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Loss of material trainability through an unusual transition
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Material training is a method to endow materials with specific responses through external driving. We study
the complexity of attainable responses, as expressed in the number of sites that are simultaneously controlled.
With increased complexity, convergence to the desired response becomes very slow. The training error decays
as a power law with an exponent that varies continuously and vanishes at a critical threshold, marking the
limit of trainable responses. We study how the transition affects the vibrational properties. Approaching the
critical threshold, low-frequency modes proliferate, approaching zero frequency. This implies that training causes
material degradation and that training fails due to competing spurious low-frequency modes. We propose that
the excess low-frequency spectrum is due to atypical local structures with bonds that nearly align. Our work
explains how the presence of an exotic critical point affects the convergence of training, and could be relevant
for understanding learning in physical systems.
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Introduction. Networks are a common representation of
natural and engineered systems that process high-dimensional
set of inputs [1]. These include natural and synthetic neural
networks [2–4] that perform computations or store memo-
ries [5], regulatory networks [6], and more recently, elastic
and flow networks that encode complex responses [7–11].
A central challenge in these systems is understanding the
capacity of such networks, in terms of the complexity of the
responses that can be attained. It is not surprising that as the
difficulty of the response is increased, the system fails to yield
the desired behavior. These limitations can be either attributed
to the capacity of the network itself or the algorithm by which
the parameters are adjusted [12].

In this Letter we consider the capacity of mechanical net-
works that are trained through sequences of applied strains.
We build on recent work that demonstrated that disordered
networks can be trained with externally applied fields [11,13].
During the training the external driving generates stresses
which cause the network to remodel its structure through plas-
tic deformations. As a result the system evolves to yield the
desired response. Training can be considered a learning pro-
cess, where the material itself learns without the use of a com-
puter [14–17]. In contrast to designed structures, this approach
does not require fabrication, nor manipulating directly the
microscopic structure, and is therefore potentially scalable.

We focus on the convergence of the response as a
function of the number of target sites that are simultane-
ously controlled. As the number of target sites is increased,
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training becomes very sluggish. The training error decays
approximately as a power law with an exponent that varies
continuously with the number of trained sites. At a critical
threshold the exponent appears to vanish, indicating a phase
transition. Unlike conventional critical points, here, power
laws are observed over a broad range of parameters [18–22].
The transition also marks the limits of attainable responses.
We find that the capacity, defined by the number of sites that
can be simultaneously controlled, is approximately extensive,
scaling with system size.

We conclude by searching for a signature of this transition
in the vibrational properties. We find a substantial increase
in the low-frequency spectrum as complexity is increased.
The trained response can be associated with a single low-
frequency mode that is separated from the remainder of the
spectrum [23]. Here, failure is accompanied with a prolifer-
ation of low-frequency modes that compete with the desired
response. At criticality the density of states appears to creep
down to arbitrarily small frequencies. We provide evidence
that the excess low-frequency modes are due to nongeneric
geometries, characterized by bonds that align.

Model. We employ the model and training protocol of
Ref. [11], which is briefly summarized. We model an amor-
phous material as a network of springs in two dimensions.
The force on each spring is given by ki(�i − �i,0), where �i

is the length of the bond, �i,0 the rest length, and ki is the
spring constant. For convenience we consider networks that
are derived from the amorphous packing of repulsive spheres
at zero temperature. The networks are characterized by their
coordination number Z = 2Nb

N , where Nb is the number of
bonds and N is the number of nodes. Rigidity requires that
Z > Zc � 2d [24–27].

Our goal is to train responses where a single input strain at
a source site yields a prescribed strain on NT randomly chosen
target sites, as illustrated in Fig. 1. Each source and target site
is pairs of nearby nodes and the local strain is defined as the
fractional change in their distance. We denote that strain on
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(a) (b)

FIG. 1. An example of (a) an initial network and (b) a trained
network (with N = 500 nodes). Each pair of source sites and target
sites is marked by a connecting green and red line, respectively. The
response of the targets can either be in phase or out of phase with re-
spect to the source, as indicated by the arrows. In the trained network
the angles between adjacent bonds may become small (bonds with
θ < 10◦ are drawn in black). The left inset shows a structural motif
which has a soft direction (marked in red) when detached from the
network by cutting the blue bond. The right inset shows two coupled
motifs that contribute to localized low-frequency modes.

the source and target by εS and εT . The strain on both the
source and targets is chosen to have the same amplitude, εAge,
however, the response is chosen to be in phase or out of phase
with equal probability.

