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Origins of scaling laws in microbial dynamics
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Analysis of high-resolution time series data from the human and mouse gut microbiomes revealed that
the gut microbial dynamics can be characterized by several simple scaling laws. It is still unknown if those
scaling laws are universal across different habitats, e.g., different body sites, host species, or even free-living
microbial communities. Moreover, the underlying mechanisms responsible for those scaling laws remain poorly
understood. Here, we demonstrate that those scaling laws are not unique to gut microbiome, but are universal
across different habitats, from human skin and oral microbiome to marine plankton bacteria and eukarya
communities. Moreover, we find that completely shuffled time series yield very similar scaling laws (up to
the change of some exponent values), which prompts us to conjecture that the universal scaling laws in various
microbiomes are largely driven by temporal stochasticity of the host or environmental factors. To quantify the
temporal stochasticity of those microbiome time series, we perform noise type analysis, finding that the noise
types for those time series are all dominated by white and pink noises, indicating their very weak temporal
structure and strong temporal stochasticity. Finally, we leverage a simple population dynamics model with both
deterministic interspecies interactions and stochastic noise to confirm our conjecture. In particular, we find that
the emergence of those scaling laws is jointly determined by interspecies interactions and linear multiplicative
noises. The presented results deepen our understanding of the nature of scaling laws in microbial dynamics.
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I. INTRODUCTION

Microorganisms grow and thrive in all habitats throughout
the biosphere [1–7]. Those microorganisms play a critical role
in maintaining the well-being of their hosts [8–12] or the
integrity of their environment [13–15]. Microbiome dysbiosis
can markedly affect the host’s health status [16–18] and is as-
sociated with many diseases [19–22]. Numerous studies have
demonstrated that microbiomes are considerably dynamic and
can be regulated by many host and environmental factors, i.e.,
diet, medication, and host lifestyle [23–27].

Interestingly, it has been found through comprehensive
analyses of high-resolution time series data that, despite in-
herent complexity, the dynamics of the human and mouse
gut microbiomes display several simple and robust scaling
laws [28]. This finding raises several fundamental questions.
Are those scaling laws unique for human and mouse gut
microbiomes or universal across different body sites and
host species, or even free-living microbiomes? What are the
underlying mechanisms responsible for those scaling laws?
Do those scaling laws represent the autoregressive or inter-
nal ecological dynamics of microbiome, or the dominating
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nonautoregressive dynamics of microbiota driven by external
environmental fluctuations?

To address those questions, we first analyzed high-
resolution microbiome time series data from different habi-
tats, finding that those scaling laws previously observed in
the human and mouse gut microbiomes actually are universal
across different habitats, regardless of being a host-associated
or free-living microbiome. Then, we completely shuffled
those time series and found very similar scaling laws (up to
the change of some exponent values). This finding prompts
us to conjecture that the universal scaling laws in various
microbiomes are largely driven by temporal stochasticity of
the host or environmental factors. To quantify the temporal
stochasticity, we performed noise type analysis and found
the noise types for those time series are all dominated by
white and pink noises, indicating their very weak structure
and strong stochasticity. Finally, we leveraged a population
dynamic model with both deterministic interspecies interac-
tions and stochastic noise, finding that the emergence of those
scaling laws is jointly determined by interspecies interactions
and linear multiplicative noises.

II. RESULT

A. High-resolution microbiome time series data analysis

1. Scaling laws in microbial dynamics

Let us consider a time series of microbial compositions
Xk (t ) of a particular habitat. Here, Xk (t ) represents the relative
abundance of taxon k, k=1, . . . , N , and t=1, . . . , T . Several
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TABLE I. Scaling laws in microbial dynamics. (1) μ is calculated by averaging μk (t ) ≡ log10 (Xk (t + 1)/Xk (t )) across all taxa and all
time points, and b is a scale parameter. (2) Xm(t ) ≡ 1

