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Experimental determination of a multiqubit ground state via a cluster mean-field algorithm
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A quantum eigensolver is designed under a multilayer cluster mean-field (CMF) algorithm by partitioning
a quantum system into spatially-separated clusters. For each cluster, a reduced Hamiltonian is obtained after
a partial average over its environment cluster. The products of eigenstates from different clusters construct a
compressed Hilbert space, in which an effective Hamiltonian is diagonalized to determine certain eigenstates of
the whole Hamiltonian. The CMF method is numerically verified in multispin chains and experimentally studied
in a fully-connected three-spin network, both yielding an excellent prediction of their ground states.
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Introduction. At the dawn of a quantum computing era,
applications on quantum simulation and beyond have at-
tracted much attention of the whole quantum community.
For example, mixed quantum-classical algorithms have been
proposed in the goal of solving unaffordable quantum chem-
istry problems with quantum computers [1–9]. A variational
quantum eigensolver (VQE) was successfully implemented in
the determination of electronic states for a hydrogen molecule
and multiatom hydrogen chains [1–4]. The adiabaticity and
shortcut-to-adiabaticity (STA) in analog and digitized designs
[5–8] can also be used in the quantum eigensolver, where an
eigenstate of the target Hamiltonian is obtained by dragging
an eigenstate of an initial Hamiltonian through an adiabatic
or STA trajectory. Recently, we proposed a “leap-frog” algo-
rithm via the digitized STA and adiabaticity [9]. Through
a segmented trajectory of traveling intermediate states, our
leap-frog method allows an efficient and reliable quantum
eigensolver.

In the architecture of quantum computing, the eigen-
structure of a 2N -dimensional (2N -D) Hilbert space can be
determined in an N-qubit quantum device. However, the num-
ber of quantum gates in a digital quantum algorithm quickly
increases with the number of qubits [10,11]. In addition, a
multiqubit quantum gate is realized through a combination
of single- and two-qubit gates [12] but the number of the
combining gates increases with the gate size. The cost of
quantum computing increases in company with the decrease
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of the fidelity so that a practical quantum eigensolver is still
limited by the system size.

To improve this problem, some techniques have been de-
veloped, such as simplifying the specific target system [13],
optimizing a particular algorithm of diagonalization [14]. A
more general approach is to apply the idea from the clas-
sical field to reduce the computational dimension, such as
the Krylov method [15–17], the divide-and-conquer method
[18], and cluster-based methods. In the fields of physics and
chemistry, cluster-based methods have been applied on var-
ious problems [19–22]. The concept of block spins was
proposed to understand critical phenomena of the Ising model
[19]. The clustering methods are also utilized in the quantum
chemistry computation [20–22]. In the density matrix renor-
malization group (DMRG), the compression of the Hilbert
space is realized by the diagonalization of reduced density
matrices [20,21].

In this paper, we apply a multilayer cluster mean-field
(CMF) theory [22] to build a new quantum eigensolver,
from which the eigenstructure of a large-scale system can be
reliably and efficiently determined in a much smaller-scale
quantum device. The product states combined from the eigen-
states of reduced cluster Hamiltonians define a compressed
Hilbert space, in which the effective Hamiltonian is diago-
nalized for the eigensolver. This CMF method is numerically
verified in N-spin chains and experimentally implemented in
a fully-connected three-spin system, both yielding high fideli-
ties for the extracted ground states.

Theory. In a general multi-electron system, the second
quantized Hamiltonian can be transformed into a multi-spin
form,
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FIG. 1. (a) A schematic diagram of a multilayer CMF algorithm.
(b), (c) The numerical calculation of this CMF method for the N-spin
systems [the Hamiltonian in Eq. (3)]: (b) the fidelity F theo

g of the
ground state and (c) the energy difference �Eg = |E theo

g − E exact
g | be-

tween calculation and exact results. The red, green, and blue circles
denote the numerical results of the CMF with 8, 16, and 24 product
states applied to construct a compressed Hilbert space while the solid
lines denote the exact results.

through a fermion-to-spin mapping method such as the
Bravyi-Kitaev transformation [23]. Here {σ a

i = Xi,Yi, Zi} is
the set of the Pauli matrices acting on spin i and the coeffi-
cients {g(0), g(1), g(2), . . .} describe the strengths of (multi)spin
interactions. To keep its generality, Eq. (1) is allowed to in-
clude an arbitrary N ′(�N )-spin interaction.