Training relies on plastic deformations that alter the struc-
ture of the network. Here, we only consider changes to the rest
lengths [28]. Each bond is modeled as a Maxwell viscoelastic
element [29], where the change in the rest length is propor-
tional to the force on the bond,

∂t�i,0 ∝ ki(�i − �i,0). (1)

We focus on the quasistatic regime, where the time to reach
force balance is small with respect to the timescales of plas-
ticity. In simulations time is discretized into small steps, where
at each step, we vary the strain, minimize the energy to reach
force balance, and then evolve the rest length in accordance
with Eq. (1).

The response of an elastic network is dominated by the
softest direction in the energy landscape, and therefore we
aim at sculpting an energy “valley” that couples the input
source site and an output target site. In our model, the rest
lengths evolve to lower the internal stresses and elastic energy.
Training an energy valley is therefore performed by cyclically
straining the source and targets along the desired response,
while allowing plastic deformation to sculpt the energy land-
scape. The source and target sites are strained by attaching
the pairs of nodes with “ghost bonds” and varying their rest
length.

Convergence and phase transition. To test the generality of
our results we consider both small and large �Z ≡ Z − Zc,
with corresponding values of �Z ≈ 0.03 and �Z ≈ 0.75,
respectively. In the small �Z limit the networks are nearly iso-
static, and elasticity is anomalously long ranged [30,31]. The
long-range response to pinching a bond has been shown to be
useful in coupling distant sites during training [11]. Therefore,
for large �Z training is only successful for a sufficient number
of targets [11]. Nonetheless, we find that the qualitative results
are similar.
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FIG. 2. Characterizing convergence as a function of the number
of targets per node, � = NT /N . (a) The training error as a function of
the number of cycles. With increased �, convergence becomes very
slow, decaying approximately as a power law. The dashed lines are a
guide to the eye. (b) The decrease in energy along the training path
is weakly dependent on NT . The exponent α as a function of � for
small (c) and large (d) coordination number. α appears to vanish at a
critical threshold that depends weakly on N . In (a) and (b), N = 500.

We characterize the convergence of the response by mea-
suring the error δε, defined as the difference in the absolute
value from the desired response. We average the error over an
entire cycle, where the strain is varied up to εAge, and over the
number of targets. Figure 2(a) shows δε/εAge as a function
of the number of training cycles for different numbers of
target sites NT , as conveniently indicated by � ≡ NT

N . As �

increases the convergence becomes slower and slower. At long
times δε decays approximately as a power law,

δε ∝ τ−α. (2)

Figure 2(c) shows that α depends on �; it decreases with
� and appears to vanish at a finite value �c. Exploring the
regime near �c is unavoidably difficult due to the slow con-
vergence rate.

We interpret the point � = �c as a critical point sep-
arating converging responses, from unattainable responses.
This transition is unlike conventional continuous phase tran-
sitions where power-law scaling occurs only at the critical
point. Here, over the entire range of � < �c convergence
scales as a power law, which implies extremely slow con-
vergence. Assuming we are satisfied with an error, δεm,
the time required scales as τ ∝ (δεm)−1/α . Taking α ∝ |� −
�c|β≈1 yields a Vogel-Fulcher-Tammann-like law [32–34]
τ ∝ eA|�−�c|−β

, where A = − log εm. This is far slower than
the power-law divergence in conventional phase transitions
τ ∝ |� − �c|−θ .

We note that similar behavior has been observed in an-
other class of nonequilibrium phase transitions, that separates
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a static absorbing phase from a chaotic phase [35,36]. The
directed percolation class has the characteristics of a critical
transition with power-law scalings, however, when quenched
disordered is added the nature of the transition changes and
there is a regime where activity decays as a power law with
a continuously varying exponent [18–22]. The effect where
disorder alters the pristine transition is known as a Griffiths
phase. The origin of this behavior can be traced to rare regions
that have an overwhelming contribution.

