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Geometrical patterning of receptor sites controls kinetics via many-body effects in bivalent systems
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We report on the geometrical patterning of receptor sites in bi- and multi-valent systems as a modality for
controlling kinetic behaviors, in both synthetic and biological contexts, that is independent of the underlying
chemistry. Exploring motifs, chains, and lattices of receptor sites, we recast this phenomenon as one of
many-body coordination, making contact with classical treatments of interacting systems, implicating geometric
frustration as an important heuristic for rational design. In doing so, we also reveal the possibility of other
tunable spatio-temporal features, such as correlation lengths, mean-squared displacements, and percolation-like
transitions.
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Multivalency underpins several important functions in cell
and molecular biology. It simultaneously confers an effec-
tive increase in binding affinity [1–6], so-called avidity,
whilst also facilitating concentration-dependent destabiliza-
tion and turnover [7–10], typically referred to as competitive
exchange [Fig. 1(a)]. These dual mechanisms, alongside the
enhancement of competitive exchange due to neighboring
receptor sites—coined multi-site competitive exchange [11]
[Fig. 1(b)]—underpin a wide variety of diverse phenom-
ena across a range of scales, including toe-hold exchange
[7] in DNA hybridization, liquid-liquid de-mixing [12] and
receptor-ligand clustering [13] in sub-cellular aggregates, and
specificity [14] in the adaptive immune response of T-cells.

Multivalency is also of significant interest to a range
of synthetic systems, including: de novo proteins [15,16];
nanoparticles, micelles, membranes and other supra molecular
biological assemblies [17]; colloidal soft matter [18–20], and;
novel materials, such as vitrimers [21,22]. However, spatial
control over binding sites—e.g., the patterning of ligands or
other surface chemistry in either biological assemblies [17]
or “patchy” colloids [23,24]—has been a recurring challenge
for engineering emergent spatio-temporal behaviors in such
systems, as well as reproducing and/or leveraging the full suite
of multivalent behaviors, seen in biology.

In a recent paper [25], the precision of DNA-origami has
been shown to address this issue, permitting the construction
of entities and complementary substrates whose binding sites
each have a geometry, affinity, and specificity that can be
specified independently. It is in this light that we now report
on parallels between multivalency and many-body interacting
systems that have otherwise been overlooked. Specifically,
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we demonstrate that the geometrical patterning of individual
receptor sites is tantamount to a qualitatively new design
modality, where kinetics (and other emergent behaviors) can
be controlled via many-body coordination, independently of
the underlying binding affinities.

To show this, we first characterize the varied behaviors
associated with motifs of receptor sites that have “all-to-all”
symmetry. We are then led to introduce extended, transla-
tionally invariant chains and lattices of receptor sites, for
which transfer matrices and cavity-like approximations can
be brought to bear. Ultimately, these classical many-body
techniques permit us to distill core principles for the rational
design of kinetics via receptor site geometry. They also reveal
other tunable spatio-temporal features, such as correlation
lengths, mean-squared displacements, and percolation-like
transitions. Our findings prompt us to revisit biological sys-
tems and speculate on the role of multivalency in large
supra-molecular complexes.

Receptor site geometry as a design modality. We start with
a generic bivalent entity, either synthetic nano-baton, protein,
or other molecule, whose binding interfaces are each exclusive
and complementary to one of two types of receptor site. We
call these receptor sites “primary” and “secondary” following
[11], and use the term “baton” throughout [Fig. 1(c)]. In this
context, the rate of associations of an unbound baton to in-
dividual vacant primary and secondary sites can be written as
C0kon

1 and C0kon
2 , respectively, where the bulk concentration of

batons is given by C0, and kon
1/2 are association rates per mole

[Fig. 1(d)]. Batons disassociate from these sites with rates
koff

1/2, independently of whether the baton is singly or doubly
bound, giving site dissociation constants K1/2. The rates of
association of the unbound ends of singly bound batons are
Ceffkon

1 and Ceffkon
2 , where Ceff represents the large effective

concentration [1,26,27] that arises from the close proximity
between receptor sites and unbound baton ends.