To extract the exact eigenstates and eigenenergies (|�n〉
and En) of the Hamiltonian in Eq. (1), we require a diag-
onalization tool in a 2N -D Hilbert space. Instead, a CMF
method can realize an approximate but reliable eigensolver
in a highly compressed space. For simplicity, we assume that
an N-spin network is divided into two clusters, each with NA

and NB(=N −NA) spins. For a given NA, the total choices of
cluster partitioning are Mmax = CN

NA
but a practical number M

can be much smaller than Mmax.
We interpret our CMF method as follows [see Fig. 1(a)].

For a given A-B partition, we inspect the two clusters sep-
arately. For cluster A, the rest part of the spin network
(cluster B) is viewed as its environment. After a partial
trace over a specific B-state |ϕα

B〉, a reduced Hamiltonian
Hα

A = 〈ϕα
B |H |ϕα

B〉 is constructed and its diagonalization leads
to a set of eigenstates {|ϕiα

A 〉} and eigenenergies {εiα
A }, i.e.,

Hα
A = ∑

i ε
iα
A |ϕiα

A 〉〈ϕiα
A |. The same approach can be applied

vice versa. With respect to an A-state |ϕβ
A 〉, the reduced

B-Hamiltonian Hβ
B = 〈ϕβ

A |H |ϕβ
A 〉 is diagonalized into Hβ

B =∑
j ε

jβ
B |ϕ jβ

B 〉〈ϕ jβ
B |. The two sets of product states, {|ϕiα

A 〉 ⊗
|ϕα

B〉} and {|ϕβ
A 〉 ⊗ |ϕ jβ

B 〉}, from all the necessary cluster par-
titions are mixed together to form a basis set of {|ψγ 〉} for a
compressed Hilbert space. To capture a mean-field spirit, we
expect that all the states are self-consistently determined, i.e.,
{|ϕiα

A 〉} = {|ϕβ
A 〉} and {|ϕ jβ

B 〉} = {|ϕα
B〉}. Although the recursive

iteration with both the ground and excited states included
leads to more and more states, a limited number of relevant

states are empirically selected. At the final step, irrelevant
states are discarded and the Schmidt orthogonalization [24] is
used to extract an orthonormal basis set {|ψS

γ 〉}. An effective
Hamiltonian,

Heff =
∑

γ γ ′
Hγ γ ′

∣∣ψS
γ

〉〈
ψS

γ ′
∣∣ (2)

with Hγ γ ′ = 〈ψS
γ |H |ψS

γ ′ 〉, is thus defined. The digonalization
of Heff provides a good estimation of certain eigenstates |�n〉
and eigenenergies En. If the number of the product states
associated with each cluster partition is J , the dimensionality
of the compressed space is MJ , which can be significantly
smaller than 2N . The partition can be subsequently ap-
plied to clusters A and B, e.g., A = a1 ⊕ a2 = a′

1 ⊕ a′
2 = · · · ,

which eventually leads to a multilayer CMF algorithm [see
Fig. 1(a)]. Relatively speaking, our CMF method takes a
top-down strategy by flexibly partitioning a large system into
small clusters based on mean-field effect while the DMRG
takes a bottom-up strategy by extending the system size with
the increment of boundary spins.

