
PHYSICAL REVIEW RESEARCH 4, L042027 (2022)
Letter

Excitatory-inhibitory branching process: A parsimonious view
of cortical asynchronous states, excitability, and criticality
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The branching process is the minimal model for propagation dynamics, avalanches, and criticality, broadly
used in neuroscience. A simple extension of it, adding inhibitory nodes, induces a much-richer phenomenology,
including an intermediate phase, between quiescence and saturation, that exhibits the key features of “asyn-
chronous states” in cortical networks. Remarkably, in the inhibition-dominated case, it exhibits an extremely
rich phase diagram that captures a wealth of nontrivial features of spontaneous brain activity, such as collective
excitability, hysteresis, tilted avalanche shapes, and partial synchronization, allowing us to rationalize striking
empirical findings within a common and parsimonious framework.
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The idea that information-processing systems, both biolog-
ical and artificial, can extract important functional advantages
from operating near the edge of a phase transition was al-
ready suggested by Turing in 1950, inspiring since then
theory and experiment [1,2]. Beggs and Plenz, pioneering
the experimental search for signatures of criticality in neu-
ral systems, found scale-free outbursts of neuronal activity
occurring in between consecutive periods of quiescence,
i.e., neuronal avalanches [3], as consistently reported across
brain regions, species, and observational scales [3–9]. These
avalanches have sizes and durations distributed as power laws
with exponents consistent with those of a critical branching
process (BP) [10,11] and often exhibit a parabolic shape
on average (another trademark of critical BPs) [12–15]. In
spite of some methodological caveats [16–18], experimental
discrepancies [19], and the existence of alternative inter-
pretations [20–23], the empirical observation of scale-free
neuronal avalanches triggered renewed interest in the idea
of criticality in brain networks [24–27] and its potential rel-
evance for computation and information processing [28–31]
(see also [1,2,32–34]). Nevertheless, the stylized picture of
neuronal activity as a BP seems exceedingly naive, as it
overlooks the fact that about 20% of the neurons in the
cortex are inhibitory ones [35] and that these play a cru-
cial role in shaping cortical activity [36–38]. Actually, the
“standard model” of spontaneous brain activity is that of a
“balanced state” in which excitatory and inhibitory inputs to
any given neuron nearly cancel each other on average, giving
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rise to a fluctuation-dominated “asynchronous state” [39–42].
This is characterized by rather irregular (Poisson-like) single-
neuron activations, delayed correlations between excitation
and inhibition, and small averaged pairwise correlations,
etc. [36,43–45]. These properties, important for efficient en-
coding of information [36–38,43], are markedly different
from those of usual critical states but are also crucial for infor-
mation processing, suggesting that critical and asynchronous
states could act complementarily to tackle diverse functional
tasks (e.g., requiring either strong correlation for collective
response or decorrelation to limit redundancy). Hence de-
scribing these alternative states under a common overarching
framework is a timely and challenging goal [45–51].

Here, we analyze what happens in archetypical models of
activity propagation—such as the BP or, more specifically, its
continuous-time counterpart: the contact process [10,11]—if,
as sketched in Fig. 1, inhibitory units are considered in addi-
tion to the usual excitatory ones. Do additional phases beside
the standard “quiescent” and “active” ones emerge [52–54]?
What are their key features and phase transitions? In what fol-
lows we answer these questions, elucidating an extremely rich
phenomenology that reproduces the key features of “asyn-
chronous states,” but also collective excitability, bistability,
nonparabolic avalanches, quasioscillations, criticality, etc.,
allowing us to rationalize a wealth of striking empirical ob-
servations in a parsimonious way.