A central quantity of interest is the mean dissociation
rate of a bound baton, denoted �off (Supplemental Mate-
rial, Secs. 1 and 2 [28]). In all practical scenarios, �off is a
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FIG. 1. Competitive exchange involves a bivalent baton from the bulk (red) occupying a receptor site vacated by an attached baton (black),
thus destabilizing it (panel a). The effect is amplified when singly bound batons at neighboring sites confer an effective concentration that
is higher than that of batons in the bulk (panel b). Engineered nanoscale batons which selectively bind to single DNA strands on a DNA
origami platform allow arrangements of “primary” (circle) and “secondary” (square) sites into motifs (panel c and [25]). A four-state system
comprising a single baton, primary, and secondary receptor site defines the principal kinetic parameters. Mean dissociation rates (per baton)
vs. bulk concentration C0 display two qualitative trends (panel e). Vertical dashed lines indicate the characteristic concentration for motifs
n1 = 2, 3, 6, n2 = 1 (Cchar

0 main text). Parameters used throughout: K2 = K1 = 10−9M, Ceff = 10−6M, kon
1 = kon

2 = 109M−1s−1, informed
by [25].

monotonic function of the bulk concentration, C0. As C0 → 0
(depletion), �off is minimized, and captures “bare” avidity—
i.e., stability due to multiple receptor sites with no competitive
exchange. As C0 → ∞ (saturation), �off is maximized, since
batons can only bind via one receptor site, and are thus
characterised by the nascent dissociation rates of the primary
and secondary sites. Between these two limits, the nontrivial
dependence of �off on C0 is dictated by the geometric ar-
rangement of the receptor sites, which controls the interplay
between avidity, competitive exchange, and multi-site effects.
Consequently, receptor site geometry can be thought of as
a configurable design modality that is independent of the
chemical or structural properties of the individual receptor
sites themselves.

All-to-all motifs. Consider motifs with all-to-all symmetry,
where any pair of primary and secondary sites can be simul-
taneously bound to a single baton. Each motif is therefore
uniquely characterized by the number of primary and sec-
ondary sites, n1 and n2. For a rigid baton, this requires that the
distances between all primary and secondary sites are equal;
however, this restriction could be plausibly relaxed for flexible
molecules and/or synthetic linkers.

Notably, a generic expression for the stationary distribution
over baton occupancies can be calculated that encompasses all
such motifs, from which �off follows (Supplemental Material,
Sec. 3 [28]) in terms of special functions [29,30]. Despite the
complicated generic form, a heuristic appreciation of �off can
be obtained from one of only two general cases, outlined in
detail in the Supplemental Material, Sec. 5 [28].

The first case concerns motifs that are one-to-many—
e.g., n1 > 1, n2 = 1 [Fig. 1(e)]. Here, as C0 increases,
neighboring sites are increasingly occupied, which facilitates
competitive displacement, increasing �off . The onset of this

“multi-site exchange” [Fig. 1(b)] depends on the number
of neighboring sites (of opposite type) in the motif. We
may identify a characteristic concentration for such an onset
[Supplemental Material, Sec. 5 [28] and Fig. 1(e)] given as
Cchar

0 ∼ K1K2(kr + n1)/Ceff (n1 − 1)n1 + O(ε2), where Ki =
koff

i /kon
i are site-specific equilibrium dissociation constants,

kr = kon
2 /kon

1 , given ε = K1/Ceff � 1. On further increases
in C0, the multi-site effect plateaus once neighboring sites
are reliably occupied, before giving way to bulk competitive
exchange in the traditional sense [Fig. 1(a)], as C0 approaches
(and exceeds) Ceff . This secondary stable timescale vanishes
for motifs with increasing numbers of neighbors.

