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Radiation-free and non-Hermitian topology inertial defect states of on-chip magnons

Bowen Zeng 1 and Tao Yu 2,*

1School of Physics and Electronics, Hunan University, Changsha 410082, China
2School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

(Received 27 September 2022; revised 23 November 2022; accepted 23 December 2022; published 5 January 2023)

Radiative damping is a strong dissipation source for the quantum emitters hybridized with propagating
photons, electrons, or phonons, which is not easily avoidable for on-chip magnonic emitters as well that can
radiate via the surface acoustic waves of the substrate. Here we demonstrate in an array of on-chip nanomagnets
coupled in a long range via exchanging the surface acoustic waves that a point defect in the array, which can be
introduced by the local magnon frequency shift by a local biased magnetic field or the absence of a magnetic
wire, strongly localizes the magnons, in contrast to the well spreading Bloch-like collective magnon modes in
such an array setting. The radiation of the magnon defect states is exponentially suppressed by the distance of
the defect to the array edges. Moreover, this defect state is strikingly inertial to the non-Hermitian topology
that localizes all the extended states at one boundary. Such configuration robust magnon defect states towards
radiation-free limit may be suitable for high-fidelity magnon quantum information storage in the future on-chip
magnonic devices.
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I. INTRODUCTION

Defect bound states of electrons [1], phonons [2], and
photons [3] are important factors affecting the optical and
transport properties of solids, which may also act as candi-
dates in the future quantum computing, such as the Majorana
zero modes [4,5] that may be treated as a special defect state.
These defect states are widely discovered in the Hermitian
scenario when the dissipation plays a minor role. Verba et al.
predicted the magnon defect state in a two-dimensional ar-
ray of dipolarly coupled magnetic nanodots [6], acting as
a Hermitian artificial system for reconfigurable signal pro-
cessing and microwave applications. Recent studies towards
the nontrivial role of dissipation in the optic, phononic, elec-
tronic, and mechanic circuits open the routes to engineering
the non-Hermitian topological states such as the exceptional
nodal phase and non-Hermitian skin effect for the open system
[7–9]. In such a non-Hermitian scenario, the defect states
are revealed to exist in non-Hermitian flatband of photonic
zero modes [10], acquire the topological protection [11], and
possess flexible tunability by external sources [12]. Magnons
are the low-energy consumption information carriers [13–17].
In contrast to their electronic, acoustic, optic, and mechanic
counterparts, the nontrivial role of dissipation is much less ex-
ploited in the magnonic circuits [18]. Recent studies proposed
the realization of the non-Hermitian skin effect [7–9] with
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much improved sensitivity in the magnetic nanowire array
[19] and spin-orbit-coupled van der Waals magnet [20].

Magnetic nanowire arrays—or the one-dimensional
magnonic crystal—are excellent devices [21–24] for
microwave filtering [25], magnetic recording [26], and
spin logics [27]. Such on-chip magnonic devices are
fabricated on the dielectric substrate, rendering that they
may couple strongly to the surface acoustic waves of
the proximity substrate [28,29]. Indeed, recent studies
demonstrated the magnetization dynamics of on-chip
nanomagnets efficiently pumps phonons of the dielectric
substrate via the magnetostriction [30–38], achieving efficient
transfer and communication of spin information over a
long distance. Similar hybrid systems between the magnetic
array and microwaves or superconducting circuits [39–41]
add important opportunities to the nonreciprocal (quantum)
information processing [42]. In such non-Hermitian systems,
we reported that all the bulk modes of magnons in a magnetic
array are skewed at one edge by the non-Hermitian skin
effect when the magnon interacts nonreciprocally or chirally
in a finite range [19,43]. However, the coupling between
the on-chip magnons with the propagating waves brings
an additional collective dissipation [33,35,40,41,44–47]
with the damping rate probably much larger than the
intrinsic one [48]. Such a collective radiation is classified as
subradiance and superradiance according to their suppressed
and enhanced radiation rates to the individual one [49–58].
Recent experiment shows that the magnon dark modes
preserving a long radiative lifetime induced by destructive
interference between multiple magnetic spheres loaded in a
microwave cavity can store the coherent information with
magnons [46].

In this work, we propose a scenario for realizing al-
most radiation-free modes of on-chip magnons in an array
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FIG. 1. Schematic of a magnetic nanowire array fabricated on
top of a dielectric substrate as one-dimensional magnonic crystal.
A vacancy defect can be introduced by a local magnon frequency
shift by applying a local magnetic field or the absence of a magnetic
nanowire at, e.g., the black dashed position. The uniform spin preces-
sion or Kittel mode in the magnetic wire of width w and thickness h
is represented by the arrow precessing around the axis fixed by the
in-plane saturated magnetization, while the surface acoustic waves
in the dielectric substrate are represented by the red waved lines. By
virtually exciting and absorbing the proximity surface phonon via
the magnetostriction, the magnons in different wires can indirectly
interact with each other in a long range.

of magnetic wires [21–24] that are fabricated on top of a
thick dielectric substrate, as illustrated in Fig. 1, in which
the magnons are dissipatively coupled in a long range via
exchanging the surface acoustic waves of the substrate [38].
We calculate the collective modes of the magnons when there
exists a vacancy defect in the array, which can be introduced
by the absence of a magnetic nanowire or a local magnon
frequency shift by applying a local biased magnetic field, and
find that there is always a defect state, in spite of the presence
of the long-range interaction, with which the spin fluctuation
becomes strongly localized around the defect with a large
amplitude that is even larger than those of all the other modes.
Such features are preserved even when there exists the non-
Hermitian skin effect with a special design [19], a remarkable
property that is inertial to the non-Hermitian topology when
all the extended modes are skewed to one boundary, with
which the defect state is well separated in space with all the
other bulk modes. The lifetime of such a defect state is much
longer than all the other collective modes and is rarely affected
by the defect position or the length of array, towards an almost
radiation-free limit when the array is long. We trace that the
defect states occur via localization of the most subradiant
states by a perturbation analysis via deforming the lattice
constant of two neighboring wires. These findings may pave
the way to potential application in high-fidelity information
storage and single magnon trapping at defect in the quantum
regime.