2 [log10 ((Xk (t + 1)) + log10 (Xk (t ))], r is the slope, and c is a constant. δμ is the standard
deviation of daily abundance change. (3) 〈δ2(�t )〉 is calculated by averaging δ2(�t ) across all taxa and all time points, δ(�t ) ≡ log10 (Xk (t +
�t )/Xk (t )), and H is the Hurst exponent. (4) Residence time tres (or return time tret) is the time interval during which a taxon was continuously
detected (or absent) from the community, respectively. The exponential tail e−λt results from the finite length of the analyzed time series, and
α is the power-law exponent. (5) X and σ 2

X are the mean and variance of taxon abundance, β is the power-law exponent. (6) k is the degree of
a taxon in the visibility graph.

Description Argument Function Scaling law

(1) Distribution of short-term abundance change μk (t ) P(μ) P(μ) = 1
2b exp(−|μ|

b )

(2) Variability of short-term abundance change Xm(t ) δμ δμ = rXm + c

(3) Long-term drift �t 〈δ2(�t )〉 〈δ2(�t )〉 ∝ �t2H

(4) Residence (return) time distribution tres (tret) P(t ) P(t ) ∝ t−αe−λt

(5) Taylor’s law X σ 2
X σ 2

X ∝ X β

(6) Degree distribution of the visibility graph k P(k) P(k) ∝ e−αk

scaling laws have been proposed to describe the dynamics
of human and mouse gut microbiomes, based on longitu-
dinal 16S rRNA gene sequencing data analysis [28] (see
Table I): (1) distribution of short-term abundance change;
(2) variability of short-term abundance change; (3) long-term
drift; (4) residence (return) time distribution; and (5) Taylor’s
law that relates the variances of species’ abundances to their
means.

Here we introduce a new scaling law: the degree distribu-
tion of the visibility graph associated with the time series of
microbiome data follows an exponential distribution: P(k) ∝
exp(−αk), or ln P(k) ∝ −αk, where k is the degree of a
taxon in the visibility graph. Transformed from time series,
visibility graphs allow us to study dynamical systems through
the characterization of their associated networks [29,30]. For
example, a periodic time series can be mapped into a regular
graph, a random time series can be mapped into an Erdős-
Rényi random graph with a Poisson degree distribution, and a
fractal time series can be mapped into a scale-free graph with
a power-law degree distribution.

2. Scaling laws are universal across different habitats

To check the universality of those scaling laws, we ana-
lyzed high-resolution time series data of various microbiomes,
from human gut [23], skin [25], and oral [25], to mouse
gut microbiome [31] and marine plankton bacteria and eu-
karya communities [32] (see Supplemental Material (SM)
[33] Fig. S1 for the stream plots of the various time series
and Table S1 for details of those datasets). As expected, the
compositions of those microbiomes are highly dynamic over
time. Then, we confirmed that the five previously reported
scaling laws [Table I, laws (1)–(5)] in the human and mouse
gut microbiomes can also be observed in human skin and
oral microbiome, as well as the marine bacteria and eukarya
communities (Fig. 1, columns 1–5, red solid dots). The same
is true for the new scaling law on the visibility graph degree
distribution (Fig. 1, column 6, red solid dots). Moreover, the
exponents of most scaling laws are quite close to what have
been discovered in the human and mouse gut microbiomes
(see SM Table S2 for exponent values obtained from the time
series of various microbiomes).