The second case involves equal site numbers, such that
n1 = n2 [Fig. 1(e)]. Here, multi-site effects are effectively
eliminated: all partially bound molecules have a complemen-
tary site to which they can become doubly bound. As such, the
significant increase in �off occurs due to regular competitive
exchange from the bulk, whilst a modest increase for all
n1 = n2 > 1 exists at low concentrations [rising from a rate
of ∼0.001 to ∼0.002 in Fig. 1(e)], which manifests from the
removal of vacant neighboring sites by doubly bound batons,
decreasing baton stability as possible rebinding sites become
unavailable.

Chains and Loops. Context for these motifs’ behavior is
provided by replacing all-to-all symmetry with the weaker
requirement of translational symmetry. This allows us to con-
sider periodic 1D chains formed of n receptor sites. Here,
a transfer matrix can be used to solve for �off exactly, for
any n, so long as primary and secondary sites are equivalent
(Supplemental Material, Sec. 6 [28]).

For decreasing odd values of n, we see behavior that in-
creasingly reflects the many-to-one case [Fig. 2(a), red]. We
may understand this as arising from an increasing frustration
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FIG. 2. Frustrated tiling facilitates multi-site exchange. Dissoci-
ation rates for odd and even loops of length n differ markedly (panel
a). Lighter shades indicate higher values, with n = 3, 5, 9, 15, 29
(red) and n = 4, 6, 10, 16, 30 (blue). Both odd and even loops con-
verge on the black line [cf. �n→∞

off main text] as n → ∞, where many
body coordination outweighs frustration due to parity. Run length
(approximate) and correlation length (exact) in the (n → ∞) 1D
chain (panel b, inset). Spontaneous dislocations or “domain bound-
aries” provide sites for multi-site exchange (panel c).

experienced by a baton which cannot reach a more favourable
state due to the inability for bivalent molecules to perfectly
tile, thus leaving at least one singly bound baton which can
participate in multi-site exchange.

By contrast, for decreasing even n, multi-site effects are
increasingly arrested as the likelihood of perfectly tiling in-
creases [Fig. 2(a), blue], until it reflects the n1 = n2 = 2 motif
for n = 4.

In the n → ∞ limit, finite size effects decay away such
that the parity of n becomes irrelevant [Fig. 2(a), black],
with the role of multi-site exchange being entirely con-
trolled by many-body co-ordination along the lattice, and
with binding energetics of individual batons giving way to
entropic contributions of combinations. Even though it is
favourable for all batons, individually, to be in a perfectly
tiled state (such that multi-site effects are absent) the lack
of perfect coordination over long distances leads to “domain
boundaries”—where contiguous tilings of batons are offset
by a single receptor site—allowing locations for multi-site
exchange to occur [Fig. 2(c)]. This results in a response to
concentration which interpolates between the two extremal
behaviors of the all-to-all motifs (Supplemental Material,
Sec. 6 [28]) �n→∞

off = 2C0K1kon
1 /(C0 − K1 + η), where η =√

(C0 + K1)2 + 4C0Ceff .
The characteristic length (in units “sites”) of such do-

mains of contiguous doubly-bound batons obeys l−1
corr =

ln[(η + C0 + K1)/(η − C0 − K1)], which is valid for equiva-
lent primary and secondary sites (Fig. 2(b) and Supplemental
Material, Sec. 2 [28]). This vanishes as C0 → 0 and C0 → ∞,
where cross binding is absent and each site is independent,
and peaks at C0 = K1 where the system most closely achieves
a perfect tiling of cross bound molecules. For the parameters

used in Fig. 2, the maximum value is lcorr ∼ 15, implying that
chains of length n � 15 are well characterized by the n → ∞
case. More generally, the notion of receptor motifs with (site)
translational invariance—i.e., where sites of each type are in-
distinguishable from each other—allows for a broader class of
systems with nontrivial many-body effects. For example, once
captured, batons can perform a form of diffusive transport
(by “walking”) that bears resemblance to both lattice exclu-
sion processes [32,33] and stochastic processes with resetting
[34–37], since molecules not only interact with each other
through physical occlusion, preventing forward motion, but
also compete over receptor sites, thus increasing the likeli-
hood of return to the bulk when they do interact.