The excitation-inhibition contact process (EI-CP)
is a generalization of the ordinary contact process
(CP) [10,11,52–54], operating on top of an arbitrary directed
network in which active excitatory neurons attempt to
propagate activity to their neighbors, while inhibitory ones
hinder such a propagation [35]. We consider diverse types of
network architectures, such as fully connected graphs, sparse
random networks, and two-dimensional (2D) lattices [see
Fig. 1(c)].
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FIG. 1. (a) Sketch of an excitatory-inhibitory branching pro-
cess on a tree; active inhibitory units (red squares) reduce the
probability of propagation from active excitatory units (blue cir-
cles). Empty symbols stand for inactive units and full/dashed
lines for fulfilled/unfulfilled processes. (b) Transition rates for the
“excitatory-inhibitory contact process” (EI-CP). (c) Illustration of a
two-dimensional (2D) lattice with a central cluster of active nodes.

The networks consist of N nodes, of which a fraction α are
excitatory (E) and the remaining (1 − α)N are inhibitory (I),
a proportion that is preserved for the inward connectivity of
every single node. The state of each node j at time t is defined
by a binary variable [s j (t ) = 1 for active nodes and s j (t ) = 0
for inactive or “silent” ones] and ρe(t ) [ρi(t )] is the fraction
of active excitatory (inhibitory) nodes. The dynamics is akin
to the ordinary CP: active nodes become silent at a fixed rate
μe = μi = 1, but only active excitatory nodes can propagate
activity to each of their silent nearest neighbors at a rate λ/K .
On the other hand, each active inhibitory node reduces the rate
at which each neighbor is activated by re/iλ/K (for E/I units,
respectively), with 0 � re/i � 1 [Fig. 1(a)]. Thus the activa-
tion rate of a silent node j is f ( λ

K

∑
k∈�e

j
sk − λr(e/i)

K

∑
k∈�i

j
sk ),

where �
e/i
j is the set of E/I neighbors of node j in the con-

sidered network, and the gain function, f (�) = max(0,�),
enforces the non-negativity of the transition rates. We focus
on the asymmetric variant of the model, in which inhibition
acts more strongly on excitatory than on inhibitory nodes, i.e.,
r ≡ re > ri, leading to inhibition-dominated networks. For
simplicity, here we fix ri = 0—i.e., no inhibition to inhibitory
nodes—and α = 1/2 [see Supplemental Material (SM) [55]
for generalizations]. The master equation defined by the above
rates can be integrated in an exact way with Gillespie’s algo-
rithm [56] and also studied analytically (see SM [55]).

Let us first discuss the case of fully connected networks,
for which mean-field equations (exact in the infinite-N limit)
can be derived from a standard size expansion [52,53,57],

ρ̇e(t ) = −ρe + (α − ρe) f (λ(ρe − rρi )),

ρ̇i(t ) = −ρi + (1 − α − ρi ) f (λρe), (1)

while for finite N , additional (demographic) noise terms need
to be added to Eqs. (1) (see SM [55]). Notice that Eq. (1) is
a version of the celebrated Wilson-Cowan model for neural
dynamics [58,59] and that, actually, our full model is also a
variant of the “stochastic Wilson-Cowan model,” for which
many illuminating results have been obtained in the symmetric
case [46,60–62]. However, here we focus on the inhibition-
dominated asymmetric case, which exhibits a much richer
phenomenology (see below).

Observe that, owing to the piecewise definition of f ,
Eq. (1) is a nonsmooth dynamical system [63] and the space
of states (ρe, ρi) is divided into (i) a zone 1, with ρe − rρi < 0,
for which the gain function in the equation for ρ̇e(t ) vanishes
so that the quiescent state ρe = ρi = 0 is always reached, and
(ii) a zone 2, for ρe − rρi > 0 which—as shown in Fig. 2—
entails a rich phase diagram including a quiescent phase,
an active one, and a regime of bistability [the correspond-
ing nullclines, fixed points, and characteristic trajectories are
shown in Figs. 2(e)–2(h); see also [58,59,64]]. Observe that
the transition from active to quiescent can be either (i) contin-
uous, as in the standard CP [line of transcritical bifurcations
at λ1(r) = 4