3. Randomly shuffled time series yield similar scaling laws

To understand the nature of those scaling laws, we intro-
duced a null model by randomly shuffling the time series to
destroy the temporal structure in the original time series. We
found that those scaling laws can still be observed up to the
change of some exponent values (Fig. 1, blue hollow dots).
For certain scaling laws (e.g., the power-law distributions of
tres and tret, and the exponential degree distribution of the
visibility graph), the shuffling will even keep the exponents
almost unchanged (Fig. 1, columns 4 and 6). As for Taylor’s
law, it will not be affected by the shuffling at all (Fig. 1,
column 5), which is trivial, because the shuffling does not
change the average and variance of taxa’s abundance over
time. In the original time-series data, the compositions of
any two closely collected samples tend to be more similar
to each other than samples collected with long intervals. The
shuffling will significantly eliminate this impact, rendering the
exponents in the scaling law of the long-term drift (Fig. 1,
column 3) much lower in the null model than in the original
time series (see SM Table S3 for exponent values obtained
from shuffled time series). Since completely shuffled time
series yield similar scaling laws (up to the change of some
exponent values), we conjecture that the universal scaling
laws in various microbiomes are largely driven by temporal
stochasticity of the host or environmental factors.

4. Noise-type profiling of microbiome time series

To examine the stochasticity in microbiome time series
data, and quantify their temporal structure, we computed
the noise-type profile [34] for each time series. Here, the
noise type of a taxon is obtained by decomposing its relative
abundance fluctuations into spectral densities at specific fre-
quencies using a Fourier transform. The log-log plot of the
slope in the spectral density vs frequency is used to distin-
guish black (below −2), brown (around −2), pink (around
−1), and white noise (no negative slope). The dependency on
previous time points is strongest for black noise and weakest
for pink noise, and is absent for white noise. We found that
the noise type is dominated by white and pink noises for all
microbiome time series analyzed in this study, indicating their
very weak temporal structure and strong temporal stochastic-
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FIG. 1. Scaling laws observed from the time series data of various microbiomes. Throughout this figure, solid (or hollow) dots represent
results obtained from the original (or shuffled) time series, respectively. Lines represent maximum likelihood estimation (MLE) fits to the data.
To control for known technical factors such as sample preparation and sequencing noise, here we adopted exactly the same taxa inclusion
criteria as used by Refs. [28,37]. Rows: (a) human gut; (b) human palm; (c) human tongue; (d) mouse gut; (e) marine plankton bacterial
community; and (f) marine plankton eukarya community. The columns represent those scaling laws as shown in Table I.

ity [Fig. 2(a), “Real”]. Note that the shuffled time series (our
null model) displays a much higher percentage of white noise,
indicating that the weak temporal structure in the original
time series has been further destroyed [Fig. 2(a), “Null”].
We emphasize that the noise type is robust against species
abundance thresholding. The noise type is still dominated by
white and pink noise for all the time series if we filter out
low-abundance taxa [Figs. 2(b) and 2(c)].

B. Simulations based on a simple population dynamic model
1. A stochastic population dynamics model

To reveal the origins of those scaling laws and check if
they are largely driven by temporal stochasticity of the host or

environmental factors, we follow macroecological approaches
[35,36] to studying scaling laws observed in various eco-
logical systems. In particular, we added a stochastic term
to the classical generalized Lotka-Volterra (GLV) population
dynamic model to incorporate external fluctuations, yielding
a set of stochastic differential equations [37]:

dxi(t ) = λi dt + rixi(t ) dt +
N∑

j=1

ai jxi(t )x j (t ) dt

+ xi(t )ηi dW (t ). (1)

Here, xi, λi, and ri represent the abundance, immigration rate,
and the intrinsic growth rate of species i, respectively. N
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(a)

(b)

(c)

FIG. 2. Noise-type profiles of time series data of various microbiomes. The bar plots depict for each microbiota time series the percentage
of OTUs with white, pink, brown, or black noise. White noise indicates the absence of temporal structure, all other noise types indicate the
presence of certain levels of temporal structure: the dependency on previous time points is the strongest for black noise, medium for brown
noise, and the weakest for pink noise. For the noise-type profile analysis, we interpolated the data with function “stineman” in the R package
stinepack [43] to ensure equidistant time intervals. Labels: “Real” represents the original time series, while “Null” represents the shuffled time
series. (a) All OTUs were used for noise type analysis. OTUs with average abundance over 10−5 (b) and 10−3 (c) were used for noise-type
analysis.