One can approximate the mean run length of such
motion, implying the existence of a designed, concentration-
dependent diffusion constant along the chain. Using a simple
combination of the mean life time of a baton and the condi-
tional probability that a neighbor of a given baton is vacant,
yields

l2
run � K1Ceff (C0 − K1 + η)

C0[2K1(2Ceff + K1) + (Ceff + K1)(C0 − K1 + η)]
, (1)

(Fig. 2(b) and Supplemental Material, Sec. 6 [28]).
Lattices. A further extension is to systems of receptor sites

with translational symmetry in 2D, which we treat in the
large size limit. Here, the description in terms of integers
n1 and n2 is retained through the interleaving of lattices of
primary and secondary sites such that the they become coor-
dination numbers—i.e., all primary sites have n2 secondary
site neighbors at the baton binding distance, and vice versa
[Fig. 3(a)]. This description subsumes the one dimensional
system (in the limit n → ∞), realized through the choice
n1 = n2 = 2, whilst coordination numbers as high as n1 =
n2 = 6 are possible if the primary/secondary binding sites are
indistinguishable. Setting either n1 or n2 to one replicates a
one-to-many motif.

Exact solutions for lattices with arbitrary coordination
numbers are challenging. However, we may construct an ap-
proximate solution using short range estimates akin to the
cavity method [38]. The approach is detailed in the Sup-
plemental Material, Sec. 7 [28], but consists of calculating
conditional occupation probabilities at a distance of one lat-
tice spacing, whilst neglecting higher order correlations. The
central quantity required for computing the kinetics is the
expected number of doubly bound batons per n1 + n2 receptor
sites, E[Nc]. By defining parameters

γ = n1n2
(
C0(Ceff (n1 + n2) + K1 + K2) + C2

0 + K1K2
)

2CeffC0n1n2 + 2(C0 + K1)(C0 + K2)
, (2)

β = C0Ceffn2
1n2

2

(C0 + K1)(C0 + K2) + C0Ceffn1n2
, (3)

this can be expressed as E[Nc] = γ −
√

γ 2 − β which can be
converted to a probability of a site being occupied by a doubly
bound baton, P(C) = 2E[Nc]/(n1 + n2).

For the parameters used in Figs. 1 and 2, this has excellent
agreement with simulation, as shown in Fig. 3(b). Moreover,
such a result is exact for both the n1 > 1, n2 = 1 all-to-all
motif, and for infinite 1D chains where loops are absent (and
hence, also Bethe lattices [39]).
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(a) (b)

FIG. 3. Translationally invariant 2D lattices with conumbers n1 and n2 (panel a): n1 = n2 = 2 generalizes the n → ∞ 1D chain; n1 = 2,
n2 = 6 requires the baton to bind over a (modest) range of distances, and; n1 = n2 = 6 is only valid for equivalent receptor sites. A cavitylike
approximation (E[nc], main text, and dashed curves, panel b) agrees with simulation (solid curves, panel b—Supplemental Material, Sec. 7 [28]
and [31]) and retains the distinction between equal and unequal coordination numbers seen with both motifs and chains/loops. Probability of
a percolating cluster against site occupancy and bulk concentration for the n1 = n2 = 4 lattice where n = L2 (panel c). The critical probability
Pcrit

occ � 0.555, is below the conventional site percolation threshold Pcrit
occ � 0.593.

Qualitatively, the kinetics follows the principles discerned
for 1D loops, indicating the universality of the overarching
design principle: equal coordination numbers allow for per-
fect tiling and are thus more stable, though still subject to
a degree of multi-site exchange due to a lack of long range
coordination, whilst unequal co-ordination numbers introduce
frustration and thus rapid destabilization at low concentra-
tions, despite the infinite lattice.