This paper is organized as follows. In Sec. II we first review
the non-Hermitian effective Hamiltonian that describes the
phonon-mediated long-range dissipative interaction between
magnons in the magnonic array. Then we calculate the col-
lective modes in the presence of the vacancy defect in the
array and address the radiation property and non-Hermitian
inertia of the defect states in Sec. III. To trace the localization
mechanism, we perform a perturbation calculation in the non-
Hermitian long-range coupled system in Sec. IV. Finally, we
discuss and summarize the results in Sec. V.

II. DISSIPATIVELY COUPLED MAGNONS

We consider here an array of N on-chip magnetic
nanowires [21–24] of width w and thickness h with an equal
spacing d on top of a dielectric substrate, as shown in Fig. 1.
These magnetic wires couple with the dielectric substrate
via the magnetostriction. The wire distance d is large enough
that one may strongly suppress the dipolar interaction be-
tween wires [6], which is disregarded in this work. Such a
hybridized system has been widely addressed recently in the
context of phonon pumping by the magnetization dynamics
[30–34,36–38], among which a model Hamiltonian for the
one-dimensional magnonic crystal is derived [35,38,43]. Be-
low we review the key properties of such a Hamiltonian.

Among the spin fluctuations in the magnetic nanowire,
we focus on the Kittel magnon [59], which is quantized as
Ĥm/h̄ = ωmm̂†m̂. Here m̂ is the magnon annihilation opera-
tor for the Kittel magnons with the frequency ωm → μ0γ H0

under a strong magnetic field H0 [38], with μ0 and γ being
the vacuum permeability and gyromagnetic ratio, respectively.
For the dielectric substrate, the acoustic modes that most
strongly couple with the proximity magnets are the surface
acoustic waves, which are evanescent normal to the propa-
gating plane [43,60]. They hold chirality since the rotation
direction of their dynamical strain is locked to their prop-
agation direction, namely, the generalized spin-momentum
locking [43,60]. Due to its high sensitivity for the excitation
and detection and low energy loss in the transmission, such
surface acoustic waves are widely exploited in the signal
detection, information transfer processing [32,34,37,38], and
manipulation of the magnetization dynamics [28,29].

As harmonic oscillators the surface acoustic waves with
wave vector k normal to the wire direction are quantized as
Ĥp/h̄ = ∑

k Akâ†
k âk , in terms of the frequency Ak = v|k|, a

constant group velocity v, and the phonon annihilation oper-
ator âk . The magnons m̂ and surface phonons âk are coupled
via the magnetostriction, with the coupling strength gk being
direction dependent and nonreciprocal with |gk| �= |g−k| in
general by the chirality of surface acoustic waves and spin
precession (for details we refer to Refs. [35,38] as well as
Appendix A). The total Hamiltonian reads [38]

Ĥ/h̄ =
N∑

j=1

(ωm − iκ )m̂†
j m̂ j +

∑
k

(Ak − iδk )â†
k âk

+
∑

j

∑
k

(gkeikz j m̂ j â
†
k + H.c.), (1)

where κ and δk account for the intrinsic damping constant of
the Kittel magnons and surface acoustic waves, respectively,
and z j = jd is the location of the jth magnetic nanowire.

The magnon in a nanowire can virtually emit a surface
phonon by the magnon-phonon coupling and such a phonon
can propagate in a long distance before being absorbed by
the other nanowires, leading to a long-range coupling between
magnons. As derived in detail in Ref. [38] as well as addressed
in Appendix A by the Langevin equation [61,62], when the
Born-Markov approximation works well as long as the mag-
netic quality is more excellent than the elastic quality of the
adjacent dielectric substrate, the coupled magnons in the N
nanowires mediated by the surface phonon may be described
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by a non-Hermitian Hamiltonian [35,38,61,62]

Ĥeff/h̄ =
(

ωm − iκ − i
�R + �L

2

) N∑
j=1

m̂†
j m̂ j

− i�L

∑
i< j

β
|i− j|
k0

m̂†
i m̂ j − i�R

∑
i> j

β
|i− j|
k0

m̂†
i m̂ j . (2)

Here, �R = |gk0 |2/v and �L = |g−k0 |2/v represent the emis-
sion rates of a single wire into the right and left propagating
phonon modes. Since |gk| �= |g−k| by the chirality, �R �= �L

in general as addressed in detail in Appendix A, but the
chirality vanishes with |�L| = |�R| when the in-plane satu-
rated magnetization is perpendicular to the wire x̂ direction
[38,45]. The exponential factor βk0 = exp(ik0d ), in which k0

denotes the resonant momentum of phonon. When disregard-
ing the phonon attenuation, k0 = ωm/v is real, but it acquires
the imaginary components when the phonon has significant
damping [19,63]. Indeed, in high-equality elastic substrate
such as gadolinium gallium garnet [33], the imaginary part of
k0 can be safely disregarded [31]. But there are cases in which
the imaginary part of k0 has to be taken into account. For
example, considerable acoustic loss is reported in quantum
state transfer using phonon [63].

Such an effective Hamiltonian approach is widely shown
to be equivalent to the master equation approach by disre-
garding the quantum jumps [7]. In the quantum regime, it is
validated in the time scale limited by the intrinsic loss rate
1/κ [64,65] of magnons, which is of submicrosecond for high
quality yttrium iron garnet (YIG) [66]. Nevertheless, in the
semiclassical regime in which the amplitude of the magnon
is much larger than that of a quanta, the quantum jumps may
be safely disregarded in general since the quantum effect be-
comes sufficiently weak in comparison to the thermal noise, as
formulated in terms of the self-energy in the Green’s-function
approach [38,67].

