherent and incoherent
segments. Specifically, the coherent cells on the minimal net-
work can execute synchronous firings with a basic frequency,
while the incoherent ones perform nonsynchronous oscilla-
tions around the doubling frequency. In terms of the extended
DPAD method, the mechanism of the emergence of CLOM
in the ESFN is discussed in detail, by which the topology
heterogeneity is revealed as the mechanism in forming and
maintaining the CLOM. The hub acts not only as a mirror
to reflect the waves exciting the incoherent part to sustain
the nonsynchronous oscillations permanently but also as the
source to intrigue the downstream synchronous coherent part
firings to form the CLOM in the ESFN.

The topological mechanism presented in this paper is a
unique mechanism in forming the CLOM in excitable com-
plex networks. This can help us understand competitions
and self-organizations of NOM and CLOM in excitable sys-
tems with topological homogeneity and heterogeneity. As
a comparison, our extensive explorations indicate that the
CLOMs cannot emerge in homogeneous networks such as
ER random networks, homogeneous random networks, and
small-world networks. Topological heterogeneity is the indis-
pensible ingredient in supporting the coexistence of coherence
and incoherence.

An effective-driving approach is proposed to theoretically
analyze the CLOM in excitable complex networks, which
consists of a DSC connecting with kDSC hubs. An empiri-
cal drive function F (t ) is proposed to mimic the effective
resultant drive received by the hub, which is equivalent to
the PADs from the corresponding upstream driving neighbors
in real networks. Based on this analysis method, one can-
not only judge whether the CLOM may emerge in excitable
complex networks but also predict the critical threshold for
the formation of the CLOM. More importantly, this effective-
driving approach is irrelevant of network topology and can
be applied to various types of networks. The coincidence of
the theoretical predictions and the numerical results in real
cases with different situations further confirms the validity and
applicability of the analysis we proposed here.

Recently, more and more human neuroimaging data ob-
tained from structural magnetic resonance imaging, functional
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magnetic resonance imaging, electroencephalography, and
magnetoencephalography confirmed that the structural and
functional brain networks usually have community features,
small-world properties, and heavy-tailed degree distribu-
tions [45–49]. This kind of organization in brain networks
is the result of the economic principle of cost-efficiency
trade-off between the physical cost of the network and the
information integration among whole brain system [50]. Con-
sidering the network wiring-cost premium, brain networks
tend to organize community (module) structures to perform
specific functions. To achieve global information integration
of functionally specialized brain regions located far apart
from each other in anatomical space, localized communi-
ties (modules) are topologically organized by long-distance
axonal projections, which does exhibit the small-world prop-
erty. To significantly improve the integration efficiency, i.e.,
achieving the high global efficiency of information transfer
across the whole brain network, long-distance connections
between spatially remote functional communities (modules)
preferentially link to the regions with large degrees. This
forms hub regions in brain networks, such as parts of medial
parietal cortex, cingulate cortex, and superior frontal cortex.

More importantly, these hub regions are often the parts of a
multimodal association cortex.

In this paper, we systematically investigated the CLOMs
emerging in ESFNs and exposed the determinant of topol-
ogy heterogeneity (i.e., the hubs) in forming the CLOM.
As we know, the CLOM, as one of the most important
rhythm modes, can self-organize to emerge in brains with
different scales. It is functionally related to some vital
physiological processes in human beings, such as the first-
night effect and epileptic seizures, for typical examples. The
topological-heterogeneity induced CLOMs presented in this
paper may shed light on a deep comprehension of these amaz-
ing modes in the highly complex and heterogeneous brain
networks.
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