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Cellular appendages such as cilia and flagella represent universal tools enabling cells and microbes, among
other essential functionalities, to propel themselves in diverse environments. In its planktonic, i.e., freely swim-
ming, state the unicellular biflagellated microbe Chlamydomonas reinhardtii employs a periodic breaststroke-like
flagellar beating to displace the surrounding fluid. Another flagella-mediated motility mode is observed for
surface-associated Chlamydomonas cells, which glide along the surface by means of force transduction through
an intraflagellar transport machinery. Experiments and statistical motility analysis demonstrate that this glid-
ing motility enhances clustering and supports self-organization of Chlamydomonas populations. We employ
Minkowski functionals to characterize the spatiotemporal organization of the surface-associated cell monolayer.
We find that simulations based on a purely mechanistic approach cannot capture the observed nonrandom cell
configurations. Quantitative agreement with experimental data, however, is achieved when considering a minimal
cognitive model of the flagellar mechanosensing.
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Motility is a key feature of microorganisms to respond
to environmental cues and to actively search for favorable
living conditions, nutrient sources, and mating partners [1–3].
Microbial self-propulsion can be realized by means of shape
deformations [4,5], the formation of lamellipodia [6,7], and
the periodic actuation of single or multiple cilia or flag-
ella [8–10]. Such cellular appendages represent universal
building blocks of life that enable cells and microbes to
sense and interact with their environment. The fast and co-
ordinated actuation of the two flagella of Chlamydomonas
reinhardtii [11–16], which is capable of propelling the cell
body in a liquid medium [17,18], has received ample attention
recently as a prime model system. Chlamydomonas dwells
in complex geometric confinement [19] and exhibits light-
regulated and flagella-mediated adhesion to surfaces, i.e., the
cells may transition from the free-swimming state to a surface-
associated state [20,21]. Even in the latter state, the cells are
not static: an intraflagellar transport (IFT) machinery [22]
translocates the cell body along the flagella [23], a process
termed gliding motility [24,25]. However, the purpose of this
gliding motility to date “still remains a mystery” [19].
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The biological process of gliding motility is based on a
set of glycoproteins that mediate the adhesion between the
surface and the flagella membrane [23,24]. However, these ad-
hesion sites are attached to IFT trains and can be translocated
through molecular motors towards the cell body, effectively
pulling the cell body towards adhesion sites [23]. Since these
forces are applied on both flagella, the cell can experience
a stochastic force in either direction. In addition, occasional
elevation of Ca2+ on one of the flagellum, transiently clears
the IFT trains causing the cell to move rapidly away from the
activated flagellum [26,27]. However, it has been shown that
a Ca2+ signal can be induced by exerting a mechanical stress
on the flagellum [26], reminiscent of mechanosensing.

In this Letter, we demonstrate that gliding motility en-
ables surface-associated Chlamydomonas cells to cluster and
form compact, interconnected microbial communities. We
analyze the statistics of cell trajectories and characterize
the spatiotemporal evolution of the cell positions within the
population using two-dimensional Minkowski functionals.
Simulations successfully capture the nonrandom cell positions
for different cell densities from very dilute systems of merely
isolated cells to densely packed monolayers. These simula-
tions go well beyond a purely mechanistic approach, which
we show fails at capturing the experimental data, and include
cognitive forces to recover the spatiotemporal dynamics of the
cell population.

Experiments. Experiments are performed using suspen-
sions of motile cells confined in a liquid film that is supported
by a glass surface, on which the cells may adhere upon a
switch from red to blue light [20]; see Fig. 1(a). We use
the wild-type Chlamydomonas reinhardtii strain SAG11-32b,
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FIG. 1. (a) Experimental setup: A Chlamydomonas suspension
is confined between glass and air. A second glass slide seals the sus-
pension to prevent evaporation. The cells adhere to the bottom glass
slide when illuminated with blue light (top illumination). (b) Upon
adhesion Chlamydomonas flagella orient in the 180◦ gliding configu-
ration. (c),(d) Snapshots of the cell population at early (t = 100 s) and
late times (t = 1800 s). Colored tracks represent cell displacements
over 5 s. Over time the cells form large-scale structures.

