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Self-energy correction to the energy levels of heavy muonic atoms
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The fully relativistic, rigorous QED calculations of the self-energy correction to the fine-structure levels of
heavy muonic atoms are reported, including rigorous predictions for excited states. We discuss nuclear model and
parameter dependence for this contribution as well as numerical convergence issues. The presented results mostly
agree with previously reported estimations, with some exceptions, including ones used for the determination of
the nuclear root-mean-square radii, and underline the importance of rigorous QED calculations for the theoretical
prediction of the spectra of muonic atoms.
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Introduction. Muonic atoms are the bound systems of an
atomic nucleus and a negatively charged muon. Being more
than 200 times heavier than an electron, a muon possesses cor-
respondingly downscaled atomic orbitals radii, which in the
case of heavy muonic atoms are comparable or even smaller
than the nuclear radius. This leads to huge finite-nuclear-size
effects and a strong dependence of the muon’s bound-state en-
ergies on the nuclear charge and current distributions, as well
as to large relativistic effects. The understanding of this strong
dependence of the muonic atoms on nuclear parameters, and
the information about atomic nuclei that they can deliver, has
triggered interest in precise knowledge of the level structure
of muonic atoms [1–3]. A combination of state-of-the-art
theoretical predictions of the level structure and experiments
measuring the transition energies in muonic atoms enabled
the determination of nuclear parameters like nuclear-charge or
root-mean-square (rms) radii [4–7], electric quadrupole, and
magnetic dipole moments [8–11]. One of the most precise
measurements to date is the determination of the rms radius
of 208Pb to a 0.02% level [12].

The short lifetime of muon leads to the fact that muonic
atoms are essentially muonic hydrogenlike and can be de-
scribed with the single-particle Dirac equation. The theory of
muonic atoms, including nuclear and leading quantum elec-
trodynamics (QED) corrections, has been presented already in
Refs. [2,13]. Recently the updated state-of-the-art calculations
of the fine and hyperfine structures of heavy muonic atoms and
the corresponding analysis of the individual contributions has
been presented in Refs. [14–18]. One of the important effects
is the self-energy (SE) correction. Unlike the case of atomic
electrons, where SE is comparable to another QED correc-
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tion, the vacuum polarization (VP) correction [19], in muonic
atoms the VP correction is by far the dominant one [2]. There-
fore, the SE correction is much smaller than the leading VP
correction and was previously calculated within a relatively
simple mean-value evaluation method, suggested in Ref. [20]
and later used in Refs. [2,21]. Later, an attempt at a more
precise calculation was made in Ref. [22] for the ground
1s1/2 state of several muonic atoms with a final uncertainty
of about 5%. However, even most recent works on muonic
atoms still treat the leading VP correction as the total QED
contribution, excluding SE [7] or estimating it to be very
small [17].

Additionally, in some cases the analysis of high-precision
spectroscopic x-ray measurements of the muonic transitions
revealed some anomalies and disagreements with theoretical
predictions. Thus the assumption about the most complicated
nuclear polarization (NP) correction deduced from the exper-
imental data for fine-structure components difference �2p =
E2p3/2 − E2p1/2 had an opposite sign compared to the theory
results for 90Zr [23], 112−124Sn [5], and 208Pb [12,24]. For
a long time, it was believed that this so-called fine-structure
anomaly can be explained by more precise predictions on
the NP correction, but recently this was shown not to be the
case [25] and, therefore, additional attention should be paid to
other contributions, in particular to the last remaining sizable
QED effect, namely, to the SE correction.

In this Letter, we present rigorous, fully relativistic QED
calculations of the SE correction to the ground 1s1/2 and
excited 2p1/2 and 2p3/2 state energies of muonic atoms, and
establish the accuracy of our predictions for several muonic
atoms of interest. The results can be used for future experi-
ments aiming at high-precision determination of nuclear rms
radii and for reanalyzing the existing experimental data in
order to resolve the fine-structure anomaly.