Many quantitative features of the kinetics, however, depend
upon the precise coordination numbers. For instance, the dis-
sociation rate at C0 = 0 is given by �

C0=0
off = kon

1 K1K2(n1 +
krn2)/(K2n1 + K1n2 + Ceff n1n2), allowing much higher sta-
bility to be realised on lattices where both n1 > 1 and n2 > 1
due to the excess of available receptor sites to all partially
bound batons. Other quantitative behaviors involve character-
istic destabilization concentrations which depend, to leading
order in ε, on the largest coordination number, and timescales
of intermediate regimes which depend upon their ratio, both of
which are detailed in the Supplemental Material, Sec. 7 [28].

Moreover, the role of bivalency and coordination number
extends beyond tunable kinetics to other many body phe-
nomena. For example, such 2D lattices support a percolation
transition, for which bivalency changes the critical thresh-
old relative to both conventional monomers and the related
(but not identical) case of pure dimers [40–46], which has
no singly bound state or exchange phenomenon. On the
square lattice (n1 = n2 = 4) we find the threshold to lie be-
tween an estimated lower limit of Pocc � 0.555 for K1 � Ceff

[valid for Fig. 3(c)] and the standard result for site perco-
lation with monomers when Ceff → 0 (Pocc � 0.593) [47],
with this lower limit lying below the result for pure dimers,
Pocc � 0.5619 [45]. Notably, the control parameter for the
transition is the bulk concentration, with critical concentra-
tion given by Ccrit

0 = (4 − Pcrit )PcritK2
1 /(16(1 − Pcrit )2Ceff ) +

O(ε2) (Supplemental Material, Sec. 7 [28]). Therefore, as the
transition is approached from below, the diverging correlation
length is associated with an increasing degree of competitive

exchange. The implications for the dynamics of the connected
domains remains an open question.

Discussion. Arguing that multivalency is best interpreted
in the context of classical many-body coordination, we have
two main results.

First, the concentration dependence of bivalent kinetics,
resulting from spatial patterning, can be understood in terms
of an overarching heuristic that encompasses all practical
receptor site configurations. This hinges on the notion of geo-
metrical frustration: the extent to which a given configuration
cannot be perfectly tiled by batons. When perfect tiling is pos-
sible (e.g., equal coordination numbers) substantive multi-site
exchange arises from entropic effects only, and is increasingly
subdued as system sizes decrease. High levels of frustration
(e.g., unequal coordination numbers), by contrast, permit sig-
nificant multi-site exchange.

Second, our calculations highlight a fact that has been
“hiding in plain sight”: bivalency is tantamount to a short
range interaction, and hence, its effects are synonymous with
a variety of emergent spatio-temporal phenomena that rely
on many-body coordination. We choose to focus on correla-
tion lengths, mean squared displacements, and percolation,
since they allow us to make contact with existing analytical
techniques from classical statistical physics. However, there
are undoubtedly more exotic features that might be realized
by considering higher order multivalency, or receptor sites
patterns that vary in either space or time, for example.

We posit that the presented ideas will be relevant to sub-
cellular scale complexes and molecular machines in biology
which, rather than being fixed structures, continually ex-
change their constituent proteins with the bulk, potentially
impacting (and/or facilitating new) function [48]. Many of
these structures have highly specific symmetries/structures
related to their function, suggesting that understanding the
role of receptor geometry is essential to comprehending their
full behavior. For example, the competitive exchange of dif-
ferent multivalent DNA polymerase subunits which attach to
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the six-fold symmetric helicase of the Escherichia coli DNA
replisome has already been linked with notions of replication
speed and DNA lesion repair [11,49]. We therefore specu-
late that the spatio-temporal features associated with closed
loops of receptor sites, including correlation lengths, domain
boundaries, and the importance of parity, may be relevant for
large complexes with rotational symmetry and/or symmetry
mismatches, such as the bacterial flagellar motor [50–53] and
nuclear pore complex [54–56].

More generally, and in the context of recent advances in
nanoengineering [25], we believe that our work paves the
way for a wide range of putative soft systems whose kinetics
and emergent spatio-temporal properties might not only be
tunable, but designed a priori in a rational way.
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