is the total number of species. The interspecies interaction
strengths are encoded in the matrix A = (ai j ) ∈ RN×N , where
ai j (i �= j) is the per capita effect of species j on the per capita
growth rate of species i, and aii represents the intraspecies
interactions. dW ∼ √

dtN (0, 1) is an infinitesimal element
of Brownian motion defined by a variance of dt . η is the noise
strength. Here we consider that the stochastic term represents
fluctuations of host or environmental factors, which translates
into fluctuations of the intrinsic growth rate ri. Therefore, this
term is proportional to xi. In other words, the stochastic term
represents linear multiplicative noise.

We drew the growth rate ri from a normal distribution
N (m, 1) to increase the heterogeneity, and the immigra-
tion rate was set to λ = 0 (see SM Fig. S3 for the
scaling laws generated with λ > 0). The diagonal ele-
ments of the interaction matrix A were set to be −1,
while the off-diagonal elements ai j were drawn from a
normal distribution N (0, σ ) with probability C and set
to be zero with probability (1 − C). Hence, C repre-
sents the connectivity of the underlying ecological network,
and σ represents the characteristic interspecies interaction
strength.
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FIG. 3. Scaling laws observed from simulated time series generated by the stochastic GLV model with various levels of noise magnitude (η)
and mean intrinsic growth rate (m). Lines represent maximum likelihood estimation (MLE) fits to the data. Rows: (1) η = 0.616, m = 1.142;
(2) η = 1.205, m = 1.142; (3) η = 0.616, m = 7.916; and (4) η = 1.205, m = 7.916. The columns represent those scaling laws as shown in
Table I. C = 1, σ = 0.1, and N = 100. Solid (or hollow) dots represent results obtained from the original (or shuffled) time series, respectively.

In all our simulations, we let the system evolve from a
random initial state [with species abundances drawn from a
uniform distribution U (0, N )] into the basin of a steady-state
attractor. Here we assume that the temporal variations of
species abundances are just reflecting fluctuations around a
particular fixed point (steady state) of the dynamical system.
This assumption is consistent with previous finding that the
human gut microbiome can be considered as a dynamically
stable ecosystem, continually buffeted by internal and external
forces and recovering back toward a conserved steady state
[23]. We assume this is a general picture of various micro-
biomes, regardless of being host associated or free living.

2. Key parameters determine the scaling laws

In our modeling framework, there are four key parameters:
(1) the network connectivity C; (2) the characteristic inter-
species interaction strength σ ; (3) the noise level η; and (4)
the mean intrinsic growth rate m.

We first considered the case of high network connectivity
and strong characteristic interaction strength: C = 1, σ = 0.1.
With this fixed pair of (C, σ ), we checked the impacts of η

and m on the various scaling laws (see SM Fig. S4 for the
stream plots of the corresponding time series). We found that
for lower m, the short-term abundance changes tend to follow
a Gaussian rather than Laplacian distribution (which has a
much longer tail than a Gaussian distribution) [Figs. 3(a1) and

3(b1)]. Also, both the distribution and variability of short-term
abundance changes [P(μ) and δμ] after time series shuffling
look quite different from those obtained from the original
time series [Figs. 3(a1), 3(b1), 3(a2), and 3(b2)]. For lower η

[Figs. 3(a1) and 3(c1], P(μ) at μ = 0 is much higher than the
case of higher η [Figs. 3(b1) and 3(d1)]. This can be explained
by the fact that, in the presence of weak noises (i.e., low η),
species abundance changes tend to be more deterministic than
in the case of strong noises (high η). Note that other scaling
laws are not largely affected by the noise level η. Interestingly,
with higher m and η, the stochastic GLV model can generate
time series that display all the six scaling laws [Fig. 3(d)] as
observed in the real microbiome time series (Fig. 1).