Formalism. The method for calculation of the SE correc-
tion for a bound electron in highly charged hydrogenlike ions
was first proposed in Ref. [26], used in Ref. [27], and further
improved in Refs. [28,29]. In our current work, we apply the
procedure described in detail in [30,31] with an emphasis on
the finite-nuclear size effects.
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The self-energy correction to the state a with energy εa

can be written in terms of the matrix element of �(E ) in the
Feynman gauge as [30,31]

〈a|�(εa)|a〉 = i

2π

∫ ∞

−∞
dω

∑
n

〈an|I (ω)|na〉
εa − ω − εn(1 − i0)

, (1)

I (ω, x1, x2) = α
(1 − α1α2) exp (i

√
ω2 + i0x12)

x12
. (2)

Here, x12 is the relative distance x12 = |x1 − x2|, α are the
Dirac matrices, ω is the energy of a virtual photon, and the
summation goes over the full spectrum n of the considered
lepton (electron or muon), including negative- and positive-
energy states. The muonic relativistic system of units (h̄ =
mμ = c = 1) and Heaviside charge units [α = e2/(4π )] are
used throughout the paper. Bold letters are used for three-
vectors; the components of three-vectors are listed with Latin
indices, whereas Greek letters denote four-vector indices. The
usage of the relativistic muonic system of units with mμ = 1
allows us to use exactly the same formulas which were derived
for electronic atoms in the relativistic electronic system of
units with me = 1, and the difference appears only in the value
of the rms radius.

Following the procedure and notations from Refs. [30,31],
we expand the Green’s function for the bound muon in pow-
ers of the Coulomb potential as the sum of zero-potential,
one-potential, and many-potential terms. After performing the
angular integration analytically, one can write the total SE cor-
rection for a state a as the sum of corresponding nondivergent
terms as

�ESE
a = �E (0)

a + �E (1)
a + �E (2+)

a . (3)

The zero-potential term is calculated in the momentum repre-
sentation as the diagonal SE matrix element:

�E (0)
a = α

4π

∫ ∞

0

d p p2

(2π )3

{
a(ρ)

(
g2

a − f 2
a

)
+ b(ρ)

[
εa

(
g2

a + f 2
a

) + 2pga fa
]}

, (4)

where ga and fa are large and small components of the radial
wave function of the state a with the energy εa in the momen-
tum representation, ρ = 1 − p2[(e2 + p2)], and the functions
a(ρ) and b(ρ) are given in Ref. [31].

The one-potential term has one single interaction between
the muon and the nucleus inside the SE loop, and its final
renormalized expression can be written in the momentum
representation as [30–32]

�E (1)
a = α

2(2π )6

∫ ∞

0
d p p2

∫ ∞

0
d p′ p′2

×
∫ 1

−1
dξ V (q)

[
Faa

1 Pla (ξ ) + Faa
2 Pla

(ξ )
]
, (5)

where q2 = p2 + p′2 − 2pp′ξ , l is defined through the total
angular momentum j and orbital angular momentum l as l =
2 j − l , Pl are the Legendre polynomials, and Fab

1,2 contain one
more internal integration and are given in Ref. [31]. The exact
expressions for the nuclear potential V (q) in the momentum
representation will be discussed later.

Finally, the many-potential term with two or more interac-
tions between the muon and the nucleus inside the SE loop can

be calculated in the coordinate representation, and performing
the angular integrations and summations analytically one gets

�E (2+)
a = iα

2π

∫ ∞

−∞
dω

∑
nJ

(−1) jn− ja+J

2 ja + 1

× RJ (ω, an′n′a)

εa − ω − εn(1 − i0)
, (6)

where ω corresponds to the energy of the virtual photon,
RJ (ω, abcd ) are generalized Slater radial integrals [31], the
sum over n in this expression corresponds to the summation
over the intermediate states, and

|n′〉 =
∑

f

| f 〉〈 f |V |n〉
εa − ω − ε f (1 − i0)

. (7)

Here |n〉 is a bound state in the external nuclear potential V
and | f 〉 belongs to the spectrum of the free muon.