III. MAGNON DEFECT STATES

We turn to addressing the nontrivial role of a point defect
in the one-dimensional magnonic crystal on the collective
modes of Hamiltonian (2). The exact values of the parameters
addressed above do not affect our findings to be addressed
below, since the frequencies can be normalized by (�L +
�R)/2 ∼ O(1) GHz [38]. To be quantitative, we adopt N =
51 YIG nanowires [68] of equal neighboring distance d =
180 nm with a fixed resonance frequency ωm/2π = 5.45 GHz
[33,34,36]. The dielectric substrate with a negligible damping
such as gadolinium gallium garnet (GGG) is of a choice,
which is suitable for the long-range spin information trans-
port [33,34,36], with a large phonon propagating velocity
v = 3271 m/s [60,69]. The resonant wavelength of surface
acoustic waves to the ferromagnetic resonance is estimated
to be λ = 2πv/ωm ≈ 600 nm, with the corresponding wave
vector k0 = 2π/600 nm−1. With these parameters, we find
the frequency and wave function of the magnonic collective
modes via numerically solving the Hamiltonian (2).

FIG. 2. Frequency spectra ω [(a), (b)], scaled by (�R + �L )/2,
and spatial profile |
n, j | [(c), (d)] of all the collective magnon modes
without [(a), (c)] and with a point defect [(b), (d)]. Here the radiation
is nonchiral since �L = �R. The side view of the magnetic wires is
shown at the top of the figures. The frequency of the defect states
is emphasized by the blue dot in (b), with mode profile around the
defect at the middle of the array ( j = 26) plotted in (d). In (c), we
highlight two typical subradiant states (n = 1, 2) and superradiant
state (n = 51).

A. Frequency and wave function of collective modes

We now compare the frequency spectra ω and spatial pro-
file (wave function) of the collective magnon modes |
n, j |
with and without a point defect in the array, where n =
{1, . . . , N} are the mode indexes according to the increased
decay rates, as shown in Fig. 2. The side view of the magnetic
nanowire array is plotted at the top of the figures, where each
rectangular block represents a nanowire and the defect is im-
plied by a dashed box. As a frequency reference, the magnon
bare frequency ωm is dropped when plotting the frequency
spectra and the frequency is normalized by (�R + �L )/2.
In this part, the radiation is assumed to be nonchiral with
�L = �R, but the chirality plays an important role that will
be addressed later. The wave function we plot is the right
eigenvector 
n of the Hamiltonian (2), for which we note the
left eigenvector �n is no longer the Hermitian conjugation of
the right eigenvector since the Hamiltonian is not Hermitian.
The eigenvectors are normalized according to �†

n
n = 1.
Figure 2(a) plots the frequencies of all the collective

magnon modes for an array without any defect in terms of
the real and imaginary components, where most states possess
decay rates smaller than (�L + �R)/2, while there are several
modes having decay rates much larger than (�R + �L )/2. The
former are known as the subradiant states, while the latter
are the superradiant states [49–58]. We sort these frequencies
according to the increased decay rates in terms of integers
n ∈ {1, 2, . . . , 51}, such that n = 1 and 51 represent the most
subradiant state and most superradiant state, respectively. The
spatial profiles of typical subradiant states (n = 1, 2) and su-
perradiant state (n = 51) are plotted in Fig. 2(c). We observe
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that these two subradiant states are extended over the bulk
forming the standing waves with small amplitudes at the edge,
while the superradiant state has a large amplitude at the edge.
Such a weak skin tendency may be understood from a tight-
binding Hamiltonian after taking the inverse matrix of the
Hamiltonian (2) that involves only the nearest hopping but
additional local potential at the edge [70].

Now we introduce a defect in the middle ( j = 26) of the
array. It is noticed that a special frequency is then induced by
the defect in the frequency spectra denoted by the blue dot in
Fig. 2(b), which does not present in Fig. 2(a) and is isolated
from the other frequencies with decay rate even smaller than
the most subradiant state (more comparison to be addressed
in Sec. III B below). Figure 2(d) shows the spatial profile of
the defect state denoted by the blue color, which has an im-
pressively larger amplitude than those of the other collective
modes. Such a defect state is strongly localized around the
defect with a narrow spreading. On the other hand, the spatial
profile of the other states are rarely affected, except for a
strong attenuation around the defect position, a feature that
is related to the long-range nature of the magnon coupling.

Recent experiment [71] finds a strong trapping of magnons
that are launched by the ferromagnetic resonance with a
considerable amplitude at particular positions in a one-
dimensional magnetic array. Such an observation appears to
support our prediction of the magnon defect states.

B. Radiation property of defect state

Previous studies stated that the main dissipative channel
for the collective modes governed by the Hamiltonian (2) is
the radiation to the environment through the edge [51]. Such
an edge leakage is indeed strong for the superradiant states
because they have larger amplitudes at the edge. Thereby the
strong localization of the defect state could efficiently prevent
the radiation of surface acoustic waves through the edge, thus
favoring an almost radiation-free mode in the open system.
Such a mechanism is distinct from that of the bound state
in the continuum [72,73], although similar excellent property
can be achieved. We substantiate such expectation by analyz-
ing the radiation property of the defect state by changing the
position of the defect in the array, the length of the array, and
the chirality of the coupling with �L �= �R.