In our system, there is also a convergence to absorbing
states. Training reduces the energy along a prescribed path
until the energy vanishes. At that point, when there are no
longer any internal forces, the system ceases to evolve, thus
reaching an absorbing state. However, in contrast to the strong
dependence of the error on �, the decay of the elastic energy
shown in Fig. 2(b) is nearly independent of � and is rela-
tively quick, scaling approximately as τ−1. This suggests that
regardless of � the evolution of the networks slows down and
ultimately freezes.

Capacity. Next, we consider the system size dependence.
Figure 2(c) shows that for small �Z the exponent α is very
weakly dependent on system size. This suggests that �c is
approximately constant, implying the number of sites that
can be simultaneously trained is extensive, proportional to N .
Figure 2(d) shows α as a function of � for systems with large
�Z and for different system sizes. The exponent α is maximal
at an intermediate value of �; there, it depends weakly on
system size. We estimate �c(N ) by extrapolating to the point
where α vanishes and find that it slightly decreases with N .
Over a fourfold increase in system size, �c changes only
by approximately 13%. Thus, capacity is nearly extensive.
Despite this slight decrease of capacity with system size, the
large �Z networks have a larger �c than of the small �Z
networks.

We note that the (near) extensive capacity is different than
the subextensive scaling found in tuning networks by bond
removal and addition in Ref. [10].

Lastly, we note that there is an additional system dependent
timescale (see Sec. S4 in the Supplemental Material [37]),
which marks the crossover to the power-law regime. We find
that this timescale grows approximately as N≈0.6, implying
that larger systems take longer time to train (see Sec. S4 in
the Supplemental Material [37]). We rationalize this timescale
by noting that training is only successful when the stiffness
along the training path falls below the remaining transverse
stiffnesses, which are defined by the system’s eigenfrequen-
cies. The lowest frequency in the system on average decreases
with system size and therefore larger systems require more
training to further reduce the stiffness along the trained
path.

Normal mode analysis. As noted, the response depends on
the ratio of the stiffness in the transverse directions to the
stiffness along the trained path. Since the decay of energy in
Fig. 2(b) weakly depends on �, this suggests that transverse
stiffness becomes small. Within linear response, the stiffness
corresponds to the eigenfrequencies, which are characterized
by the density of states. To this end, we compute the Hessian
H , defined by the matrix of second derivatives of the energy,
and diagonalize it to find its spectrum. Previously it was found
that the lowest mode corresponds to the trained response [23],
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FIG. 3. Characterization of the vibrational properties. (a) The
evolution of the density of states with the number of cycles. For
small � the density of states ceases to evolve after τ ∼ 200 cycles,
while for larger � it continuously shifts to lower frequencies with
additional training. (b) A collapse of the density of states near the
transition (� = 0.2) suggests that the shift to lower frequencies
scales as ωc ∝ τ−0.25. (c) and (d) The density of states at a fixed
number of cycles, τ = 2 × 104 for different values of �. In (c),
�Z ≈ 0.03, while in (d), �Z ≈ 0.76. In both cases the shift to lower
frequencies grows with �. (e) The distribution of the angles (mea-
sured in degrees) between bonds for different numbers of cycles. (f)
The participation ratio before training (blue) and after 104 training
cycles (red). In (e) and (f), N = 1000, �Z ≈ 0.76.

and therefore the remaining frequencies correspond to the
transverse stiffnesses.

Prior to training there are very few modes below a char-
acteristic frequency, ω∗ ∝ �Z [38]. Figure 3(a) shows the
evolution of the density of states D(ω) for two values of �.
For clarity, we exclude the lowest-frequency mode associated
with the trained response. We observe two behaviors depend-
ing on the distance to �c. Near �c there is a continual shift
towards lower frequencies with the number of cycles, whereas
away from �c the density of states is nearly stationary after
about ∼200 cycles. To probe the evolution of the density of
states near the transition we collapse the curves at low fre-
quencies. Figure 3(b) shows that the shift to lower frequencies
scales approximately as τ−0.25, suggesting a continual shift to
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zero frequency. This feature is not present in previously found
Griffiths phases.

Next, we study the dependence of the density of states on
� at fixed τ . Figures 3(c) and 3(d) show the density of states
for small and large �Z correspondingly. In both cases, as �

increases there is a shift towards lower frequencies. The trend
is suggestive that asymptotically, at �c the density of states
extends to zero frequency. At small frequencies, D(ω) can be
fitted by ω−0.5.