Nuclear potentials in coordinate and momentum represen-
tations. In addition to the wave function in the momentum
representation for the calculation of zero- and one-potential
terms (4) and (5), one-potential contribution also contains
the nuclear potential. Calculated with a generalized Fourier
transform [31], the Coulomb potential for pointlike nucleus

VCoul(r) = −αZ

r
(8)

has the following view in the momentum representation:

VCoul(q) = −4π
αZ

q2
. (9)

However, the Coulomb potential should not be applied in the
case of muonic atoms due to the significant nuclear effects
and therefore in the current work it has been replaced with
different finite-nuclear-size potentials. The first of them, the
shell distribution model, has a simple analytical form in both
coordinate and momentum representations:

Vshell(r) =

⎧⎪⎪⎨
⎪⎪⎩

−αZ

R0
, r < R0,

−αZ

r
, r > R0,

(10)

Vshell(q) = −4π
αZ

q2

sin R0q

R0q
. (11)

Here, the parameter R0 is defined in terms of the rms radius as
R0 =

√
〈r2〉. A nuclear model which assumes homogeneous-

sphere charge distribution of the charge density corresponds
to the following potential in the coordinate and momentum
representations:

Vsph(r) =

⎧⎪⎪⎨
⎪⎪⎩

−αZ

R0

[
3

2
− 1

2

(
r

R0

)2]
, r < R0,

−αZ

r
, r > R0,

(12)

Vsph(q) = −4π
αZ

q2

3(sin R0q − R0q cos R0q)

(R0q)3
. (13)

The parameter R0 is now defined as R0 =
√

5/3〈r2〉. Finally,
we also used the most realistic Fermi distribution of the
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nuclear density [33]:

ρ = ρ0

1 + e(r−c)/a
. (14)

Here, a is the skin thickness and it is usually assumed to be
a = 2.3 fm/4 log(3) [19,33]. The condition that V (r) has to

be normalized to the nuclear charge Z defines normalization
constant ρ0 and the half-density radius c is chosen to repro-
duce the rms value.

The analytical formula for the nuclear potential created by
Fermi nuclear charge distribution is then [33]

VFermi(r < c) = −αZ

r

1

NFermi

{
6

(
a

c

)3[
S3

(
r − c

a

)
− S3

(
− c

a

)]
+ r

c

[
3

2
+ π2

2

(
a

c

)2

− 3

(
a

c

)2

S2

(
r − c

a

)]
− 1

2

(
r

c

)3}
,

(15a)

VFermi(r > c) = −αZ

r

1

NFermi

{
NFermi + 6

(
a

c

)3

S3

(
c − r

a

)
+ 3

(
a

c

)2 r

c
S2

(
c − r

a

)}
, (15b)

where Sk (x) =
∞∑

n=1

(−1)n

kn
exp(nx), NFermi = 1 + π2

(
a

c

)2

− 6

(
a

c

)3

S3

(
− c

a

)
. (15c)

After performing a Fourier transform and calculating the integral analytically, we get

VFermi(q) = VCoul(q)

(
1 + Ṽtriv(q)

NFermi
+ Ṽsum(q)

NFermi

)
, (16a)

Ṽtriv(q) = −c2 + a2π2

c2
+ 1

(cq)2

(
a2q2π2 − 6

2
cos(cq) + a2q2π2 + 6

2

sin(cq)

cq

)
, (16b)

Ṽsum(q) = 6

(
a

c

)2

cos(cq)

[
1

2(aq)2
+ π2

6
− π

2(aq)
coth(πaq)

]
+ 6

(
a

c

)2 sin(cq)

cq

[
− 1

2(aq)2
+ π2

6
+ π2

2

1

sinh2(πaq)

]

+ 6

(
a

c

)3

(aq)2
∞∑

n=1

2n2 + (aq)2

n3[n2 + (aq)2]2
exp(−nc/a). (16c)