which we cultivate axenically in tris-acetate-phosphate (TAP)
medium on a 12-h/12-h day/night cycle following estab-
lished recipes [20]. The surface-adhered cells are observed
using bright-field video microscopy in inverted configuration
(Olympus IX-83) while being illuminated from the top using
narrow bandpass filters for red (λ = 671 ± 6 nm) light before
adsorption and blue light (λ = 470 ± 6 nm) to induce surface
adhesion. After the surface association process, most cells
have achieved the gliding configuration with both flagella in a
widespread 180◦ configuration; see Fig. 1(b). Time-resolved
cell positions are recorded using a monochromatic camera
(FLIR Systems, GS3-U3-41C6M-C, 2048×2048 pixels) at
5 frames per second and analyzed using digital image pro-
cessing following established cell tracking protocols [28]. We
find that the population exhibits a relatively high activity
during which cells adsorb to the glass substrate and eventu-
ally a plateau cell density is achieved; see Fig. 1(c). Using
the displacement of the cells, we observe that this overall
activity decays over time and the cells reach quasistatic po-
sitions, which differ from their initial adsorption sites and
show distinct signatures of clustering and compactification;
see Fig. 1(d). We now dissect the link between cell motility
and clustering by (a) characterizing the motility signatures
on the single-cell as well as on the population level and (b)
analyzing the cell positions from a morphological perspective.

We start with single-cell tracking, and extract position,
velocity and directionality of the cell’s motion. We find that
the cell velocity exhibits distinct bursts of activity followed
by pause periods [see Fig. 2(a)], which is likely reminiscent
of the tug of war of active IFT trains on both flagella [23]; in
the following we refer to these bursts of activity as “intermit-
tency.” As a result of the specific gliding configuration of the

FIG. 2. (a) The motion of a single cell is characterized by abrupt
displacements followed by periods of diminished activity. The glid-
ing configuration of the flagella induce a preferred direction of
motion, as shown for the measured orientation of one cell over 2663
frames (see inset). (b) Experimental (blue diamonds) and cognitive-
model simulated (red line) mean-squared velocity at a filling fraction
of � = 22%. (c) Population-averaged mean squared displacement of
the cells (blue diamonds) and best fit (orange line) to Eq. (1) at a
filling fraction of � = 32%.

two flagella, the directionality of the motion is predominantly,
but not exclusively, constrained to the initial angle of flagella
orientation with respect to the laboratory frame; see inset of
Fig. 2(a). On occasion, one flagellum might also transiently
detach, which may result in reorientation events [23]. In order
to characterize the spatiotemporal evolution and statistics of
cell trajectories, we employ population-averaged quantitative
measures. The mean-squared velocity (MSV) is found to
decrease exponentially, exhibiting a cell density-independent
decay time τ of about 390 ± 50 s with maximum and min-
imum squared velocities of about v2

max = 13 ± 1 μm2 s−2

and v2
min = 1.2 ± 0.2 μm2 s−2, with the latter matching the

speed of a single dynein motor [29]; see Fig. 2(b). In addition,
we quantify the orientation of the cells using the orien-
tation autocorrelation function (OACF), 〈êφ (t0) · êφ (t0 + t )〉,
where êφ is the orientation of the flagella (see Supplemen-
tal Material [30]). We find that the orientation decorrelates
on characteristic timescales of tens of seconds, which is a
result of transient flagella de- and reattachment events and
reorientation during gliding [23]. Specifically, the OACF de-
cays with a characteristic time τD, which is measured as
OACF(τD) = 1/e, and is related to the orientational diffusion
constant Dr = τ−1

D (see Fig. S1 in [30]). By calculating τD

at different times t0 of the experiment, we find that τD pro-
gressively increases, indicating that the cells rotate less over
time. By considering the loss of activity from the MSV and
describing the single-cell motility as predominantly diffusive,
a superposition of both mechanisms provides an analytical
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(a) (b) (c)

