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Critical behavior of the three-state random-field Potts model in three dimensions

Manoj Kumar®,' Varsha Banerjee,” Sanjay Puri,? and Martin Weigel

1

Unstitut fiir Physik, Technische Universitiit Chemnitz, 09107 Chemnitz, Germany
2Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
3School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

® (Received 2 June 2022; accepted 12 October 2022; published 30 November 2022)

Enormous advances have been made in the past 20 years in our understanding of the random-field Ising model
(RFIM), and there is now consensus on many aspects of its behavior at least in thermal equilibrium. In contrast,
little is known about its generalization to the random-field Potts model (RFPM) which has wide-ranging applica-
tions. Here, we start filling this gap with an investigation of the three-state RFPM in three dimensions. Building
on the success of ground-state calculations for the Ising system, we use a recently developed approximate scheme
based on graph-cut methods to study the properties of the zero-temperature random fixed point of the system that
determines the zero and nonzero temperature transition behavior. We find compelling evidence for a continuous
phase transition. Implementing an extensive finite-size scaling analysis, we determine the critical exponents and

compare them to those of the RFIM.
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I. INTRODUCTION

Understanding the effect of quenched disorder on phase
transitions is crucial for many experiments, such as mag-
netic systems with impurities, and technological application
areas, such as quantum computers [1]. At the same time, past
progress in this direction has profoundly shaped the theory
of equilibrium and nonequilibrium statistical mechanics, and
theoretical concepts such as replica symmetry breaking and
the cavity method have found applications even in seemingly
distant fields such as gene regulation [2], neural networks [3],
and the modeling of bird flocks [4].

Most of the recent focus has been on spin glasses, where
competing and random interactions lead to a merely short-
range ordered state, as well as on random-field systems [5].
The latter are at the heart of such diverse problems as the
behavior of the quantum magnet LiHo, Y_,F,4 [6] and the ran-
dom first-order transition scenario in structural glasses [7,8].
For such problems, destruction of order is complete even for
weak fields in d = 2 dimensions (2D) [9,10], where ferro-
magnetic domains break up on length scales that vanish with
growing strength of the random fields [11]. For continuous
O(n) spins, the lower critical dimension is even elevated to
dy = 4. The random-field Ising model (RFIM), on the other
hand, orders at nonzero temperatures already for d > 3, and
the transition is of second order, at least for continuous field
distributions [12—14]. Hence, the proposal of dimensional re-
duction [15] suggested by field theory, where the RFIM in d
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dimensions would be in the universality class of the d — 2-
dimensional ferromagnet, does not apply in low dimensions
but is only recovered ford > d. ~ 5 [16-18].

Much less understood is the case of discrete spins with
more than two states, i.e., the random-field Potts model
(RFPM) [19,20]. The Potts model has a plethora of appli-
cations ranging from finite-temperature quantum chromody-
namics [21], over mixed antiferromagnets [22], orientational
glasses [23], to soap froths [24]. As disorder is inescapable,
the RFPM is of even greater relevance for their study. Ad-
ditionally, it is of profound theoretical interest since, in the
pure Potts model [25], the transition order can be tuned by
changing the number of states g, such that there is a line
2" (d) of tricritical points with ¢?"°(2) =4 [26,27] and
g2 (3) A 2.35 [28]. Since disorder tends to soften first-order
transitions [10,29], one expects a shift of the line g&" (d) to
qEF(d ). Just as for the RFIM, dimensional reduction is not
likely to hold in low dimensions [20]. Instead, one expects
[9,11] d; = 2, and hence absence of long-range order in 2D—
a scenario that we recently confirmed numerically [30]. A
plausible behavior of gRF(d) is then g*F(d — 2) — oo and
gRF =2 for d > 6 [20,31]. Even once g.(d) is known, how-
ever, one needs to ask whether, for all strengths A of random
fields, the first-order transition for d2"“(g) < d < dXF will be
softened. This would be the case for d = 2 [10], but there is
no ferromagnetic order there. In d > 2, one might expect a
line of tricritical points (or even two lines [32]) to appear in
the (A, T') plane, where the transition changes from first to
second order [32,33].