Numerical study. To demonstrate the applicability of this
CMF method, we numerically calculate the ground state |�g〉
and its eigenenergy Eg of an N-spin chain whose Hamiltonian
reads [4]

H =
N∑

i=1

g1Zi +
N−1∑

i=1

g2XiXi+1. (3)

In our numerical calculation, the chain length is set to be
3 � N � 12 while the two parameters are fixed at g2/g1 =
2. For each N-spin chain, we consider several choices
of cluster partitioning, {A = {s1, s2}, B = {s3, · · · sN }}, {A′ =
{s1, s2, s3}, B′ = {s4, · · · sN }}, and {A′′ = {s1, s2, s3, s4}, B′′ =
{s5, · · · sN }} · · · , where si denotes the ith spin. Taking the
first cluster partition as an example, we show the numeri-
cal approach in detail. In the first stage, an initial B-state,
|ϕB〉 ∝ ∏N

n=3(|+〉 + |−〉)n, is used to obtain a reduced A-
Hamiltonian,

HA = ε̄A + g1Z1 + g1Z2 + gA
1X2 + g2X1X2 (4)

with ε̄A = ∑N
n=3 g1〈ϕB|Zn|ϕB〉 + ∑N−1

n=3 g2〈ϕB|XnXn+1|ϕB〉
and gA

1 = g2〈ϕB|X3|ϕB〉. Due to the final goal of calculating
|�g〉, we only select two A-eigenstates, the ground and first
excited states of HA, i.e., {|ϕβ

A 〉 = |ϕg
A〉, |ϕe

A〉}. In the second
stage, two B-Hamiltonians,

Hβ=g,e
B = ε̄B + gB

1X3 +
N∑

n=3

g1Zn +
N−1∑

n=3

g2XnXn+1, (5)

are extracted with respect to these two A-eigenstates. The
two parameters are given by ε̄B = g1〈ϕβ

A |Z1 + Z2|ϕβ
A 〉 +

g2〈ϕβ
A |X1X2|ϕβ

A 〉 and gB
1 = g2〈ϕβ

A |X2|ϕβ
A 〉. The diagonaliza-

tion of Hβ=g,e
B leads to four (ground and first excited)

B-eigenstates, |ϕ jβ
B 〉 with j = {g, e}. In the third stage, we use

these four B-states |ϕα
B〉 (α = gg, ge, eg, ee) as the environment

states and calculate eight A-eigenstates |ϕiα
A 〉 (i = g, e). To

avoid the growing number of states, we stop at this stage and
discard four crossing terms. The four remaining products are
|ϕiα

A 〉 ⊗ |ϕα
B〉 with {i = g, α = gg, ge} and {i = e, α = eg, ee}.
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After including the relevant product states from the other
cluster partitions, the Schmidt orthogonalization is applied to
construct a compressed Hilbert space. The ground state |�g〉
and its eigenenergy Eg are then determined by the diagonal-
ization of Heff in Eq. (2).

In the case of N (>4)-spin chains, the two-layer approach is
utilized. When one, two, or three types of cluster partitions are
chosen, related basis states are the 8, 16, or 24 product states.
We give a detailed cluster partition and complex analysis in
the Supplemental Material [25]. The numerical results are
presented in Figs. 1(b) and 1(c). We introduce a fidelity
function, F theo

g = |〈�exact
g |� theo

g 〉|2. As shown in Fig. 1(b),
the CMF predictions are excellent, satisfying F theo

g (3 � N �
8, 8 basis) > 99.4%. When the total number of spins in-
creases, the state fidelities in an 8-D Hilbert space would
decrease. However, we can select more product states as basis
states of the compressed Hilbert space to obtain high-fidelity
results (F theo

g (8 � N � 12, 24 basis) > 99.0%). As shown in
Fig. 1(c), the accuracy of the ground state energy Eg is even
higher (�Eg(3 � N � 12) < 0.01).