FIG. 3. (a) Normalized area F and boundary length U at � = 12% and (b,c) normalized Euler number χ at (b) � = 12% and (c) � = 40%
for experimental data (blue line), cognitive-model simulated data (red line), and randomly distributed objects (black line). The positions of
cells (cell radius R) are dilated to discs with radius of dilation rD [inset in (a)]. The mechanistic model reproduces a random distribution and
it is insufficient to capture the experimental data [inset in (b)]. Experimental data at � = 40% are displayed at different times during the
experiment [inset in (c)]. (b) For low filling fractions, χ exhibits a distinct slope indicating local clustering. (c) For high filling fractions, it
exhibits a sudden decrease at low rD indicating that above the percolation threshold (� � 38%) there is a single global cluster.

description of the time-dependent mean-squared displacement
(MSD) as

〈r2(t )〉 = 2v2τTt, v2 = A1 exp (−t/τ ) + A0, (1)

where A0 and A1 are constants describing the activity of the
system, τ the decay time, and τT the reversal time. We find that
Eq. (1) describes the observed MSD, shown in Fig. 2(c), with
fitting parameters A1 = 4.2 ± 0.6 μm2 s−2 and τ = 248 ±
26 s, while A0 = v2

min is set as a fixed parameter obtained from
the MSV.

Morphological analysis. We find that the two-point correla-
tion function, which describe positional correlations between
objects, is insensitive to our experimental observations (see
Fig. S2 in [30]). Hence, we turn towards an alternative mor-
phological analysis of the spatiotemporal evolution of cell
positions. For different surface packing fractions, �, we cal-
culate the two-dimensional (2D) Minkowski functionals, i.e.,
area, boundary length, and Euler number [31]. Minkowski
functionals are elegant tools from integral geometry (per-
sistent homology) to dissect morphological information
regarding the evolution of object positions in space and time
and have been successfully applied to a plethora of sys-
tems, from nucleated holes in a liquid film [32], colloidal
suspensions [33], and soil structure [34] to galaxies in the
universe [35]. Detected cell centers are used as nuclei for
inflating 2D discs with radius rD; see inset of Fig. 3(a). At
different values of rD, the area, boundary length, and Euler
number are calculated. The latter is defined as the difference
between the number of connected regions and holes in a
binary 2D image. The normalized area F , boundary length
U , and Euler number χ (normalized with N (πr2

D), N (2πrD),
and N , respectively, where N is the total number of cells) are
shown in Figs. 3(a) and 3(b) in the case of an experimental
cell packing fraction of about 12%. Upon inflating the discs
the spatial connectivity of the 2D pattern typically changes
from isolated discs to connected areas, such that the Euler

value may become negative [36]. Normalization of rD using
the square root of the packing fraction,

√
�, and the cell radius

R allows us to compare different cell densities. We find that,
for small packing fractions, U , F , and χ show a distinctive
different behavior compared to a random distribution (see
Fig. S3 in [30]). However, this is not the case for large �

(see Fig. S4 in [30]), where only χ is robust to morphological
changes, thus we use it as our main tool for comparison.

This procedure is applied to the momentary cell positions
at any time, for which representative curves are shown as solid
(blue) lines in Figs. 3(b) and 3(c) for packing fractions of
12% and 40%, respectively. At all times, the experimentally
obtained cell positions are at variance with a distribution of
randomly placed particles of the same density (dashed lines).
Notably, we find that for low cell densities [e.g., Fig. 3(b)] the
Euler number χ does not exhibit a time dependence: χ sharply
decreases when rD exceeds the cell radius R and exhibits a
minimum that is less pronounced and at a larger radius as
compared to the random distributed particles. While the Euler
parameter does not change over time for cell densities up to
� = 32%, we see a time dependency for filling fractions of
� = 38% and higher [see inset of Fig. 3(c)]: the minimum of
χ becomes successively more pronounced as time proceeds.
In general, as rD increases, the cell positions overlap pro-
ducing connected regions that reduce χ . The disk radius rD