Very little is known about the details of this rich phase
diagram (but see Ref. [34]). The purpose of this Letter is to
address such issues for the physically most relevant system
of the ¢ = 3, d = 3 RFPM, which in experiments has been
used to describe trigonal-to-tetragonal structural transitions in
SrTiO;3 [35] when stressed along [111], and the mixed antifer-
romagnet Fe;_,Co,ClI, [36]. Such experimental systems show
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continuous transitions, but the theoretical situation is unclear
as for this case gRF > ¢gb™™® ~ 2.35. Some early simulational
work [37] found first-order transitions for all considered field
strengths, but later studies claimed a continuous transition
for intermediate fields combined with first-order behavior
for small and large fields [32,33]. This scenario agreed with
the prediction of Ref. [20] but contradicted Ref. [38], which
presented a 1/g expansion of the g-state RFPM in three di-
mensions (3D) and found a first-order transition for g > 3,
irrespective of the field strength. The question of a softening
of the discontinuous transition hence has remained undecided.

Due to frustration and the ensuing slow relaxation, Monte
Carlo methods are not very efficient in the presence of ran-
dom fields. For the RFIM, much of the recent progress in
understanding is due to the availability of efficient combi-
natorial optimization methods that allow one to find exact
ground states (GSs) in polynomial time [12,39-41]. Since
the relevant renormalization-group fixed point is located at
temperature 7 = 0, such GS calculations are also relevant
for the finite-temperature transitions. Unfortunately, the same
methods do not extend to the RFPM since the GS problem
is NP hard for g > 2 [39,42]. As we have recently shown,
however, combinatorial graph-cut methods [43,44] can still be
used in combination with embedding techniques to efficiently
compute high-quality approximate GSs [30,45]. To further
improve the accuracy, we run the GS method for n different
random initial spin configurations and extrapolate the ther-
modynamic quantities in the limit # — oo. The extrapolated
results enable us to uncover a clear-cut picture of the phase
transition.

II. MODEL AND METHODOLOGY
We consider the g-state RFPM with Hamiltonian [20]:

q—1
H=—TY 8= DY hian (1)
(ij) a=0

i

where 8, , is the Kronecker delta function, s; € {0, 1, ..., g9 —
1}, and {h} are uncorrelated, quenched random-field vari-
ables extracted from a standard normal distribution, i.e.,
P(h%) = 2 A?)~1/2 exp[—(h%)*/(2A?)], and A denotes the
disorder strength. For ¢ = 2, Eq. (1) maps to the RFIM at
coupling J/2 and field strength A /+/2 [30]. Note that different
couplings of random fields to the spins are possible as well
as different random-field distributions [31,32,34], but such
variations are left for future work.

We perform GS calculations for the ¢ = 3 RFPM on simple
cubic lattices of edge length L with periodic boundary condi-
tions. The number of disorder samples ranges from Ngmp =
50000 for L = 16 t0 Ngamp = 5000 for L = 96. Approximate
GSs are obtained using the algorithm described in Ref. [30]
that is based on an embedding of Ising spins into the Potts
variables in the spirit of the o-expansion method of Ref. [42].
For each disorder sample, we run our algorithm for » different
initial spin configurations and pick the run(s) resulting in the
lowest energy as the GS estimate. The success probability of
the resulting approach increases exponentially with n, such
that the method becomes exact for n — oo [45]. For each

sample, we determine the order parameter [25]:

gp —1 1
m(L, A, n) = =1 where p = Em(?XZi:(SS”“' 2)

Here, p denotes the density of spins in the majority orienta-
tion. Also, we measure the bond energy per spine; (L, A, n) =
- i 8sius; /L3 [46]. After performing the disorder average
[-]lay, we then deduce further quantities such as the Binder
cumulant associated to m, Us(L, A,n) =1 — [m4]av/3[m2]azv.
The employed definitions of the specific heat and magnetic
susceptibility will be discussed below. All statistical errors
were estimated using the jackknife method [47—49]. Estimates
for A, and the critical exponents are then extracted from the
scaling of observables at sequences of pseudocritical points as
well as from scaling collapses [50].

