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Influence of particle softness on active glassy dynamics

Vincent E. Debets © and Liesbeth M. C. Janssen

Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

® (Received 5 September 2022; accepted 20 October 2022; published 22 November 2022)

Active matter studies are increasingly geared towards the high-density or glassy limit. This is mainly inspired
by the remarkable resemblance between active glassy materials and conventional passive glassy matter. Inter-
estingly, within this limit it has recently been shown that the relaxation dynamics of active quasihard spheres is
nonmonotonic and most enhanced by activity when the intrinsic active length scale (e.g., the persistence length)
is equal to the cage length, i.e., the length scale of local particle caging. This optimal enhancement effect is
claimed to result from the most efficient scanning of local particle cages. Here we demonstrate that this effect
and its physical explanation are fully retained for softer active spheres. We perform extensive simulations of
athermal active Brownian particles (ABPs) and show that the nonmonotonic change of the relaxation dynamics
remains qualitatively similar for varying softness. We explain quantitative differences by relating them to the
longer range of the softer interaction potential, which decreases the cage length and obscures the intrinsic active
motion. Moreover, we observe that only when the persistence length surpasses the cage length, distinct qualitative
changes with respect to an equivalent passive Brownian particle system start to manifest themselves. Overall,
our results further strengthen the importance of the cage length and its relation to the relevant active length scale

in the context of active glassy materials.
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I. INTRODUCTION

Inspired by its ubiquitous presence in biology, active mat-
ter continues to be one of the prevalent topics in the field
of biological and soft matter physics [1-3]. Throughout the
previous decade, the initial focus of active matter studies has
been directed towards self-propelled particles in the dilute to
moderately dense regime [1]. Recently, however, active matter
studies are also increasingly venturing into the high-density
regime [4,5]. This has already revealed the existence of inter-
esting and distinct nonequilibrium features such as motility
induced phase separation (MIPS) [6-11], activity-induced
crystallization [12,13], and velocity ordering [14,15]. By
pushing the density to sufficiently large values, self-propelled
systems have even been shown to reach a dynamically arrested
or glassy state. Interestingly, these so-called active glassy
states seem to share many characteristics with conventional
passive ones [4,16,17] and have for instance been witnessed
in living cells and cell layers [18-24], synthetic colloidal
assemblies [25,26], granular matter [27], and a variety of sim-
ulations and theoretical studies [10,28—49]. With the increase
of density one might be tempted to automatically down-
grade the role of self-propulsion on the particle dynamics in
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favor of the increasingly dominant particle-particle interac-
tions. Still, even in the high-density regime active motion
can affect glassy dynamics in intriguing ways [30,33,34,36—
38,48]. A better understanding of active glassy matter and in
particular the relation to its more conventional passive coun-
terpart has therefore opened up as a promising line of research
within the broad fields of both active matter and glassy physics
[4].

Importantly, it has recently been shown for quasihard
active spheres that the cage length, i.e., the typical size asso-
ciated with the caging of particles by their nearest neighbors,
plays an important role in the context of active glassy matter
[28,48]. Specifically, it provides a reference length to which
the intrinsic short-time active length scale can be related.
That is, for active length scales smaller than the cage length,
dense active matter exhibits enhanced relaxation dynamics
with respect to an equivalent Brownian system, while upon
surpassing the cage length the relaxation dynamics starts
to slowdown and eventually becomes slower than that of
the passive reference system. A proposed physical mecha-
nism underlying the observed behavior is the most efficient
scanning of particle cages. This should yield the fastest re-
laxation dynamics and occurs when the cage length and the
active length scale coincide. Consequently, the nontrivial and
nonmonotonic influence of activity on glassy dynamics can
be understood from a conceptually relatively simple argu-
ment. How well this explanation generalizes to more complex
particle-particle interactions remains, however, to be estab-
lished.