Since we expect that the more localized the defect states
away from the edge, the smaller their decay rates, we place
the defect at different positions in the array and calculate
their decay rates. Indeed, as plotted in Fig. 3(a), the decay
rates of the defect states change dramatically by many orders
when located from the edge to the middle of the array. These
decay rates are all smaller than that of the most subradiant
state that is indicated by the blue dashed line in Fig. 3(a), but
this property is not always robust when the chirality kicks in
as addressed in Fig. 3(c). Crucially, the decay rates become
negligibly small when the defect is located far away from the
two edges, i.e., around the middle of the array. Therefore,
the narrow spreading of the spatial distribution leads to a
negligible amplitude at the edge in a long array that strongly
suppresses the radiation to the environment. This feature is
further verified by changing the length of the array. Here we
focus on the defect state at the middle of the array and plot

FIG. 3. Radiation properties of the magnon defect states revealed
by the dependence of the radiation rates on the defect position, array
length, and coupling chirality. The side view of the magnetic wires is
shown at the top of the figures, with the defect implied by the dashed
rectangular box. Panels (a) and (c) address the strong dependence of
the decay rates of the defect states on the position in the array without
(�R = �L) and with (�R = 10�L) the chirality. The decay rate of the
most subradiant state is implied by the blue dashed line. In (b) and
(d), the array length is changed to show the effect of spatial spreading
of the defect states on the radiation. We compare the spatial profile
without and with the chirality in the inset of (d).

in Fig. 3(b) that by changing the length of array, the decay
rates of the defect states are unchanged in a long array but
are strongly enhanced when the array is short. So it is clear
that, as long as the array length is much longer than the
spatial spreading of the defect state, its decay rate is always
almost negligible, a feature that is essential for high-fidelity
information storage with on-chip magnons.

Chirality does affect the properties of the radiation, but
the essential features of the radiation in the absence of the
chirality are retained as shown in Figs. 3(c) and 3(d) with
�R = 10�L. The radiation is still most suppressed when the
defect is at the middle of the array as addressed in Fig. 3(c),
so without asymmetric property although the radiation is di-
rectionally flowing to the right. A key feature is that the spatial
profile of the defect state has a wider spreading than that
without chirality, as shown by the inset of Fig. 3(d), which
leads to a stronger radiation. Thereby, achieving the same low
radiation rate may need a longer array as in Fig. 3(d).

We note that our conclusions with magnonic emitters apply
to the quantum dipolar emitters as well, such as the cold atoms
coupled to the waveguide [56,74,75], where the long-lifetime
excitation for quantum processing remains wanting. It appears
that both the defect and subradiant states have a long lifetime
that may facilitate the high-fidelity information storage. Here
we highlight the merit of the defect state in two aspects. On
the one hand, the subradiant state arises from the destructive
interference and thereby may be more sensitive to the disor-
ders such as the position fluctuation of the wires and the bare
frequency broadening among the magnets. While the defect
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state is well localized it may be difficult to affect, since it has
minor overlapping with the other states [refer to Fig. 2(d)]. On
the other hand, different from the subradiant state, of which
the decay rate obeys a scaling law as N−3 [45,74,76], the
defect state is independent of the length of a long array. For the
subradiant state, it takes N ≈ 104 to reach the same low decay
rate as that of the defect state, which is of course far beyond
the experimental capability with magnons or other quantum
emitters such as cold atoms [56–58,74,75]. Therefore, such
a magnon defect state provides a robust and experimentally
feasible platform to realize an almost radiation-free state even
with not too many magnetic wires, say N � 20.

C. Inertia to non-Hermitian skin effect

According to our previous work [19], the subradiant
and superradiant magnon states all become asymmetrically
skewed to one boundary of the array when the non-Hermitian
skin effect occurs. Such an effect appears as a non-Hermitian
topological phenomena [7,8] when the interaction between
the magnons is chiral and the phonon is attenuated in the
propagation, rendering a relatively short-range nonreciprocal
interaction. Since the topological effect is robust to the dis-
order, one could conclude that the defect state had been also
affected and skewed to one boundary by the non-Hermitian
skin effect. However, we find that the defect state is very iner-
tial to such a topological phenomena, thus demonstrating the
superior advantage of such a defect localization for memory
functionality.

In Fig. 4(a), we show the asymmetrically skewed local-
ization of all the magnon states at the right edge of the
array without defects when the phonon mediated interaction
is chiral �R = 10�L and the phonon is attenuated during
propagation with Imk0d = 0.03π , which corresponds to the
phonon attenuation length 200d/3 = 12 μm, demonstrating
again the non-Hermitian skin effect [19]. We note that such a
phonon attenuation length is longer than the array length 50d ,
so the nonreciprocal effective interaction is still of quite long
range. The topological origin of the skin effect is addressed in
Fig. 4(b), in which we plot the normalized frequencies under
the open boundary condition (OBC) by the red dots and under
the periodic boundary condition (PBC) by the blue curve, both
calculated from Eq. (B2) in Appendix B. With PBC, the Bloch
vector ∈ [−π/d, π/d] is real. When it evolves from −π/d to
π/d , the normalized frequency evolves in a clockwise man-
ner, as indicated by the arrow. The corresponding topology is
captured by the so-called winding number [77–79] that counts
the times of the spectra under PBC that encloses a reference
energy, which is minus unity in this case (refer to Appendix B
for the details), so being topologically nontrivial.