III. RESULTS

A. Extrapolation and transition order

To assess the quality of approximation, we first studied the
behavior of each quantity as a function of n. We generally find
a two-stage behavior, with an initial fast decay followed by a
much slower large-n convergence, which is well described by
the sum of two power laws [45]:

O, A,n) =an (1 +cn~) + O* (L, A), 3)

where b < e is the asymptotic, slow exponent, e describes
the initial fast decay, and O* denotes the limiting value for
n — 00. As was shown elsewhere, this form is quite generic,
and it holds particularly for a certain subset of samples for
which exact GSs are known [45]. For such exact samples of
size 16°, we employed our algorithm for up to n = 10* runs
and found that the residuals with respect to the exact results,
i.e., O(n) — O for any quantity scale as an~?(1 + cn™°),
with b >~ 0.02 and e ~ 0.5. This behavior is seen to extend
to the case where the exact results are not used or known
[45]. The value of b is found to be very stable in this regard,
such that we fix it for the subsequent fits of our main study
reported here, for which n < 100 [51]. We then perform joint
fits of the functional form in Eq. (3) to [m]ay, Us, and [e;]ay
for a common value of the exponent e, yielding extrapolated
estimates m*, U*, and e* for any fixed (L, A) (see Sec. S1 in
the Supplemental Material [52]). We prefix our analysis by a
study of the energetic Binder cumulant, whose scaling clearly
shows the behavior expected from a continuous transition, as
already reported for T > 0 in Ref. [31]; details are provided
in Sec. S2 in the Supplemental Material [52]. In the following,
we perform finite-size scaling (FSS) of all quantities for finite
n as well as for n — o0, to determine the transition point and
obtain the critical exponents.

B. Magnetization and Binder cumulant

In Fig. 1(a), we show the extrapolated magnetization m* as
a function of the disorder strength A for various lattice sizes
L. The expected FSS form [53]:

m*(L, A) = L™P" M[(A — ALY, (4)

implies that a plot of m*(L, A)LP/V against x = (A — ALY
should yield a collapse of datasets for small |x| for appropriate
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FIG. 1. Extrapolated estimates of the magnetization m*, the
Binder cumulant U*, the bond energy e¢* as well as the specific heat
C* as a function of A for various system sizes L.

values of A, v, and B/v. This is shown in Fig. 2(a). The col-
lapse with the least mean-squared deviation S from the master
curve [50,54] is obtained for A, = 1.606 £ 0.003, 1/v =
0.723 £ 0.004, and B/v = 0.0306 4+ 0.0023. We also per-
formed FSS of the magnetization for finite n = 1, 5, 10, 50,
and 100. As is clear from Table I, there is a weak dependence
of the estimates on n with a smooth convergence to the exact
limit n — oo.

Turning to the Binder cumulant, from Fig. 1(b), we see
a crossing of U*(L, A) = Us(L, A,n — 00) in the range
A, = 1.59-1.61, predicting the location of the critical point,
where Uy becomes system-size independent [55,56]. The FSS
form of U* is [S3] U*(L, A) = U[(A — A,)L'"]. As is seen
from the rescaled data in Fig. 2(b), a rather clean scaling
collapse is achieved for A, = 1.604(2) and 1/v = 0.720(6),
yielding an alternative and consistent set of estimates for A,
and 1/v.

C. Specific heat

Due to the restriction to 7 = 0 and the uniqueness of
the GS, it is not possible to define the specific heat from a

TABLE I. Estimates of A., v, and B/v according to Eq. (4) as
well as /v according to Eq. (9) extracted from scaling collapses of
the data for different n as well as the extrapolated data for n — oo
(Lynin = 24). S; and S, are the qualities of the collapses according to
Egs. (4) and (9), respectively (S ~ 1 for perfect collapses).