Here, in an effort to take a first step in the direction of
more diverse interaction potentials, we demonstrate that the
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physical picture sketched above remains fully intact for active
spheres of different softness. In short, we study the dynamics
of athermal active Brownian particles (ABPs) whose interac-
tions are governed by a repulsive power-law potential with a
variable power controlling the softness of the particles. We
vary the persistence length of the constituent particles at a
fixed active temperature and retrieve a qualitatively similar
nonmonotonic dependence of the relaxation dynamics for
each considered softness. In all cases the optimum of the
dynamics coincides with the point at which the persistence
length is approximately equal to the cage length. We also
explore the dependence of the relaxation dynamics on the
active temperature upon approaching dynamical arrest, and
find that the cage length marks the threshold value beyond
which the active system starts behaving qualitatively distinct
(manifested by changes in the fragility) from its passive Brow-
nian counterpart. Note that our findings for ABPs should
also apply to the equally suitable active Ornstein Uhlenbeck
particle (AOUP) model, since the microscopic details of these
simple model systems do not significantly influence the long-
time glassy behavior [48]. Overall, our work serves to further
establish the importance of the cage length and in particular
its relation to the short-time active length scale in the context
of active glassy matter.

II. METHODS

The simulation model we use is a three dimensional (3D)
Kob-Andersen binary mixture consisting of Ny = 800 and
Np = 200 athermal self-propelling soft spheres of type A and
B respectively. The position r; of each particle i evolves in
time ¢ according to [32,34,50]

f=¢ ' (Fi+ 1), (1

where ¢ is the friction coefficient and f; the self-propulsion
force acting on particle i. The interaction force F; =
-y j#i ViVap(rij) is derived from a repulsive power-law po-
tential V,g(r) = 46,1,3(”%‘3)" with a variable power n, which
controls the softness of the particles (smaller n corresponds
to softer particles). The interaction parameters, i.e., €ap =
1, EAB = 1.5, €BB = 05, OAA = 1, OAB = 08, and OBB =
0.88 are, in combination with setting the friction coefficient
to unity ¢ = 1, chosen to give good glass-forming mixtures
[51,52]. Following the ABP model [29,53-57] for our self-
propulsion force, we let the absolute value of the force f
remain constant in time, i.e., f; = fe;, while the orientation
e; undergoes rotational diffusion [32,50],

€ = x; X €, @)

subject to a Gaussian noise process with zero mean and
variance (X;(1)X;(t"))noise = 2D;18;;8(t —t') with D, the ro-
tational diffusion coefficient and I the unit matrix. In the
absence of particle-particle interactions, each particle per-
forms a persistent random walk (PRW) and its mean square
displacement (MSD) is given by [32]

(87%(1)) = 6Tu(tp(e /™ — 1) +1). 3)

Inspection of Eq. (3) shows that the single-particle mo-
tion is characterized by a persistence time 7, = (2D,)~! and
an active temperature 7, = fzrp/ 3. In particular, at short

times (t < 7,) the motion is ballistic (872(1)) ~ 3T, 1%/ T,
and in the long-time limit (¢ > 7,) it becomes fully diffusive
(872(t)) ~ 6T,t. This implies that in the limit 7, — 0 (with
T, ~ constant), our active system reduces to a Brownian one
at a temperature 7' equal to the active temperature 7,. To study
the effect of particle softness on the active glassy dynamics
we take as our control parameters T, the power-law exponent
n, and to quantify how far we are from the passive limit, the
persistence length [, = f1, [48].

Simulations are performed by solving the Langevin equa-
tion [Eq. (1)] via a forward Euler scheme using LAMMPS
[58]. We set the number density to p = 1.2 via the size of
the periodic simulation box, run the system sufficiently long
(typically between 500 and 20000 time units) to prevent aging,
and afterwards track the particles over time for at least twice
the initialization time. Unless otherwise stated we use for the
power-law potential a cutoff radius of r, = 2.504. All results
are presented in reduced units where oaa, €aa, €aa/ks, and
¢ oi A/€aa Tepresent the units of length, energy, temperature,
and time respectively [59]. We also mention that, to correct
for diffusive center-of-mass motion, all particle positions are
retrieved relative to the momentary center of mass [59].