1+√
1−4r

for r � 1/4; red line in Fig. 2(a)], (ii)
discontinuous with bistability [saddle-node bifurcations at
λ3(r) = 8r

(r−1)2 ; blue line in Fig. 2(a), or (iii) tricritical at

their merging point (rt = √
5 − 2; yellow star). Note also

the presence of a line of Hopf bifurcations [λ2(r) ≡ 4 for
r � 1/4; red horizontal dashed line], where the quiescent
state loses its local stability, suggesting the emergence of
oscillations above it. However, the nonsmoothness of the dy-
namical system leads to frustrated oscillations, i.e., excitatory
perturbations (in zone 2) give rise to curved trajectories that
cross to states in zone 1 and then decay back to quiescence
[see Fig. 2(g)]. This generates an “excitable phase” above
the Hopf line where the quiescent state is locally unstable to
excitatory perturbations, so that these can be hugely amplified
before relaxing back to quiescence, making it globally stable.
This creates a mechanism for bursting/avalanching behav-
ior, related to but different from the one studied in [46,60].
This type of transient-amplification effect is well known to
stem from the non-normal (non-Hermitian) form of the Ja-
cobian matrix and its implications have long been studied
in neuroscience [46,58,65,66]. A particularly interesting case
of non-normality occurs where the transcritical and Hopf
lines meet, i.e., at the codimension-2 Bogdanov-Takens (BT)
bifurcation [64], characteristic of, so-called, nonreciprocal
phase transitions, a currently hot research topic [67]. The
non-normal nature of the dynamics entails a number of non-
trivial features such as tilted avalanches—characterized by
a highly nonparabolic averaged shape as shown in Fig. 3—
which appear all across the excitable phase when excitatory
inputs perturb the quiescent state. Note that they are not scale
invariant, i.e., they have diverse, duration-dependent, shapes
(see also [61]). It is only at the line of continuous transitions
that avalanches are both tilted and scale free, resembling the
nonparabolic scale-free avalanches reported in, e.g., zebra-fish
experiments [20]. Avalanches become parabolic only when
inhibition is switched off (r = 0) and their scaling differs
from the standard BP only at the exceptional BT point (its
“exotic” critical features will be scrutinized elsewhere [68]).
Thus, in summary, the asymmetric (inhibition-dominated) EI-
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FIG. 2. Results for the excitatory-inhibitory contact process (EI-CP) on fully connected networks as analytically obtained from Eq. (1)
for α = 1/2, ri = 0, and excitation-dominated initial conditions (note that inhibition-dominated conditions always lead to the quiescent state).
(a) Phase portrait in the r-λ plane: Active phase (blue), quiescent phase (red), excitable quiescent phase (purple), and bistable regimes (green).
The full red line λ1(r) [λ3(r) in blue] marks continuous (discontinuous) transitions between quiescent and active states. These two lines come
together at a tricritical point (yellow star). The line λ2(r) marks a Hopf bifurcation, separating the standard quiescent phase from an excitable
quiescent one, where the quiescent state is locally unstable, but globally stable. (b)–(d) Overall stationary activity ρ = ρe + ρi as a function
of λ for three different values of r as marked and color coded in (a): Continuous transition (b), discontinuous transition with a regime of
bistability between an active state and a quiescent state (c), or between an active and an excitable quiescent state (d). (e)–(g) Flow diagrams
in the ρe, ρi plane for the three points marked in panel (a); the background color stands for the phase and its color intensity is proportional
to the vector-field module, the colored lines are the nullclines ρ̇e = 0 (green) and ρ̇i = 0 (purple), respectively, and the black line (ρi = ρe/r)
separates zone 1 (inhibition dominated) from zone 2 (excitation dominated). Characteristic trajectories are depicted as arrowed orange lines,
while colored points stand for stable steady states.

CP model exhibits a much-richer phenomenology than its
standard CP counterpart (and that of the symmetric version
of the model; see SM [55]) already at a mean-field level.