Among all the six scaling laws, P(μ) is the one that is
most sensitive to model parameters. Therefore, we next sys-
tematically checked the impacts of all the four parameters
(C, σ , η, and m) on P(μ). In particular, we tried nine pairs
of (C, σ ), covering low, intermediate, and high levels of net-
work connectivity and characteristic interaction strength. For
each pair of (C, σ ), we systematically tune η and m values.
For each parameter combination, we calculated 20 time se-
ries from independent stochastic GLV model instances. We
then calculated P(μ) from the time series and fitted the data
using both Laplacian and Gaussian distributions. We quanti-
fied the goodness of fit by the Akaike information criterion
(AIC), calculated based on the maximum likelihood estimate
(MLE). As shown in each panel [corresponding to a particular
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. The distribution of short-term abundance change, P(μ),
depends on the parameters η: the noise level; m: the mean of intrinsic
growth rate; σ : the characteristic interaction strength; C: the connec-
tivity of the ecological network. For each parameter combination,
we generated 20 independent time series data, then fit the data using
both Laplacian distribution and Gaussian distribution. The color rep-
resents the probability that the Akaike information criterion (AIC)
calculated based on the maximum likelihood estimate (MLE) fits
to the data using the Laplacian distribution is lower than that using
the Gaussian distribution over 20 independent time series data. Note
that the higher this probability, the better the Laplacian distribution
fits the data. The time step is dt = 0.01, total time T = 1000, and
the number of species is N = 100. The purple dots shown in panel
(c) correspond to the four (η, m) pairs (rows) demonstrated in Fig. 3.

(C, σ ) pair] of Fig. 4, the color represents the probability that
the AIC of the fitting with Laplacian distribution is lower
than that using Gaussian distribution over the 20 independent
time series’ data. The higher this probability the better the
Laplacian distribution fits the data.

In a sense, each panel of Fig. 4 can be regarded as an
(η, m) phase diagram, where P(μ) tends to behave like either
a Laplacian (in the yellow region) or a Gaussian distribution
(in the cyan region). We found that the shape of this (η, m)
phase diagram depends on the values of (C, σ ). When either
σ or C is low, the (η, m) phase diagram is dominated by
the “Gaussian phase.” In this case, only when the noise level
is very low, P(μ) will behave like a Laplacian distribution.
Interestingly, when both C and σ are high, the (η, m) phase
diagram will be dominated by the “Laplacian phase.” In this
case, only for very low mean intrinsic growth rate m, P(μ)
will behave like a Gaussian distribution.

Note that the emergence of a Gaussian distribution of
P(μ) for certain parameter settings is not a big surprise. Af-
ter all, the growth of microorganisms is affected by random

multiplicative processes [38,39]. If we generalize the defini-
tion of short-term abundance change as μk (t ) = log10 (Xk (t +
τ )/Xk (t )), where τ is the length of the “short term” [and when
τ = 1 this reduces to the original definition of μk (t )], the
(η, m) phase diagram will be dominated by the “Laplacian
phase” with increasing τ (see SM Fig. S5).

It has been reported before that interspecies interactions
can explain Taylor’s law for ecological time series [40]. As
the variance of species abundance is largely determined by
interspecies interactions, we confirmed that Taylor’s law can
be reproduced regardless of the detailed values of η and m for
any C > 0 and σ > 0 (see Fig. 3, column 5, for results with
C = 1 and σ = 0.1). But in the absence of interspecies in-
teractions (i.e., C = 0, σ = 0), we cannot reproduce Taylor’s
law as observed from real data. In particular, the difference
of different species’ mean abundance is very small, yielding a
very concentrated scatter plot of σ 2

X vs 〈X 〉 (see SM Fig. S6,
column 5). Note that in this case the Laplacian distribution
of short-term abundance change P(μ) cannot be reproduced
either. Also, the distributions of residence and return times,
P(tres) and P(tret ), look quite different from what we observed
from real data.