III. RESULTS & DISCUSSION

In our model system the active particles become more
disparate from conventional passive particles upon increasing
their persistence. To understand how this relates to particle
softness, we have first extracted the long-time diffusion coeffi-
cient D = lim,_, o0 (87%(¢)) /6t as a function of the persistence
length [, for different powers n. The resulting values normal-
ized by the active temperature 7, are plotted in Fig. 1(a).
For each value of n we have fixed T, at a value such that
the system exhibits mildly supercooled behavior and in the
passive limit (/, — 0) all different powers give the same value
for the normalized diffusion coefficient. This allows for a con-
venient comparison. An inspection of the results shows that
the qualitative shape of the curves is unaltered when increas-
ing the particle softness. In particular, all curves demonstrate
a nonmonotonic dependence on [, with initially enhanced,
but eventually slower long-time diffusion than an equivalent
Brownian particle at T = T,. This is consistent with previous
results [37,48]. Moreover, we observe that in the limit of
small /, the diffusion coefficients tend, as expected, towards
Brownian dynamics result, while for large [, they seemingly
go to zero.

Two notable quantitative differences are, however, also
visible. It can be seen that the peak height strongly decreases
when transitioning from quasihard (n = 36) to relatively soft
(n = 8) spheres, and the location of the peak also shifts to
smaller values. In previous work it has been demonstrated that
the location of the peak for quasihard spheres corresponds to
the point where the persistence length [, is (approximately)
equal to the cage length /. ~ 0.1 [48] (see Supplemental
Material [60] for more details on the estimation of the cage
length), i.e., the length scale of local particle caging [61]. Our
results seem to corroborate this claim. A physical explana-
tion for this behavior might then be attributed to the optimal
scanning of particle cages which in turn yields the fastest
relaxation dynamics. Following this reasoning we believe
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FIG. 1. The normalized (a) long-time diffusion coefficient D/T, and (b) relaxation time 7, /7o as a function of the persistence length /;, for
athermal self-propelling spheres with different softness (governed by the power n). Increasing [, initially yields faster, but eventually slower,
relaxation dynamics than Brownian particles at a temperature 7 = T, (dashed line). The enhancement and optimum of the dynamics are
suppressed and shifted to smaller /, values respectively for increasing softness (smaller 7). The inset of panel (b) denotes the Stokes-Einstein
relation Dt,, which remains constant and independent of particle softness until a threshold value of [, on the order of the cage length is

surpassed.

that, at least in part, both the peak height and peak location
decrease to smaller values as a result of the longer range
of softer power-law potentials (note that we have introduced
a long-range potential cutoff of r. =2.50,4). Due to the
increased range, short-time particle motion becomes more
perturbed by interactions so that individual soft particles can-
not benefit from an efficient cage scanning as much, which
explains the decreased peak height. Furthermore, the cage
also becomes effectively smaller so that the optimum value
coincides with a smaller persistence length.

To test this claim, we have repeated the simulations used
for the results in Fig. 1(a) with a smaller potential cutoff radius
of re = 1.004p. In this case the range of the potential becomes
shorter. It should also become less dependent on the value
of n, since the potential immediately starts steeply increasing
when the interparticle distance becomes smaller than r. for
all considered powers, whereas this happens more gradually
(especially for n = 8, 12) with a large cutoff radius. The re-
sulting normalized long-time diffusion coefficients are shown
in Fig. 2 where we mention that the corresponding Brown-
ian dynamics results (at a temperature 7 = T,), although not
exactly the same, remained of the same order (D/T, ~ 0.1)
such that the results for different powers can still be accurately
compared. Interestingly, the results now overlap much more
and can be even seen to almost collapse. Additionally, the
peak location is shifted to a larger value of I, ~ 0.2, which
is still of the same order as the cage length, and seems to
confirm the notion that the range of the potential determines
the location of the peak. The fact that all powers now display
a clear peak of approximately the same (relative) height also
suggests that the steepness of the potential is an important
governing factor of the peak height.

Next, to put our initial results (using a long-range cutoff
r. = 2.50,4) into a broader context we have also retrieved
the self-intermediate scattering function, i.e., FS(k,t) =
(e TiOeikry for the majority type A species. Based on
these we have extracted the alpha relaxation time t,, which