FIG. 1. �ESE contribution to the 1s1/2 state of the muonic zirconium in units of eV as a function of maximal intermediate angular
momentum jn for different nuclear models and numerical grids. The colors of the lines on every panel change depending on the number
of used DKB basis functions from light for nDKB = 50 to dark for nDKB = 150.
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The only singular contribution in Eq. (16) coincides with the
Coulomb part VCoul(q); all remaining coefficients and contri-
butions are regular at q = 0 even though it can be not obvious
from the expressions. The potential itself is given in terms
of elementary functions and can be easily implemented for
numerical calculation with the single exception of the last
term in Eq. (16c), which nevertheless converges very fast and
therefore does not limit the numerical accuracy.

Calculation details. For the numerical integrations we used
the numerical solution of the Dirac equation utilizing the dual-
kinetic-basis (DKB) approach [34] involving basis functions
represented by piecewise polynomials on grid’s intervals from
B-splines. This method allows one to find solutions of the
Dirac equation for an arbitrary spherically symmetric poten-
tial in a finite-size cavity and describes both the discrete and
continuous spectra with a finite number of muonic states for
every given j and l .

For the numerical evaluation in Eqs. (4) and (5), routines
from the numerical integration library QUADPACK [35] have
been used for the generalized Fourier transformation of the
wave functions and further integrations, following the meth-
ods developed in [31]. Analytical formulas (11), (13), and
(16) for the nuclear potential in momentum representation
have been used for the shell, sphere, and Fermi models,
correspondingly.

The summation in the remaining many-potential term over
the intermediate state n in Eq. (6) goes over the principal
quantum number and at the same time involves an infinite
summation over the total angular momentum jn. Ideally, the
calculations with infinite number of basis functions and with
the summation which extends up to jn = ∞ would give the
most accurate result, but in reality reaching infinity in both
of these directions is neither possible nor necessarily benefi-
cial. The DKB wave functions of low-lying bound states are
reproduced with very high accuracy and the summations over
the Dirac spectrum can be performed very well. However, for
the states with high values of angular momentum j even the
lowest-lying states have large numbers of knots and oscillate,
and therefore the accuracy of the calculations cannot be im-
proved by a simple increase of the basis. Therefore, in our
numerical calculations, the individual terms up to the max-
imum value jn + 1/2 = 30 have been calculated to analyze
the convergence. Additionally, for every nuclear model (shell,
sphere, and Fermi) and for two different types of the DKB
grid (exponential and nonexponential) it has been performed
for the number of basic functions nDKB increasing from 50 up
to 150.

The corresponding results for the 1s1/2 state of muonic
zirconium are presented in Fig. 1 and for the 2p1/2 state of
muonic tin and 2p3/2 state of the muonic lead in Fig. 2. The
colors of the lines on every panel change from light to dark
for lower to higher number of basis functions. As one can see
from the figure, the convergence is better for the exponential
grid since the results are stable with respect to the maximal
jn, whereas for the nonexponential grid, even though the lines
corresponding to the different nDKB are closer to each other,
they still change visibly as functions of jn. The calculated SE
correction is rather sensitive to the maximum value jn, the
number of used basic functions nDKB, the nuclear model, and
the integration grid, so only a combined deep analysis of these

FIG. 2. �ESE contribution to the 2p1/2 state of muonic tin (a) and
2p3/2 state of the muonic lead (b) in units of eV as a function of
maximal intermediate angular momentum jn for different nuclear
models and numerical grids. The color scheme in respect to the
nuclear models and numerical grids corresponds to the one used
in Fig. 1; the colors of the lines change depending on the number
of used DKB basis functions from light for nDKB = 130 to dark for
nDKB = 150.

dependencies would allow us to give a reliable and accurate
prediction of the effect.