Now we introduce a defect at the left half of the array
( j = 16), a design avoiding the interference with the skin
modes that are localized at the right boundary. The distri-
bution of all the states with such a point defect is plotted
in Fig. 4(c). Interestingly, the defect state survives with a
considerable amplitude around the defect position, indicating
that the defect state is insensitive to the non-Hermitian skin
effect in such a long-range coupled system, while the other
states are all skewed to the right boundary by the skin effect,
which achieves a spatial separation between the defect state

FIG. 4. Inertia of the magnon defect state to the non-Hermitian
skin effect under the chiral coupling �R = 10�L and phonon atten-
uation. Panel (a) shows the skewed localization of all the magnon
states under the phonon attenuation Imk0d = 0.03π in the absence
of a defect, with their frequency distribution under OBC (red dots)
and PBC (green curve) addressed in (b). Panel (c) shows a spatial
well isolated defect state by the blue curve when introducing a defect.
The frequency of such a defect state is not enclosed by the frequency
winding under PBC, as spotted in (d) by the blue dot. However, when
the phonon attenuation is very strong with Imk0d = 0.15π , which
favors a short-range chiral coupling between magnons, the defect
state is skewed with its frequency well enclosed by the frequency
winding, as shown in (e) and (f), respectively.

and all the other collective modes. This feature is unique
since it distinguishes from the defect state in the Hermitian
counterpart, where there is always a spatial overlap with the
bulk states. Such a spatially well isolated magnon defect state
may find some important application in on-chip quantum in-
formation storage such as trapping, local detection, and local
manipulation of a single magnon state [80].

For the inertia of the defect state to the non-Hermitian
topology we trace a close relation between the frequency
winding under the PBC, i.e., those green circles plotted in
Figs. 4(b), 4(d), and 4(f), and the location of the frequency
of the defect state. Such inertia appears to depend on whether
the defect frequency lies in the winding circle or not. The
frequency of the defect state in Fig. 4(c) indeed locates outside
of the winding circle, as plotted in Fig. 4(d), and so is not
affected by the non-Hermitian topology. As a comparison,
we now change the parameters arbitrarily with a very strong
phonon attenuation Imk0d = 0.15π that corresponds to the
attenuation length 2.4 μm of the surface acoustic waves. The
defect state is completely skewed to the right edge as in
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FIG. 5. Localization of the most subradiant state by the local
change of the distance x of two neighboring wires. The configuration
is illustrated at the top of (a). Panel (a) shows the gradual localization
of the state with longest lifetime when the spacing x increases from
d to 2d , with their decay rates shown in (b). Panel (c) compares the
spatial profile of such states from the exact matrix diagonalization
(the solid curves) and from the perturbation analysis (the dashed
curves). The dependence of the decay rates of these states on the
array length is shown in (d), which follows exponential N−3 when
x = d and a power law governed by 10−αN with a constant α when
x > d .

Fig. 4(e) and, in the meantime, the defect frequency is located
inside the winding circle in Fig. 4(f). This highlights again
the nontrivial role of the long-range coupling mediated by
phonons in a high-quality substrate on the collective modes
that render robust trapping properties possible that is absent
in the Hatano-Nelson model with a short-range asymmetric
coupling [81].

IV. LOCALIZATION MECHANISM

So far we have addressed the emergence of a magnon de-
fect state in a long-range coupled array and its properties in the
radiation and robustness, but have postponed the discussion of
its mechanism. Here we address this issue via a perturbation
analysis on the effect of interference on the localization when
locally deforming the lattice constant of two middle neighbor-
ing wires in the array. We find that the most subradiant state
can evolve into a localized state due to its interference with the
other subradiant states, which further suppresses the radiation
towards the almost radiation-free limit.

Intuitively, we may consider in another point of view the
effect of a defect on the collective radiation. Introducing a
point defect in the array is equivalent to a local change of the
distance of two neighboring wires from x = d to 2d among
the other, as illustrated at the top of Fig. 5(a). Such a pro-
cedure can be achieved gradually via changing the distance
x from d to 2d , such that we can trace the evolution of
the states, e.g., how one can arrive at a state with longer
lifetime and strong localization from those states with shorter

lifetime and wider spatial spreading. Indeed, as shown in
Fig. 5(a), when the spacing x increases, the spatial distribution
of the state with longest lifetime becomes gradually localized
at the center. Such a localization leads to a reduction of the de-
cay rate in several orders of magnitude, as plotted in Fig. 5(b),
which is consistent with the previous analysis in Sec. III. The
continuous changes of spatial profile and decay rate suggest
that a defect state is possibly evolved from the most subradiant
state, as implied by a perturbation analysis with x = d + δ

when δ � d below.
We express Eq. (2) in the matrix form Ĥeff/h̄ = M̂†HMM̂,

where M̂ = (m̂1, m̂2, . . . , m̂N )T . The non-Hermitian ma-
trix HM can be diagonalized with biorthonormal basis
〈�l |HM |
n〉 = Enδln with �l being the lth left eigenvector
and 
n being the nth right eigenvector [82]. By a small dis-
tortion δ, the total Hamiltonian HM → HM + (eik0δ − 1)H′,
where the matrix is of the form

H′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . .

. . . 0 0 −i e2ik0d −i e3ik0d . . .

. . . 0 0 −i eik0d −i e2ik0d . . .

. . . −i e2ik0d −i eik0d 0 0 . . .

. . . −i e3ik0d −i e2ik0d 0 0 . . .

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(3)

As δ is small, eik0δ − 1 ≈ ik0δ, so the term H′ is a pertur-
bation, with which we can find the wave function by the
first-order correction in the perturbation theory, which for the
nth right eigenvector is

∣∣
(1)
n

〉 =
∑
l �=n

〈�l |
(
eik0δ − 1

)
H′|
n〉

En − El
|
l〉. (4)

We compare in Fig. 5(c) the spatial profile of the state
with the longest lifetime from the exact matrix diagonalization
(the solid curves) and from the above perturbation analysis
(the dashed curves). We observe that the wave function from
the perturbation analysis agrees well with the exactly calcu-
lated wave function when x varies from 1.01d to 1.05d , and
captures the localization tendency by the “defect,” indicating
that Eq. (4) is an excellent approximation. In Eq. (4), the lo-
calized state is mainly contributed by the most subradiant state
that superposes with the other subradiant states, indicating
that the interference between them can lead to a more local-
ized spatial profile. Besides, the interference also suppresses
the decay rate as illustrated in Fig. 5(d), in which we perform
the calculation with different length of the array. Furthermore,
the decay rate of the state with the longest lifetime follows
a universal scaling law with exponential N−3 when x = d ,
which is consistent with the previous studies [45,74,76], but
becomes a power law governed by 10−αN with a constant α

when x > d . This implies that the radiation of the magnon
defect state is exponentially suppressed by the distance of the
defect to the array edge, a property superior over that of the
most subradiant states.