3. Impact of noise forms

We found that other types of noise terms, e.g., square-
root multiplicative noise [

√
xiηi dW (t )] cannot reproduce the

shape of Taylor’s law as observed in real data (see SM
Fig. S7). For linear multiplicative noise, the variations of
dominating species can be much higher than that of low-
abundance species. By contrast, for square-root multiplicative
noise, the variation difference between dominating and low-
abundance species will be much smaller, yielding a very
concentrated scatter plot of σ 2

X vs 〈X 〉 (see SM Fig. S7, col-
umn 5). We also examined the impact of measurement noise
[due to DNA sequencing, operational taxonomic unit (OTU)
pulling or sampling, etc.] to the scaling laws, finding that
those scaling laws can still be observed (up to the change of
some exponent values) in the presence of measurement noise
(see SM Figs. S8–S11). However, without the stochastic term
in the population dynamics model, i.e., the biological noise,
some scaling laws cannot be observed any more, regardless
of the intensity of the measurement noise (see SM Fig. S12).
These results suggest that the presence of biological noise
(instead of measurement noise) is crucial for the universal
scaling laws.

4. Neutral theory does not explain the scaling laws

To examine whether other ecological models can also re-
produce those scaling laws, we generated the synthetic dataset
using unified neutral theory of biodiversity (UNTB) model
[41,42]. UNTB assumes that there are M local communities
and the number of individuals in community α is Nα . The
dynamics of local community α consists of two steps: (i)
randomly choose an individual and remove it; (ii) migration
occurs with probability mα and this individual is replaced
by a randomly chosen individual of the metacommunity. Or
this individual is replaced by a randomly selected member of
local community α with probability 1 − mα . We found that
the long-term drift and Taylor’s law look like the real data,
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while the remaining laws are quite different from the real data,
regardless of migration rate m (see SM Fig. S12). Especially,
we found the range of degree of visibility graph of time series
generated from UNTB is very narrow, since there is no special
species whose abundances will increase/decrease for a longer
time in this neutral model.

III. DISCUSSION

The presented results revealed the origins of universal
scaling laws in the dynamics of various microbiomes. Those
scaling laws reflect the species abundance fluctuations around
a stable equilibrium of the ecological system, and the fluctu-
ations are largely driven by temporal stochasticity of the host
or environmental factors. Furthermore, the presence of those
scaling laws is jointly determined by interspecies interactions
and linear multiplicative noise. The presented results help us
better understand the nature of those universal scaling laws in
the dynamics of various microbiomes.

Our results are consistent with a previous finding that
human gut microbiota has two distinct dynamic regimes: au-
toregressive and nonautoregressive [23]. In particular, most of
the variance in gut microbial time series is nonautoregressive
and driven by external day-to-day fluctuations in host and
environmental factors (e.g., diet), with occasional internal
autoregressive dynamics as the system recovered from larger
shocks (e.g., facultative anaerobe blooms) [23]. Overall, the
gut microbiota can be considered as a dynamically stable

system, continually buffeted by internal and external forces
and recovering back toward a conserved steady state [23].
This picture also qualitatively explains why the shuffled time
series yields the same scaling laws as the original time se-
ries does. Both the original and shuffled time series of gut
microbiota have very weak temporal structure. Hence, gener-
ally speaking, data analysis that explicitly considers the time
stamps of microbiome samples will yield very similar results.
These findings suggest that those scaling laws do not repre-
sent the autoregressive or internal ecological dynamics of gut
microbiota, but represent the dominating nonautoregressive
dynamics of gut microbiota driven by external environmental
fluctuations.

Many of the scaling laws described here for microbial
communities have also been observed previously in various
macroecological systems, despite the difference of more than
six orders of magnitude in the relevant spatial and interac-
tion scales [28]. We anticipate that our simple mechanisms
based on interspecies interactions and linear multiplicative
noise might be universal to explain those scaling laws in both
macroscopic and microbial communities.
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