corresponding to the minimum in χ indicates the typical inter-
cellular distance. A faster decrease of χ compared to a random
distribution means that there are significantly more cells with
a distance rD where this sudden decrease occurs, and is there-
fore indicative of the existence of clusters. For � � 32%, the
behavior of χ indicates local clusters, since the initial drop of
χ is due to the mean intercellular distance within the cluster,
while the secondary decrease to the shallow minimum is due
to the mean intercluster distance; see Fig. 3(b). However, for
� � 38%, there is a fully interconnected network, since the
sudden decrease and the minimum of χ occur at the same rD;
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see Fig. 3(c). The Euler number for a range of filling fractions
is shown in Fig. S5 in [30].

Simulations. To model the dynamics of the system, there
are several considerations. Figure 2(a) shows that the move-
ment of the cells is essentially confined to the direction of
the flagella êφ , which changes over time according to some
weak rotational diffusion. Furthermore, from the change in
MSV we can discern that the average kinetic energy of the
system decreases exponentially over time. To capture these
dynamics we propose the equation of motion based on a
purely mechanistic model,

mr̈i = −γ vi + θFtug,i +
∑

j

hi j, (2)

where ri is the position of cell i and vi its velocity; −γ vi

represents viscous damping of the liquid medium; Ftug,i is
the force generated by the flagella modulated by a coefficient
θ ≡ θ (t ) = θ0e−t/t0 + θ1, which decreases exponentially over
time; and hi j = k(ri j − Ri − Rj )r̂i j if ri j � Ri + Rj , hi j =
0 otherwise, are the purely repulsive harmonic interactions
among cells i, j at positions ri, r j , respectively, ri j = |ri j | =
|ri − r j |, r̂i j = ri j/ri j . The coefficients θ0 and θ1 were chosen
so that the average kinetic energy is the same as in the exper-
iments. The magnitude of the force on each flagellum, F1,2,
is independently drawn from an exponential distribution, and
their direction is parallel or antiparallel to the flagellar orienta-
tion; thus the total flagellar tug reads Ftug,i = (F1 − F2) êφ . We
integrate Newton’s equations for a polydisperse population of
cells [30] where each cell is subject to the force in Eq. (2) us-
ing standard methods [37]. As shown in the inset of Fig. 3(b),
this approach cannot capture the final cell configuration.

Inspired by the mechanosesning ability of the flag-
ella, we extend our simulation approach towards imple-
menting a mechanosensing mechanism [26,38], which we
term cognitive cell-cell interactions. Extending a recent
approach [39–41], we define a cognitive force associ-
ated to the cell’s mechanosensing and exploration of its
surroundings:

Fc ∝
〈

N
∑
n=1

fn(0) ln

(

n

〈
n〉
)〉

. (3)

The computation of Fc relies on the calculation of a
Boltzmann-Shannon entropy measuring the information con-
tent of the surrounding environment, specifically, the location
of the neighboring cells. This information is sampled sta-
tistically with N
 sampling Brownian trajectories emanating
from the current cell position and interacting (only via h)
with the other cells. The sampling trajectories collectively
form the “cognitive map” of each cell, whose average size
is equal to 11.9 μm, which corresponds to the average length
of the flagella. For details, see [30]. The force Fc in a given
direction fn(0) is weighted by the space available to the
sampling trajectories starting in the same direction fn(0). As
the Chlamydomonas cells exhibit clustering dynamics, we
propose that 
n has to minimize the available space around
the cells. The radius of gyration is a natural choice, and we
arrive at 
n = R2

max − R2
n, where R2

n is the square radius of
gyration associated to the trajectory n and R2

max the maximum
square radius of gyration for all N
 trajectories. Finally, the

FIG. 4. Absolute value of the minima of the Euler number |χmin|
at late times in the experiments (blue diamonds), from simulations
of the cognitive model (red circles), and for randomly distributed
particles (black dashed line). The errors of |χmin| are within the
symbol, and thus not shown.