Results. In our current work, we focus on the low-lying
states with high importance for experimental analysis for the
muonic atoms whose spectra have already been measured be-
fore. The total value of the SE correction for the 1s1/2, 2p1/2,
and 2p3/2 states of muonic zirconium, tin, and lead for three
nuclear models and two DKB grids are listed in Table I, for
max( jn + 1/2) = 30 and nDKB = 150. To be conservative, we
take an average of two grids for the Fermi model as the final
one and estimate the uncertainty by the comparison between
different models and grid predictions; however, as one can
see from our results, for heavy nuclei the shell model results
deviate more and more from those of the Fermi and sphere
models, confirming the low applicability of this model for
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TABLE I. �ESE contribution to the low-lying states to bound-muon energy in units of eV. The next to last column corresponds to our final
value with an error bar. The previous results have been taken from Ref. [21] and the one taken from Ref. [22] is noted explicitly.

Ion State Shell exp Shell nonexp Sphere exp Sphere nonexp Fermi exp Fermi nonexp Final Previous

μ- 90Zr 1s1/2 1169.4 1163.3 1191.6 1180.2 1193.7 1187.7 1191(4) 1218
2p1/2 7.675 7.601 7.055 6.987 7.031 6.963 6.99(5) 1
2p3/2 47.16 47.05 46.59 46.55 46.58 46.47 46.52(6) 41

μ- 120Sn 1s1/2 1677.6 1665.4 1725.9 1701.0 1729.7 1717.7 1724(7)
2p1/2 43.61 43.26 40.75 39.86 40.69 40.37 40.5(3)
2p3/2 123.1 122.7 120.5 119.8 120.5 120.1 120.3(3)

μ- 208Pb 1s1/2 3041.4 3012.0 3229.4 3197.4 3239.4 3210.8 3225(15) 3373
3270(160) [22]

2p1/2 497.6 490.6 457.1 440.9 456.7 450.0 453(5) 413
2p3/2 786.0 779.5 747.8 734.4 747.8 741.5 745(5) 707

heavy muonic atoms. We have also estimated the dependence
of our results from the used rms value, and even in the most
sensitive case of the 1s1/2 state it is on the level of 0.1% and
well below the nuclear model dependence. The comparison
with the current state-of-the-art theoretical predictions from
Refs. [21,22] shows disagreement, sometimes even outside of
the few-percent uncertainties indicated there, and an order-
of-magnitude improvement in the accuracy. However, despite
the disagreement in individual contributions, the fine-structure
component difference �2p is in surprisingly good agreement
with the earlier predictions, and therefore one can conclude
that the last sizable QED effect, namely the SE correction,
does not resolve fine-structure muonic anomaly [36]. Finally,
the updated rigorous SE results to the transition energies can
potentially change the rms values based on the muonic spectra
and play an important role in the future for new experiments
aiming for the extraction of nuclear moments and rms radii.

Conclusions. We presented rigorous calculations of the SE
correction to the few first excited energy levels of muonic
atoms and significantly improved results for the ground states,
which concludes the leading-order QED predictions. We used
three different nuclear charge distributions and two grids to
estimate the convergence and uncertainties of our predic-
tions and gave an analytical formula for the Fermi potential

in momentum representation. Theoretical results for low-
lying 1s1/2, 2p1/2, and 2p3/2 for muonic zirconium, tin, and
lead have been presented and compared with the available
published results. Even though in most cases our rigorous
calculations agree with the previous mean-value method,
sometimes this comparison shows a significant difference be-
tween them, therefore justifying the usage of the accurate
QED approach for high-precision calculations. More impor-
tantly, the rigorous high-precision SE results are an essential
part of the state-of-the-art theoretical predictions aiming at
a high-precision determination of nuclear radii and other pa-
rameters. As for the muonic fine-structure anomaly, for a few
decades, it was believed that it could be resolved by accurate
predictions for NP or refined SE effects [12,23,25], which is
now ruled out. Therefore, even though the renewed SE results
do not resolve the fine-structure muonic anomaly, they can
affect previous results of the extraction of the nuclear rms
radii based on the muonic atoms spectra. Finally, conveniently
excluding the long-suggested QED solution to the puzzle
stimulates the search for other explanations, including physics
beyond the standard model and new experiments with much
improved experimental techniques.
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