Experimental study. Next we use a two-qubit device to
extract |�g〉 and Eg of a fully-connected three-spin system
as an experimental demonstration of the CMF algorithm.
Due to the restriction of our current setup, it is difficult
for us to reliably explore larger systems which will be left
in the future. Our quantum device is composed of two su-
perconducting cross-shaped transmon qubits [26–28]. The
ground and excited states of each qubit are one-to-one mapped
onto the spin up and down states, i.e., |0〉↔|+〉 and |1〉↔
|−〉. The operation points of the two qubits are ωa/2π =
5.46 GHz and ωb/2π = 4.92 GHz, while their anharmonici-
ties are �a/2π ≈ �b/2π = −250 MHz. The relaxation times
are Ta;1 = 16.1 µs and Tb;1 = 26.5 µs, and the pure dephasing
times are Ta;φ = 20 µs and Tb;φ = 45 µs. The readout fidelities
of the ground and excited states are {Fa;0 = 99%, Fa;1 = 93%}
and {Fb;0 = 96%, Fb;1 = 94%}.

The Hamiltonian of the three-spin system being studied is

H = g1(Z1 + Z2 + Z3) + g2(X1X2 + X2X3) + g3X1X2X3,

(6)

where the three-spin interaction X1X2X3 increases the diffi-
culty of the eigensolver. In this Letter, two sets of experiments
are performed to explore the influences of g2/g1 and g3/g1

separately. To visualize our experimental procedure, we take
g2/g1 = 1.0, g3/g1 = 0.1 as an example and provide the
stage-by-stage results in Fig. 2. (i) We treat spins one and two
as cluster A and spin three as cluster B. With an initial guess of
the B-state, |ϕB〉 = |1〉, a reduced A-Hamiltonian is obtained
as HA = H0

A + gA
1X2 + gA

2X1X2 with H0
A = ε̄A + g1Z1 + g1Z2.

Here the B-averaged parameters are ε̄A = g1〈ϕB|Z3|ϕB〉, gA
1 =

g2〈ϕB|X3|ϕB〉 and gA
2 = g2 + g3〈ϕB|X3|ϕB〉. The ground state

of HA is experimentally determined by a leap-frog algorithm
via the digitized STA and adiabaticity [25]. With two varying
parameters λ1 and λ2, the A-Hamiltonian is extended to be

HA(λ1, λ2) = H0
A + λ1gA

1X2 + λ2gA
2X1X2. (7)

As shown in Fig. 2(a), we begin with an initial
Hamiltonian H0

A = HA(λ1 = 0, λ2 = 0) and prepare its
ground state |ϕg

A(H0
A )〉 = |11〉. A four-step digitized STA is

step

step

stepstep

exact

CMF/exp.

(a) (b)

(c) (d)

(e)

leap-frog
STA

leap-frog leap-frog

VQE

× ×× ×

FIG. 2. A four-stage CMF experiment to determine the ground
state |�g〉 for the three-spin Hamiltonian in Eq. (6) with g2/g1 = 1.0
and g3/g1 = 0.1. (a) The first-stage eigenenergy evolution in a three-
segment leap-frog determination of |ϕg

A〉 for a reduced A-Hamiltonian
HA. (b) The second-stage eigenenergy evolutions in the digitized STA
determination of |ϕg

B〉 and |ϕe
B〉 for the subsequent B-Hamiltonian

HB. (c), (d) The third-stage eigenenergy evolutions in the leap-frog
determinations of (c) |ϕgg

A 〉 and (d) |ϕee
A 〉 for Hg

A and He
A, respectively.

The cluster partition is shown in the inset of each panel. In (a), (c),
and (d), each cross labels a segment boundary in the three-segment
leap-frog algorithm. (e) The fourth-stage eigenenergy evolution in
the VQE determination of |�g〉 for the 4D effective Hamiltonian
Heff . The inset shows the structure of Heff (Eq. 2). In each panel,
the symbols denote the experimental results and the solid horizontal
lines label their exact values.

applied to drag this state to the ground state |ϕg
A(H1

A )〉 of
an intermediate Hamiltonian H1

A = HA(λ1 = 0, λ2 = 0.1).
Subsequently, two digitized adiabatic processes realize an
evolution of |ϕg

A(H1
A )〉 → |ϕg

A(HA(λ1 = 0, λ2 = 0.5))〉 →
|ϕg

A(HA)〉. The theoretical prediction of the final state fidelity
is F theo

g = 99.9% while the experimental determination is
at F exp

g = 98.6%. (ii) In the second stage [see Fig. 2(b)],
we input the previous A-state |ϕg