cognitive force is projected onto the direction of the flag-
ella êφ , Ffl

c,i = (Fc,i · êφ )êφ , which replaces Ftug,i in Eq. (2).
The equation of motion for each cell in the cognitive model
reads as

mr̈i = −γ vi + θcFfl
c,i +

∑
j

hi j . (4)

Following the observed intermittency of the cells (see Fig. 2),
we apply the cognitive force Fc intermittently. At each time
step we draw a uniformly distributed random number r ∈
[0, 1] such that θc = 1 if r < [(v2

max − v2
min ) exp (−t/t0) +

v2
min]/v2

max, and θc = 0 otherwise.
Newton’s equations with the force in Eq. (4) for all cells

at any time step are integrated using standard molecular dy-
namics methods [37]. We find that the cognitive model can
reproduce both the MSV [Fig. 2(b)] and the morphologi-
cal features as measured by the three Minkowski functional
(Fig. 3), which was confirmed with a residual analysis (see
Fig. S6 in [30]).

Discussion. Overall, we use the depth of the minimum
of the Euler number, |χmin|, for quantitative comparison of
experimental data, randomly distributed objects, and theoret-
ical modeling, which is displayed in Fig. 4. For less dense
populations, |χmin| in experiments is found to be smaller than
for randomly distributed particles (with and without mech-
anistic activity). At a packing fraction � ≈ 34%, we see a
steep increase of the minimum, which eventually crosses the
random model prediction. This significant change in |χmin| is
accompanied by mesoscopic changes of the cell distribution,
where the local cell clusters become interconnected for pack-
ing fractions � > 34% (see Fig. S7 in [30]).

We can describe this change in global connectivity us-
ing percolation theory. Spherical 2D particles typically form
triangular lattices, which have a site percolation threshold
of 0.5 [42]. Using the random close packing of 2D spheres
�RCP = 82% [43], we estimate the percolation threshold for
our system to be �per = 41%. The difference with the ob-
served threshold can be attributed to the tendency of the cells
to cluster and the fact that our system does not form exact
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triangular lattices. This percolation threshold is quantitatively
captured by our model that incorporates cognitive forces (see
Fig. S8 in [30]).

The need to include cognitive forces in the model to re-
produce the clustering observed in the experiments indicates
that there is an active mechanism that drives the cells together.
As mentioned, a rapid cell motion is attributed to an elevated
Ca2+ signal in a flagellum that can be induced by mechanical
stresses [26]. A flagellum that has less available area around
it, due to the presence of other cells, will have fewer adhesion
sites with the substrate and thus experience smaller mechan-
ical stresses. However, a flagellum away from clusters will
have a larger available area and thus more adhesion sites,
leading to a higher mechanical stress exerted on the flagellum.
As a result, it will experience more frequent elevations of
Ca2+ signals causing it to move statistically away from diluted
regions, thus promoting cluster formation. Our cognitive force
offers an economic model of the sensory processes under-
pinned by the Ca2+ dynamics in the flagella, by identifying
the size of the cognitive map with the flagellar size.

Conclusion. In conclusion, we employed the Euler num-
ber, one of the three Minkowski functionals for 2D systems,

to dissect the role of gliding motility with regard to
the self-organization and clustering of surface-associated
Chlamydomonas cells. A cognitive-force model represent-
ing the flagellar exploration of available space and its
mechanosensory response can, in contrast to classical mech-
anistic approaches, reproduce the nonrandom cell positions
obtained in the experiments.

We find that the gliding motility is a key mechanism for
the formation of a compact monolayer of Chlamydomonas
cells on a surface, which represents a favorable configuration
for these photoactive microorganisms to perform photosyn-
thesis. Swimming motility assisted by phototaxis is essential
for Chlamydomonas in their natural habitats to map their
environment for light sources. Once the cells have found opti-
mal light conditions for photosynthesis, their gliding motility
mode enables the population to form compact surface-bound
monolayers for highly efficient light harvesting.
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