is defined via F*(k,t,) = e~ ! at a wave number k = 7.2
corresponding to the first peak of the AA-component of the
partial static structure factor (the location of the peak is fairly
robust to changes in softness and persistence, see Fig. S1).
The results for t,, normalized by the relaxation time ty ob-
tained for an equivalent (T = T,) passive system, are plotted
in Fig. 1(b). It can be seen that the qualitative behavior of
the relaxation time is fully consistent with the long-time
diffusion coefficients. In particular, 7, initially decreases to
a minimum value (indicating the fastest relaxation dynam-
ics), which is smaller than a corresponding Brownian particle
(t¢/70 < 1), while for large [, it increases significantly be-
yond this value (7, /79 > 1). Enhanced softness again flattens
the curves and shifts the optimum to a smaller value of [,.
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FIG. 2. Plots of the normalized long-time diffusion coefficient D
as a function of the persistence length [, for different particle softness
(governed by the power n). In comparison to the results presented in
Fig. 1(a), the cutoff radius of the power-law potential is taken at a
smaller value of 7. = 1.004p.
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We also note that the location of the minima of 7, coincides
with the maxima of D. Finally, we mention that the qualitative
behavior of D and 7, is already, to a large degree, visible
in the height of the first peak of the static structure factor
(see Figs. S1 and S2).

To gain some insight into the influence of particle soft-
ness and persistence on our glassy model system as a whole,
we have also combined the relaxation time and long-time
diffusion coefficient to calculate the Stokes-Einstein relation
(SER), i.e., Dt,, which has been plotted in the inset of
Fig. 1(b). For passive systems at large enough temperatures
this relation usually remains constant, while upon vitrification
significant deviations may occur [59,62,63]. These deviations
have often been attributed to the manifestation of dynamical
heterogeneity, although some controversy persists [64]. An
inspection of our results shows that the SER initially takes
on approximately the same value regardless of the particle
softness. The values are also similar to the ones obtained
for an equivalent Brownian system (D7, ~ 0.02 for each
considered softness), which suggests that at least for persis-
tence lengths below the cage length the active system exhibits
no distinct qualitative changes with respect to its passive
counterpart. In comparison, upon further increasing [, we
observe a sudden rise of Dz, for all powers n. Interestingly,
the point at which this happens seems not to concur with
the optimum of the dynamics, but instead with the point
at which the active dynamics becomes slower than that of
the equivalent Brownian system (t, /79 > 1). Thus, the on-
set of slow dynamics, which is here induced by increasing
the persistence length, coincides with the breakdown of the
SER. This is consistent with passive glassy phenomenology
where the onset of slow dynamics is typically induced by
supercooling.

Up until this point we have kept the active temperature
fixed for each particle softness and focused primarily on the
dependence on the persistence length. We now proceed by
taking a more in-depth look at the qualitative and quantitative
behavior of the dynamics as a function of 7,. In other words,
we take a closer look at how our system approaches a dy-
namically arrested state. Based on the nonmonotonic behavior
observed at a constant active temperature, we choose to con-
centrate on three distinct values of /[, = 0.0, 0.1, 1.0, which, in
relation to the cage length /., serve to probe the regimes [, <
le, Iy ~ I, and [, > . respectively. For these values we have
calculated the long-time diffusion coefficients D (see Supple-
mental Material [60] for several plots of corresponding MSDs
that illustrate the emergence of glassy dynamics) and plotted
them as a function of 1/7, for different particle softness n in
Fig. 3 (note that for [, = 0, T, represents the temperature T').
We observe that in all cases the particles become slower when
they are stiffer. Moreover, we see that the active temperature
at which D tends to zero remains approximately the same for
I, = 0.0, 0.1, while it is significantly increased for [, = 1.0.
This implies that the slowdown of the dynamics when the
persistence length surpasses the cage length (see for instance
Fig. 1) is robust for different active temperatures and is thus
retained when approaching a more dynamically arrested state
of our active system.

To test whether going beyond the cage length also marks
the emergence of qualitative changes between different par-
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FIG. 3. Plots of the long-time diffusion coefficient D as a func-
tion of the inverse active temperature 1/7, for different particle
softness (governed by the power n) and persistence lengths /,. When
the persistence length becomes larger than the cage length (/, 2 0.1),
the active temperature at which D tends to zero starts to significantly
increase.