n A /v B/v v/ A\ A
1 1.636(2) 0837(9) 0.0460(9) 2.9084(14) 2.30 2.38
5 1.626(3) 0.812(6) 0.0403(8)  2.9220(15) 1.82 1.69
10 1.623(5) 0.828(15) 0.0387(7) 2.9230(15) 1.28 1.58
50 1.617(4) 0.797(4) 0.0340(8) 2.9323(16) 125 1.38
100 1.616(1) 0.774(6) 0.0330(10) 2.9337(15) 1.20 1.36
oo 1.606(3) 0.723(4) 0.0306(23) 2.9402(30) 0.82 0.87

temperature derivative or fluctuation-dissipation relation. In-
stead, a specific-heat-like quantity is given by the derivative
C(A) = d[ej(A)]aw/9A [46,57]. Numerically, we compute
this using the standard three-point formula at the midpoint
[58]. In Fig. 1(d), we show the extrapolated C*(L, A). As L
is increased, the peaks shift but only weakly vary in height,
indicating a small specific heat exponent «. To determine the
latter, we considered additional A values and used parabolic
fits C(L, A) = ap(A — Amax.c)> + Cmax to obtain the peak
locations Apax,c(L) and peak heights Cy,c(L). In a finite
system, the singular part of C(L, A) scales as [53] Cs(L, A) =
LYVC[(A — ALYV, If the maximum of C occurs for argu-
ment ay, then the positions in A shift as

Amax.c(L) ~ A +a L7V, ®)

and the maximum value of the singular part of the specific
heat Cy max (L) ~ L*/".

Figure 3(a) shows our data for Apa (L) together with
fits of the form in Eq. (5), indicating clear consistency.
The estimates of A. and the exponent 1/v are collected in
Table II, where we also indicate the quality Q; of these fits
[58]. In Fig. 3(b), we present the corresponding peak heights
Cmax (L, n). This plot clearly suggests that « is either positive
but very small or negative. As a consequence, scaling cor-
rections are relevant, and we hence considered the functional
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FIG. 2. (a) Scaling plot of m*(L, A)LP" vs (A — A,)LY" with
A, =1.606, 1/v =0.723, and B/v = 0.0306. (b) Scaling collapse

of U* vs (A — ALY,
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FIG. 3. (a) Shifts Apax.c(L) — A, of the pseudocritical fields of
the specific heat against L~'/¥ for different n, where A, and the
exponent 1/v are determined from fits of the form in Eq. (5), see
Table II. For increased clarity, the data for different n are slightly
shifted relative to each other. (b) Scaling of the maxima Cy,,(L) as
a function of L for different n. The curves correspond to fits of the
form in Eq. (6) to the data (cf. Table II).
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TABLE II. Parameters of fits of the functional forms in Egs. (5)
and (6) to the data for the specific heat. Q; and Q, refer to the quality
of fit [58].

n A, 1/v alv 1) o O
1 1.644(6) 0.850(70) 0.023(12) 2.67(87) 0.74 0.71

5 1.626(3) 0.774(32) —0.002(11) 2.62(68) 0.32 0.70
10 1.621(3) 0.767(25) —0.019(13) 2.39(61) 0.14 0.52
50 1.620(2) 0.776(21) —0.046(20) 1.87(53) 0.12 0.50
100  1.620(2) 0.780(21) —0.049(20) 1.86(52) 0.15 0.49
oo 1.611(4) 0.733(28) —0.059(20) 2.52(73) 0.14 0.93
form:

Cmax(L) = Co + 1 L (1 4+ c2L™*), ©6)

where w corresponds to the Wegner exponent, and Cy repre-
sents a nonsingular background term. Since o ~ 0 effectively
results in a second additive constant in Eq. (6), we cannot
reliably include all five parameters in the fit. We hence fix
Co = 0, and the resulting four-parameter fit yields excellent
qualities O, and the estimates of «/v and w collected in
Table II. We thus conclude that « is very slightly negative or
perhaps zero.

D. Susceptibility

We now turn to the connected and disconnected magnetic
susceptibilities. Since we operate at T = 0, we cannot use
the usual fluctuation-dissipation relation. As outlined in Sec.
S3 in the Supplemental Material [52], we generalize argu-
ments for the RFIM [59] to express the zero-field RFPM
susceptibility:

am (MM
(S| = [amedien =5 o

for Gaussian random fields as x* = [(m“)zi hf]av/Az,
where m* = Y",8;, ,/L* (see also Ref. [13]). We apply a
constant external field H to the spin state 1 (i.e., u = 1) to
break the symmetry so that x displays a peak. As is shown
in Sec. S3 in the Supplemental Material [52], a minimal field
strength oc L~3/2 is necessary to break the symmetry, and we
choose H(L = 16) = 8 x 1072. Due to the large sample-to-
sample fluctuations in x, we do not observe a systematic
variation of x (L, A, n) with n, such that, instead of an ex-
trapolation, we focus on n = 100. Figure 4(a) shows the
behavior of x (L, A,n = 100) as a function of A and for
various L. To analyze its divergence, we fit a parabola near
the peak and obtain the peak positions Apmax (L) as well
as the maxima of the susceptibility xmax(L). FSS predicts
that