To go beyond mean field, we now study sparse net-
works (K � N) and scrutinize the effects of their inherent
stochasticity. In particular, we start by considering analyti-

FIG. 3. Avalanche shapes rescaled with their duration Tr at dif-
ferent points of the mean-field phase diagram (characterized by r).
Simulations are performed for the noisy version of Eq. (1) with small
excitatory initial conditions (see SM-IV.B [55]). (i) At the inhibition-
free critical point (blue curves; r = 0 and λc = 2) avalanches for
different durations, Tr=0, are scale free as their rescaled curves col-
lapse onto a universal inverted-parabola shape using the BP exponent
γ = 2 [13,15]. (ii) In the presence of inhibition, the curves at the
critical point (orange curves; r = 0.22 and λc = 3) are scale invari-
ant with BP exponents and they collapse onto a slightly “tilted”
nonparabolic curve (see also [61]). (iii) Within the excitable phase
(red curves; r = 0.5 and λ = 10), i.e., away from bifurcations,
one observes duration-dependent (non-scale-invariant) skewed non-
parabolic shapes.

cally tractable annealed random networks—in which the αK
excitatory and (1 − α)K inhibitory neighbors of each single
node are randomly selected at each time step. In this way, the
input to each neuron is a random variable, whose probability
distribution can be straightforwardly seen to be the product
of two binomials (see SM [55]). From this probability dis-
tribution, one can then compute the mean activation rate for
each node, 〈 f (ρe, ρi )〉K , which—as a consequence of Jensen’s
inequality [49]—turns out to be larger than its mean-field
counterpart f (〈ρe〉K , 〈ρi〉K ) in Eq. (1). The resulting exact
equation can be solved using series expansions or numeri-
cally (see SM [55]). The most salient feature of its associated
phase diagram [Fig. 4(a)] is the emergence of an intermediate
phase between the standard quiescent and active phases. It is
separated from the former by a line of continuous transitions
[λc(r) = 2] and from the latter by either a sharp discontinuous
transition with bistability for large values of r or by a smooth
transition for small r’s [Fig. 4(a)]. Observe that fluctuations,
stemming from network sparsity, have blurred away the line
of mean-field Hopf bifurcations as well as the BT point, so
that the resulting intermediate phase is reminiscent of the
mean-field excitable phase but, crucially, with a nonvanishing
irregular activity (see below).

Importantly, even if the phase diagram in Fig. 4(a) has been
derived for annealed networks, qualitatively identical ones—
albeit with shifted phase boundaries—can be computationally
obtained for sparse networks with a fixed (quenched) architec-
ture (such as 2D lattices and random regular networks) with
the same values of K and α. Hence the forthcoming results
are, in general, valid for all these types of networks.

First of all, we notice that the intermediate phase in
Fig. 4 exhibits all the key features of cortical asynchronous
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FIG. 4. Features of the asynchronous phase. (a),(b) Analytical results for sparse (annealed) random networks. (a) Stationary activity where
the dashed line indicates the end of the quiescent phase and stripes signal the bistability region between the asynchronous and standard-active
phase. (b) Henrici index gauging the level of non-normality in the r, λ diagram (see SM-IV.C [55]). (c)–(l) Results for a 2D lattice (which
helps visualization) with N = 104. (c) Section of the phase diagram (r = 0.7), illustrating the discontinuous transition with bistability and
(d) coefficient of variation (CV ) for different values of λ. (e) Lagged cross correlations (CC) between excitatory and inhibitory time series;
inhibition follows closely excitation with a delay τ . Total excitatory and inhibitory activity as a function of time for r = 0.7 is plotted in
(f) for the AS phase (λ = 200) and in (h) for the standard active phase (λ = 1000); (g)–(i) same as in (f) and (h), respectively, plotted in
the standardized ρ̃e, ρ̃i plane (see SM-IV.C [55]), as an illustration of the diverse nature of cross correlations in both phases. (j) Stimulation
experiment where a fraction 	e of excitatory nodes (on a 2D lattice) is transiently activated; in the bistability region (r = 0.7, λ = 750), this
can potentially drive the system from the AS phase to the standard active phase, much as in experimental setups [72]. (k)/(l) Snapshots of the
system before (k) and after (l) the perturbation (N = 202). See SM [55] for further details.