ticle softness, we have sought to rescale the inverse active
temperature with a scaling parameter 7,,. This procedure is
inspired by the fact that in previous work on a similar passive
system it has been shown that (at least up to a power n = 18)
the long-time diffusion coefficients D can be scaled onto a
master curve (implying fragility invariance) depending solely
on the scaled inverse temperature 7,,/T [52]. The results of
this rescaling process for our model system are demonstrated
in Fig. 4 and indeed, in the limit of passive particles (/, = 0)
we also find that a scaling is possible, where we mention that
the obtained values of D are quantitatively consistent with the
ones reported in Ref. [52]. Interestingly, such a scaling is not
limited to a passive system, since our active system at [, = 0.1
also exhibits a collapse of the data points. In fact, we have
verified that the data for /[, = 0.0 and /, = 0.1 can even be
collapsed onto each other, which suggests that their fragility is
approximately equal and independent of n. On the other hand,
we see that for a relatively large persistence length [, = 1.0
a collapse is not possible and the fragility depends explicitly
on n. It thus seems that only when the persistence length be-
comes larger than the cage length, qualitative differences with
respect to a passive reference system and between different
particle softness start to manifest themselves. In other words,
this suggests that for all values /, < I, our athermal active
system can essentially be considered as a passive system with
enhanced dynamics.

IV. CONCLUSION

In this work we have, by means of extensive computer
simulations of athermal active Brownian particles (ABPs),
explored the subtle relationship between active motion and
particle softness in the glassy regime. Our results demonstrate
that the qualitative behavior of the relaxation dynamics at
a fixed active temperature is robust to changes in softness.
In particular, the relaxation dynamics exhibits a nonmono-
tonic dependence on the persistence length (the intrinsic
active length scale) with an optimum (largest speedup) corre-
sponding to the point where the persistence length coincides
approximately with the cage length. Small quantitative dif-
ferences for varying softness have in turn been rationalized by
considering the longer range of the softer interaction potential,
which decreases the cage length and obscures the intrinsic
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FIG. 4. Plots of the long-time diffusion coefficient D as a function of the normalized inverse active temperature 7, /7, for different particle
softness (governed by the power n) and persistence lengths I,. The scaling parameter T, has been chosen to maximize the overlap between
different curves and is plotted in the insets. For values approximately smaller than the cage length ([, < 0.1) all curves collapse onto a master
curve indicating that the fragility is independent of the softness. For larger values of /, qualitative changes occur for different particle softness.

active motion. As a result, the optimum of the dynamics
shifts to smaller persistence lengths and becomes flattened for
increasing softness.

When the persistence length is instead kept fixed at a
value approximately equal to the cage length we witness the
appearance of a universal curve [see Fig. 4(b)] onto which
the long-time diffusion coefficients for different softness (up
to a power n = 18) fully collapse as a function of the scaled
active temperature. In fact, even the results of an equivalent
Brownian system can be added to this universal curve [see
Fig. 4(a)]. Consequently, the relaxation dynamics of the active
system at relatively small persistence lengths does not exhibit
any significant qualitative changes with respect to its passive
counterpart and its fragility is independent of the softness. In
contrast, when the persistence length is set at a significantly
larger value than the cage length we find that both the active
temperature at which the long-time diffusion coefficient tends
to zero starts to significantly increase and a collapse of the
long-time diffusion coefficients is no longer possible. The
latter indicates that the qualitative features of vitrification,
e.g., the fragility, explicitly depend on particle softness.

Overall, our work shows that the cage length marks the
offset beyond which active glassy matter becomes qualita-
tively different from conventional passive glassy materials. It
therefore further strengthens the importance of the cage length

and its relation to the relevant active length scale in the context
of active glassy dynamics. As a followup it might be worth-
while to check the role of the cage length for model biological
glass formers such as confluent cell layers [4,20,47,65] or
for (colloidal) systems involving more complex and possibly
attractive interaction potentials. Alternatively, a more detailed
study on the qualitative changes for different softness in the
limit of large persistence [49,66] or an analysis of our results
in relation to a recently introduced mean-field softness [67]
are equally interesting, but for now left for future work.
Finally, we want to mention that in recent years much
work has also been devoted to the escape properties of a
single active particle from a potential trap or within a porous
environment [68—74]. It would be interesting to check whether
the analogy between a potential trap or porous environment
and a dynamic cage of surrounding particles can be exploited
to better understand the qualitative features, particularly the
nonmonotonic behavior, of dense active matter.
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