XL, A)=L""¥(A — AHLV"],

Xmax(L) ~ LY. (8)

A power law fit of the form in Eq. (8) for yxmax(L)
yields y /v = 1.36(1) (Q = 0.034). Similarly, using the form
Amax.x(L) = A + a; L~V for the peak locations yields the
estimates A, = 1.621(5) and 1/v =0.97(5) (Q = 0.007).
The corresponding data are shown in Fig. S5(a) in the
Supplemental Material [52]. While the value of A, agrees
with that obtained from the specific heat (see Table II for

x(L.A)

A @a-ayL™

FIG. 4. (a) x(L, A,n =100) (on a log-linear scale) against A
and for different L (see key). (b) Data collapse of x (L, A) with the
exponent values in Table .

n = 100), the estimate for 1/v is noticeably larger than the
values from the magnetization and specific heat, indicative
of unresolved scaling corrections. To avoid this problem,
we performed additional simulations without external field
H at fixed A €[1.602,1.606], corresponding to the esti-
mate A, = 1.604(2) found above from U*(L, A). Here, we
find clean scaling, cf. Fig. S5(b) in the Supplemental Ma-
terial [52], and the fit parameters are collected in Table
S1 in the Supplemental Material [52], indicating little scal-
ing corrections in x, and the dependence of y/v on A is
only weak; we quote y/v = 1.51(6) at our best estimate
A, = 1.604 for Ly, = 16.

The additional length scale introduced by the disorder fluc-
tuations results in a different scaling behavior of the static,
disconnected susceptibility ygis = L¢[m?],y as compared to
the thermal, connected susceptibility x [60]:

Xais(Ly A) = L7 ¥qis[(A — AHL'Y]. )

We use this relation to perform a scaling collapse for the
extrapolated xj;. As is shown in Fig. 4(b), this leads to an
excellent scaling result; the exponents y /v, including those
for finite n, are provided in Table I, with y /v = 2.9402(30)
for n = co. The so-called two-exponent scaling scenario pre-
dicts y =2y [61,62]. From our data, we find the marginal
result 2y — )/v = 0.08(6). We can also investigate the va-
lidity of the Rushbrooke equality o +28 + y = 2 and the
modified hyperscaling relation 2 — o = v(d — 0) [60,63,64],
where 0 =2 — 4+ n = (y — y)/v. It can be inspected from
Tables I and II that both relations are well satisfied (within
error bars) by the results for infinite 7.

IV. CONCLUSIONS

We have presented a high-resolution numerical study of
the 3D three-state RFPM via a computationally efficient GS
method that uses extrapolation in the number n of initial
conditions to provide quasi-exact results. With the help of
FSS, all critical exponents, including the most elusive spe-
cific heat exponent «, are determined for finite as well as
infinite n, providing clear evidence for a continuous phase
transition in the vicinity of A, = 1.604(2). Given that we
are working at T = 0, it is hence clear that 3 = ¢ < ¢"F(3).
We have thus provided a comprehensive calculation of crit-
ical exponents. As the summary in Table III shows, these
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TABLE III. Critical exponents of the 3D ¢ = 3 RFPM as com-
pared with those of the RFIM [16].

RFIM g = 3 RFPM
v 1.38(10) 1.383(8)
o —0.16(35) —0.082(28)
B 0.019(4) 0.0423(32)
y 2.05(15) 2.089(84)
n 0.5139(9) 0.49(6)
i 1.028(2) 1.060(3)
0 1.487(1) 1.43(6)
a+28+y 2.00(31) 2.08(9)

are close to but likely distinct from the exponents of the
3D RFIM [12,40]. It will be most interesting to see if

this deviation grows stronger as ¢ is increased to four and
possibly beyond and if and when the transition turns first
order.
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