Recent studies reported analogous exponentially sup-
pressed decay rate in the coupled atomic array mediated by
light, such as assembling atoms in a ring waveguide to elim-
inate the boundary dissipation or applying local deformation
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for the lattice constant to induce localized resonance [51]. The
on-chip magnons act as magnonic quantum emitters that per-
form at room temperature, which may help in circumventing
the harsh experimental environment such as fine control and
extremely low temperature required for the cold atom system.

V. DISCUSSION AND CONCLUSION

Defect is an important design parameter that may strongly
affect the device performance, but it is difficult to avoid in the
fabrication of on-chip magnonic devices such as the magnetic
nanowire arrays addressed here [21–24]. On the other hand,
the defect can also be specially designed by, for example,
a local magnon frequency shift by applying a local biased
magnetic field to achieve localized modes with advanced
functionality, such as the enhancement of the interaction be-
tween the magnonic quantum emitters with the other degrees
of freedom [83,84]. It might be surprising that the defect state
can survive in the long-range coupled system and under the
non-Hermtian skin effect, since both lead to a strong delo-
calization effect. The strong localization of magnons can be
detected by the NV center magnetometry [85] coherently and
the Brillouin light scattering incoherently [86].

Quantum information with magnons was recently realized
by coupling the macrospins to the qubit in the microwave
cavity [87,88], but the operation with on-chip magnons re-
mains wanting so far. The subradiant states in the atomic array
are widely proposed for the quantum memory or storage due
to their long lifetime [49–58], while the superradiant states
can be used to communicate the information with photons
due to their enhanced coupling. Thus the conversion from
the superradiant to subradiant states is essential for construct-
ing the quantum memory. Recently, a controllable switching
between superradiant and subradiant states is realized in a
10-qubit superconducting circuit by introducing the phase
gate to modulate the collective interference [89]. On the other
hand, when placing several macrospins in a cavity, a detun-
ing from the cavity mode can induce the evolution from the
bright to dark modes, which is proposed for the realization of
magnon memory via the dark modes by applying a magnetic
field gradient [46]. The magnon defect state has a much sup-
pressed radiation damping, which we envision may be suitable
for on-chip quantum memory or gradient memory with similar
technique setups.

In conclusion, we have demonstrated a strongly localized
and almost radiation-free magnonic defect state introduced by
a point defect in an on-chip magnetic array that is coupled in a
long range mediated by the surface acoustic waves of the sub-
strate. Such a defect state is demonstrated to be even inertial
to the non-Hermitian topology, protected by the long-range
nature of the phonon-mediated interaction, although all the
other states are skewed to one boundary. We find that the local
deformation of the lattice constant induces the interference of
the subradiant magnonic states, i.e., those collective magnon
modes with longer lifetime than that of the individual one,
which is responsible for the localization and a much longer
lifetime. The radiation-free and configuration robust defect
state may be desired for many practical applications, such
as the high-fidelity information storage and single magnon
trapping. Our formalism on the magnonic quantum emit-

ters can be extended into the other quantum dipolar emitters
[49,51,54,56–58,74,75] and opens new perspective on the re-
alization of ultralong lifetime states for quantum memory.
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APPENDIX A: EFFECTIVE HAMILTONIAN

In this Appendix, we derive the magnon effective
Hamiltonian Eq. (2) by using the Langevin equation [61,62]
to integrate out the phonon degree of freedom that ac-
counts for the virtual emission and absorption of phonons
by magnons, which thereby mediates an effective interaction
between magnons in different magnetic nanowires [38,45].
The in-plane magnetization is biased along the x̂′ direction
by an external static magnetic field with an angle ϕ with
respect to the nanowire x̂ direction, as illustrated in Fig. 1.
For such ferromagnet|dielectric substrate heterostructure, the
magnetoelastic coupling Hamiltonian

Ĥc = 1

M2
s

∫
dr

(
B‖

∑
i

M2
i εii + B⊥

∑
i �= j

MiMjεi j

)
, (A1)

where Ms is the saturated magnetization, B‖ and B⊥ are the
magnetoelastic constants, and εi j = (∂ jui + ∂iu j )/2 denotes
the strain tensor in terms of the displacement field u(r), leads
to the magnon-phonon coupling when expanding the mag-
netization and displacement fields in terms of the harmonic
oscillators [38,45] with the coupling constant

gk = i sin ϕ

√
γ

Msρv

√
h

w
sin

(
kw

2

)
ξP

×
(

B⊥ − cos ϕB‖sgn(k)
1 + b2

a

)
, (A2)

where γ is the modulus of the electron gyromagnetic ration,
ρ is the mass density of the dielectric substrate, and ξP, a, and
b are material parameters that are listed in Ref. [38]. Such
coupling tends to vanish when ϕ = 0, and when ϕ = π/2,
there is no chirality since |gk| = |g−k|. This is because the
surface phonon’s spin is parallel to the nanowire direction, but
the magnon’s spin relies on the direction of the saturated mag-
netization Ms ‖ x̂′. The reciprocity of the coupling between
the magnon and surface phonon then strongly depends on the
conversion of the magnon’s spin to the phonon’s. Thereby,
although generally nonreciprocal, the coupling between the
magnon with surface phonons of opposite momentum is re-
ciprocal with the same strength when the in-plane saturated
magnetization is perpendicular to the magnetic nanowire,
since in this case the magnon’s spin is normal to the phonon’s
that has the same conversion rates to both spins of the phonon
with opposite propagation directions [45].
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To derive the effective Hamiltonian of the magnon sub-
system, we here write explicitly the Langevin equation of
magnon m̂ j of frequency ωm in the jth magnetic nanowire and
the phonon âk of frequency Ak that is coupled via the constant
gk [61,62]:

i
dm̂ j (t )

dt
= ωmm̂ j (t ) +

∑
k

gkeikz j âk (t ) − i
κ

2
m̂ j (t )