A〉 and calculate the
B-Hamiltonian, HB = H0

B + gB
1X3 with H0

B = ε̄B + g1Z3.
Here ε̄B and gB

1 are two A-averaged parameters. The ground
and excited states, |ϕg

B(HB)〉 and |ϕe
B(HB)〉, are experimentally

determined via the digitized STA from the two initial
states |ϕg

B(H0
B )〉 = |1〉 and |ϕe

B(H0
B )〉 = |0〉. The experimental

fidelities of these two B-eigenstates are F exp
g ≈ 99%. (iii)

In the third stage, the two B-states, |ϕg
B〉 and |ϕe

B〉, are used
to obtain two A-Hamiltonians, Hα=g,e

A = 〈ϕα
B |H |ϕα

B〉, which
are extended to the same form HA(λ1, λ2) as in Eq. (7)
but the B-averaged parameters are updated. As shown in
Figs. 2(c) and 2(d), the leap-frog algorithm is also applied to
experimentally determine the ground state |ϕgg

A 〉 of Hg
A and the

first excited state |ϕee
A 〉 of He

A. The experimental fidelities are
F exp = 99.2% and 96.4% while their theoretical predictions
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E
g 
/g 1

F g

g2 /g1

exact
CMF/num.
CMF/exp.0.0

0.5

1.0

P

0 20 2 0
Z-moment

2.01.00.1

(a) (b)

2

g2 /g1

FIG. 3. The CMF determination of (a) the fidelity of the ground
state |�g〉 and (b) the corresponding eigenenergy Eg for the three-spin
Hamiltonian in Eq. (6) with a fixed g3/g1 = 0.1 and a varying g2/g1.
The red lines and circles denote the numerical and experimental
results via the CMF method while the black lines denote the exact
values. In the inset of (a), the distributions of the Z moment are
shown for the experimentally determined |�exp

g 〉 with g2/g1 = 0.1,
1.0, and 2.0.

are both F theo = 99.8%. (iv) The above iteration stages lead
to two product states, {|ψγ=1,2〉 = |ϕgg

A 〉 ⊗ |ϕg
B〉, |ϕee

A 〉 ⊗ |ϕe
B〉}.

Following a symmetry argument, the other two product
states {|ψγ=3,4〉} are obtained for the cluster partition of
A′ = {spins 2, 3} and B′ = {spin 1}. The subsequent Schmidt
orthogonalization gives rise to four orthogonal basis states
{ψS

γ=1,...,4〉} and a 4-D effective Hamiltonian Heff . As shown
in Fig. 2(e), the experimental determination of |�exp

g 〉 is
converged over 70 ∼ 100 VQE steps, with a high fidelity
F exp

g = 95.4% as compared to the theoretical prediction
F theo

g = 99.3%. All the experimental states are measured by
quantum state tomography and then stored in the classical
computer for following calculations. A detailed cluster error
analysis is shown in the Supplemental Material [25].

In the first stage of our experiment, we only consider the
ground state of HA so that the total four product states arisen
from its first excited state are excluded. The inset in Fig. 2(e)
shows a schematic diagram of the effective Hamiltonian, from
which we find that |�g〉 can be obtained from the 3D or
2D spaces with F theo

g = 99.3% and 99.0%. Thus, a contin-
ued compression over the product states is allowed to further
decrease the cost of a CMF eigensolver.

In Fig. 3, we present our first set of the experimental
results of |�exp

g 〉 and E exp
g for a fixed g3/g1 = 0.1 and a

varying g2/g1 (= 0.1, 1.0, and 2.0) based on the CMF algo-
rithm. As compared to the exact ground state, the theoretical
predictions of the state fidelity is excellent (F theo

g > 99%)
while the experimental results are consistently high, F exp

g =
97.9%, 95.4%, and 95.4% [see Fig. 3(a)]. The same behav-
ior is found for the accuracy of E exp