The enhanced low-frequency spectrum explains how train-
ing fails. As noted, the response is governed by the ratio of the
stiffness along the trained direction and the transverse stiff-
nesses. The proliferation of low-frequency modes indicates
that there are many competing spurious modes. Therefore,
more training cycles are needed to decrease the stiffness along
the training path. In the Supplemental Material [37] we show
the error scales as the ratio of the two lowest frequencies
squared. We also note that retraining a material repeatedly also
results in an excess in the low-frequency spectrum [23].

Structural features and nature of low-frequency modes.
Next, we search for the origin of the excess low-frequency
modes in the structure. Figure 1 shows the network before
[Fig. 1(a)] and after training [Fig. 1(b)]. In the trained network
some of the angles between bonds becomes very small. Prior
to training the smallest angle formed by adjacent bonds is
θ ≈ 39◦. As shown in Fig. 3(e) the distribution at a small
angle becomes pronounced with increased training, especially
for large �. To relate the small angles to the low-frequency
modes, we note that an unstressed bond assigns an energy
cost for node displacements that alter the bond’s length.
This can be considered a constraint on the zero-energy mo-
tions. When two bonds align (θ = 0, π ) these two constraints
are redundant, reducing the stiffness along the transverse
direction.

We have identified local structural motifs where bond
alignment leads to soft deformations. We illustrate this in
the example shown in the inset of Fig. 1(b) (left). In the
absence of the bond by which the motif is attached to the
network (marked in blue) the transverse motion is soft, but
constrained when the bond is present. However, two motifs
can couple [see the inset of Fig. 1(b) (right)] to form a soft
energy deformation. If the bonds in the motifs perfectly align
this leads to a local zero mode. The motif where all the bonds
of a given node align yields a soft deformation, however, this
motif is rare. Thus, through individual and coupled motifs the
eigenfrequencies are shifted to lower values.

We also characterize the low-frequency modes by comput-
ing the participation ratio Pr (see Sec. S5 in the Supplemental
Material [37]). As shown in Fig. 3(f), Pr of the trained network
decreases over the whole frequency range. We associate the
increased localization with local soft motifs. In addition, and

similarly to the untrained network, there are also extended
modes. An additional discussion on the soft motifs and normal
modes is provided in the Supplemental Material [37].

We consider the enhancement of the low-frequency spec-
trum as degradation. The shift towards lower frequencies
implies that there is an overall softening of the system. In the
Supplemental Material [37] we show that both the bulk and
shear modulus decrease with the number of training cycles,
in particular near �c. We therefore believe that this transition
could be of interest in studying aging under a periodic drive
(or material fatigue).

Conclusions. In summary, we have studied the effect of
varying the complexity of the trained responses. The most
prominent behavior is that convergence becomes very slow
with increasing difficulty, manifesting through a power-law
decay of the error. At a critical threshold the exponent van-
ishes, implying that the convergence time diverges with a
Vogel-Fulcher-Tammann-like law. At small �Z we find that
the critical threshold �c is independent of system size, im-
plying that responses with an extensive number of sites can
be trained. At larger connectivity the capacity appears nearly
extensive, with a weak system size dependence.

To characterize the transition we also studied the density
of states and the normal modes. With increased difficulty,
the density of states creeps towards lower frequencies. Near
the transition it appears that the low-frequency modes reach
arbitrarily small frequencies with sufficient training. We show
that the growing number of lower-energy modes compete with
the desired response. The system cannot distinguish between
the trained response and the spurious low-energy modes. We
have also studied the structural source of the low-frequency
modes and characterized the eigenmodes.

Our work demonstrates how an exotic critical point affects
training. The nearness to the critical point defines a difficulty
measure, and while we have focused on the number of tar-
gets, the difficulty of the trained response could have other
contributions, including the nonlinearity of the response [39]
or its strain amplitude. With increased difficulty, there is also
an increase in degradation, marked by the enhanced low-
frequency spectrum. This could affect the robustness of the
response as well as the number of times the system can be
retrained [23]. It is interesting to question the universality of
this type of transition, and whether it applies to other forms
of training. In particular, since training is intimately related to
learning [14–17], perhaps a similar transition occurs in other
learning algorithms.
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