− i
√

κ b̂ j (t ),

i
dâk (t )

dt
= Akâk (t ) + gk

∑
j

e−ikz j m̂ j (t ) − i
δk

2
âk (t )

− i
√

δk ĉk (t ). (A3)

The thermal environment of the magnetic wire and the
dielectric substrate introduces the thermal fluctuations b̂ j (t )
and ĉk (t ) generated via a Markovian process, which obey the
fluctuation-dissipation theorem with 〈b̂ j (t )〉 = 0, 〈ĉk (t )〉=0,
〈b̂†

j (t )b̂ j′ (t ′)〉=n jδ(t − t ′)δ j j′ , and 〈ĉ†
k (t )ĉk′ (t ′)〉=nkδ(t−t ′)δkk′

[90]. Here, 〈· · · 〉 denotes the ensemble average; n j = 1/

{exp[h̄ωm/(kBT ) − 1]} and nk = 1/{exp[h̄Ak/(kBT ) − 1]}
represent the magnon and surface phonon distributions at
temperature T . Integrating the second equation in Eq. (A3)
leads to

dm̂ j (t )

dt
= − iωmm̂ j (t ) − κ

2
m̂ j (t ) − √

κ b̂ j (t ) −
∑

j′

∑
k

|gk|2

× eik(z j−z j′ )
∫ t

−∞
dτ m̂ j′ (τ )e−i(Ak−iδk/2)(t−τ )

+ i
∑

k

gkeikz j

∫ t

−∞
dτ

√
δk ĉk (τ )e−i(Ak−iδk/2)(t−τ ),

(A4)

in which the fourth term on the right hand side provides the
effective interaction between Kittel magnons mediated by the
surface acoustic waves, which explicitly considers the virtual
reabsorption of phonons with some retardation by magnons.

We further note that the coupling of the magnon
and phonon is weak such that we can solve m̂ j (τ ) ≈
m̂ j (t )ei(ωm−iκ/2)(t−τ ) from the first equation of Eq. (A3). Fur-
ther, when the magnetic quality of the wire is more excellent
than that of the elastic one in the dielectric substrate, we are
allowed to assume the wire magnons move coherently, i.e.,
m̂ j (τ ) = m̂ j (t )eiωm (t−τ ), with which we arrive at the Markov-
Born approximation. Thus Eq. (A4) becomes

dm̂ j (t )

dt
= − iωmm̂ j (t ) − κ

2
m̂ j (t ) −

∑
j j′

� j j′ (ωm)m̂ j′ (t )

− √
κ b̂ j (t ) + i

∑
k

gkeikz j
√

δk

∫ t

−∞
d

× τ ĉk (τ )e−i
(

Ak−i
δk
2

)
(t−τ )

, (A5)

which describes the effective interaction between the Kittel
magnons at any instant by the phonon mediated effective

interaction

� j j′ (ωm) = i
∑

k

eik(z j−z j′ ) |gk|2
ωm − Ak + iδk/2

, (A6)

which accounts for the self-energy of the magnons. With the
root k0 of ωm − ωk + iδk/2 = 0, we find the effective coupling
between two different wires ( j �= j′)

� j �= j′ (ωm) = L

v
eik0|z j−z j′ |

{|gk0 |2, when z j > z j′ ,

|g−k0 |2, when z j < z j′ ,
(A7)

where L is the length of the substrate while, when j = j′,

� j= j′ (ωm) = L

2v
(|gk0 |2 + |g−k0 |2) (A8)

accounts for the self-damping of the magnon via interaction
with the surface phonon. Thereby, we arrive at the effective
Hamiltonian Eq. (2) that describes the non-Hermitian dynam-
ics of the magnon subsystem.

The thermal noise governs the thermal distribution of the
collective magnons in the dissipatively coupled nanomagnet.
Here we only address that the wave function 
n and eigenfre-
quency ωn of the defect magnon states and the other collective
modes can be used to solve such magnon distribution. In the
frequency space, Eq. (A5) becomes(

ω − ωm + i
κ

2

)
m̂ j (ω) + i

∑
j′

� j j′ (ωm)m̂ j′ (ω)

= −i
√

κ b̂ j (ω) − i
∑

k

gkeikz j
√

δk ĉk (ω)
1

ω − Ak + iδk/2
.

(A9)

With expressing �(ω) ≡ diag{ω − ω1, ω − ω2, . . . , ω − ωN }
and L ≡ (
1,
2, . . . , 
N ), the magnon fluctuation is exactly
proportional to the thermal noises via the relation

L†M̂(ω) = − i
√

κ�−1(ω)L†B̂(ω)

− i
∑

k

gk
√

δk ĉk (ω)

ω − Ak + iδk/2
�−1(ω)L†Z, (A10)

where B̂(ω) = [b̂1(ω), b̂2(ω), . . . , b̂N (ω)]T and
Z = (eikz1 , eikz2 , . . . , eikzN )T . Accordingly, L†M̂(t ) =
[α̂1(t ), α̂2(t ), . . . , α̂N (t )]T acts as the operators of the
new collective eigenmodes, so they obey the associated
Bose-Einstein distribution at the equilibrium.