g [see Fig. 3(b)]. In a
simplified scenario of g3 = 0, this three-spin system prefers
ferromagnetism along the Z direction for g2/g1 → 0 while
antiferromagnetism along the X direction in the opposite limit
(g2/g1 → ∞). The ground state thus experiences a transi-
tion from |�g(g2/g1 → 0)〉 = |111〉 to |�g(g2/g1 → ∞)〉 ∝∏3

i=1(|0〉 − (−1)i|1〉)i. From the quantum statistics in many
experiments, we measure the distribution of the total spin
moment Mj = ∑N

i=1 mi; j , where mi; j is the magnetic moment
of each ith spin along the j(= X,Y, Z ) direction. In the

E
g 
/g 1

F g

exact
CMF/num.
CMF/exp.

(a) (b)

g3 /g1 g3 /g1

0.0

0.5

1.0

P

0 20 2 0
Z-moment

2.01.00.1
2

FIG. 4. The CMF determination of (a) the fidelity of the ground
state |�g〉 and (b) the corresponding eigenenergy Eg for the three-spin
Hamiltonian in Eq. (6) with a fixed g2/g1 = 2.0 and a varying g3/g1.
The red lines and circles denote the numerical and experimental
results via the CMF method while the black lines denote the exact
values. In the inset of (a), the distributions of the Z moment are
shown for the experimentally determined |�exp

g 〉 with g3/g1 = 0.1,
1.0, and 2.0.

parameter range in our experiment, the entanglement of |�g〉
increases with g2/g1, indicated by a broadening distribution
of the Z moment MZ in the inset of Fig. 3(a).

In our second set of experiments, we fix g2/g1 = 2.0 and
consider three values of g3/g1 = 0.1, 1.0, and 2.0. As shown
in the inset of Fig. 4(a), the increase of g3/g1 also leads to
an extensive distribution of the Z moment. The same CMF
algorithm as in Fig. 2 reliably determines the ground states.
The experimental results of the state fidelities are presented
in Fig. 4(a), satisfying F exp

g = 95.4%, 94.0%, and 95.3% for
the three input parameters. The accuracy of the experimen-
tally extracted eigenenergy E exp

g follows the same trend [see
Fig. 4(b)].

Summary. In this Letter, we apply a multilayer CMF
method to design a new quantum eigensolver so that the eigen-
states of a large-scale quantum system can be determined by
a series of quantum computations over its clusters. For a pres-
elected cluster, certain eigenstates of its reduced Hamiltonian
are extracted via a quantum eigensolver (e.g., leap-frog, VQE)
after a partial average over an eigenstate of the environment
cluster. The products of eigenstates from different clusters
are used to construct a compressed Hilbert space, in which
the effective Hamiltonian is diagonalized to determine certain
eigenstates of the whole Hamiltonian. This CMF method is
numerically verified in the N (3 � N � 12)-spin chains with
two-spin interactions and further experimentally studied in the
three-spin chain with both two- and three-spin interactions.
The determination of the ground states in compressed spaces
provide an excellent prediction. The studies of the ground
states in this paper can be straightforwardly extended to the
excited states.

In addition to our CMF method, other ideas of compressing
Hilbert space can also be applied to the quantum eigensolver,
such as the divide-and-conquer method and Krylov method
[15–18]. Their practical realization needs to be further verified
experimentally. In principle, the divide-and-conquer method
divides Hamiltonian directly and generates basis by excitation
operations and the Krylov method generates nonorthogonal
basis by Krylov subspace span. Our CMF method with an
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intuitive physical picture might be more flexible in different
applications.

With a size increment of quantum devices, the CMF
method shows its theoretical promise to sufficiently large-
scale Hilbert spaces [29]. We also believe that our CMF
method deserves more thought when applied in a more ex-
tensive experimental implementation. For example, due to
the difficulty of large-scale quantum state measurement in
quantum device, measuring the elements of the effective
Hamiltonian instead of quantum states [30,31] or optimizing
quantum-state-tomography (e.g., shadow tomography [32]
and the probably approximate correct learning [33]) might
be further research directions in the future.
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