APPENDIX B: ANALYSIS OF NON-HERMITIAN
SKIN EFFECT

Here we derive the frequency spectra and the wave function
for the non-Hermitian Hamiltonian Eq. (2) and address the
condition for the non-Hermitian skin effect and its topological
origin under the long-range coupling. For the Hamiltonian
Ĥeff = M̂†HMM̂ (2), we construct the trial solution Ξ̂ †

κ =
M̂†
κ with the Bloch basis 
κ = (β1

κ , β
2
κ , . . . , β

N
κ )T , fol-

lowing our previous works [19,45], where βκ ≡ exp(iκd ) is
expressed by the to be found complex wave vector κ . The
equation of motion of Ξ̂ †

κ is governed by

idΞ̂ †
κ /dt = −ωκΞ̂

†
κ + �RgκΞ̂k0 − �LhκΞ̂−k0 , (B1)
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FIG. 6. Bloch wave vector βκ , the frequency spectra ωκ [scaled by (�R + �L )/2], and the frequency winding for the magnonic collective
modes in the one-dimensional array. The parameters used for the calculation are addressed at the top of the figure. The Bloch wave vector and
the frequency spectra are calculated under the OBC (red dots) and the PBC (green line), respectively. Panels (a) to (d) compare the Bloch wave
vector βκ under the OBC (the red dots) and the PBC (the green unit circle) with different conditions. Panels (e) to (h) address the topological
origin of the skin effect by the frequency winding represented by the green curves. Panels (i) to (l) spot the frequency of the defect state in the
frequency spectra.

in which the complex dispersion relation

ωκ = �L

2

β−κ + βk0

β−κ − βk0

+ �R

2

βκ + βk0

βκ − βk0

(B2)

has two roots, say {βκ1 , βκ2}, and gκ = βκ/(βκ − βk0 ) and
hκ = (βκβk0 )N+1/(βκβk0 − 1) are dimensionless, which mod-
ulates the coupling constant of the modes with (complex)
momentum ±k0 to the phonon. The residue coupling of �̂±k0

to the phonon is thereby sensitive to the chirality �L �= �R,

ωκ1 = ωκ2 (B3)

becomes the desired eigenvalue when the two roots satisfy

gκ2 hκ1 = gκ1 hκ2 , (B4)

and thereby the eigenstate of the problem is simply a superpo-
sition of two modes that does not have a definite momentum


 = βκ2

βκ2 − βk0


κ1 − βκ1

βκ1 − βk0


κ2 , (B5)

up to a normalized constant. The property of such magnonic
mode is contained in the Bloch basis 
κ1 and 
κ2 . When
|βκ1,2 | > 1 (|βκ1,2 | < 1), the amplitude of the magnonic mode

increases with the increase of the site number, leading to the
localization at the right (left) boundary.

By the numerical diagonalization of Eq. (2) with the array
number N = 51, the different phonon attenuation, and the
different magnon-phonon coupling chiralities, we obtain the
frequency spectra ωκ under the OBC. Substituting ωκ into
Eq. (B2), we solve the allowed Bloch wave vector κ or βκ =
eiκd . In principle we can also solve the frequency spectra and
Bloch wave vector by finding the solutions of Eqs. (B3) and
(B4), but this does not provide new solutions.

The equations can also be solved in the PBC, and the
solutions are harnessed for addressing the topological prop-
erties in the absence of the edge. Correspondingly, the Bloch
wave vector is real and ranges from −π/d to π/d by the
translation symmetry. The corresponding frequency spectra
is obtained by substituting such real Bloch wave vectors into
Eq. (B2). The non-Hermitian skin effect can then be explained
by the so-called winding number that is defined in the PBC as
[77–79]

W (ω) = 1

2π

∮
BZ

d

dβκ

arg[h̄ωκ − h̄ω]dβκ, (B6)
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where h̄ω is the reference energy. W (ω) counts how many
times the energy spectra encloses the reference energy when
βκ evolves along the unit circle.

In Figs. 6(a) to 6(d), we systematically compare the Bloch
wave vector βκ under the OBC and the PBC with different
conditions. Under the PBC, the distribution of the Bloch wave
vector always lies on a unit circle, with the arrows indicating
an evolution of κ on the unit circle. Without chirality and
phonon attenuation, βκ is almost overlapped with the unit
circle with small exceptions for those superradiant states in
Fig. 6(a), indicating the absence of the non-Hermitian skin
effect. Such features and conclusion are not changed when we
only change the chirality or the phonon attenuation alone, as
shown in Figs. 6(b) and 6(c). However, when we include both
the chirality and phonon attenuation, all βκ deviate from the
unit circle, implying the occurrence of the non-Hermitian skin
effect from Eq. (B5).

We can also trace the topological origin of the above fea-
tures by the winding number [Eq. (B6)], as shown in Figs. 6(e)
to 6(h) by the green curves, which address the evolution of the
frequency spectra under the PBC. We find that the winding
number is indeed zero in Figs. 6(e) to 6(g). However, in the
presence of both the chirality and phonon attenuation the
winding number is −1, as shown in Fig. 6(h), which leads
to the emergence of the non-Hermitian skin effect [8,9].

When considering a point defect in the middle of the
array, the frequency spectra is shown in Figs. 6(i) to 6(l).
We also plot the frequency spectra under PBC without a
point defect by the green curves for the eye guidance. We
find in Figs. 6(i)–6(l) that all the defect states with differ-
ent conditions are well isolated and are not enclosed by the
frequency windings, such that these defect states cannot be
skewed to the boundary and are inertial to the non-Hermitian
topology.
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