states [37,38,43,69,70], so we call it asynchronous (AS) phase.
In particular, (i) the coefficient of variation (CV )—i.e., the
ratio of the variance to the mean activity (see SM [55])—takes
values CV > 1, as corresponds to highly irregular single-
node activations [Fig. 4(d)], (ii) time series for inhibitory
nodes tightly follow excitatory ones [Fig. 4(e)], leading to
strong lagged cross correlations between excitation and inhi-
bition [Figs. 4(f)/4(g)], a feature absent in the standard active
phase [Figs. 4(h)/4(i)], and (iii) small averaged pairwise
correlations are found (not shown). However, most remark-
ably, the elucidated AS phase—in the regime of large λ and
r values—exhibits also important features characteristic of
brain spontaneous activity that are typically not described by
standard simple models of asynchronous states [43]. These
include the following. (A) Collective excitability. As shown
in Fig. 4(b), the AS phase is characterized by a large de-
gree of non-normality—as quantified, e.g., by the Henrici
index [71]—that grows with both λ and r. In this regime, the
AS phase can be highly excitable as illustrated in Fig. 4(j), so
those small perturbations can give rise to very large excursions
far away from quiescence, generating large tilted avalanches.
(B) Bistability with hysteresis. Given that the AS phase can
coexist with the active one, it is feasible to shift the network

dynamical regime from a low-activity (AS) to high-activity
(standard active) one by perturbating the system above some
threshold [see Fig. 4(j) and SM [55]]. This shift resembles
the striking empirical observation that the collective state of
the cortex can be shifted from a low-activity state to a stable
active state with a relatively small perturbation [72]. Another
consequence of bistability is the presence of hysteresis which
is important for, e.g., working memory [73]. (C) Partial syn-
chronization. As illustrated in the SM (Fig. S5) [55], there are
quasioscillations, evinced as a peak in the Fourier transform of
the activity time series [74,75], followed by a power-law de-
cay revealing variable and transient levels of synchronization,
as observed in the cortex [74]. Importantly, this phenomenol-
ogy survives when inhibition to inhibitory neurons is switched
on (ri �= 0), but tends to disappear as the symmetric limit
(ri = re) is approached (see SM [55]), providing a simple
explanation of why “inhibition of inhibition” is often mild in
brain networks, which are thus “inhibition dominated” [36]
(cf. [76]).

Finally, we also confirmed computationally that the phase
transition from the quiescent to the AS phase is de-
scribed by the directed-percolation class (either in mean
field or in 2D; see SM [55]). Violations of such uni-
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versality occurring at special points will be described
elsewhere [68].

In summary, the EI-CP—an extension of the archetypical
contact process including additionally inhibitory nodes—
exhibits an extremely rich phenomenology, especially in the
inhibition-dominated case and on sparse networks. In partic-
ular, on these networks, one finds an AS phase that captures
the basic features of asynchronous states in the brain, and also
describes additional remarkable properties, such as collective
excitability and partial synchronization, which are usually
not explained by existing simple models of asynchronous
states. In this way, the model allowed us to rationalize em-
pirical observations, such as (i) scale-free tilted neuronal
avalanches [20,77], (ii) regime shifts in the overall network
state emerging after a limited perturbation [72], and (iii) qua-
sioscillations [74], that are certainly well beyond the limit of
validity of the standard BP picture, as well as simple models
of asynchronous states [43]. Furthermore, this allows us to
put under the same parsimonious setting critical states (in-
cluding some exotic ones) and asynchronous states, paving
the way towards a deeper understanding of the statistical

mechanics of spontaneous brain activity. Extensions of our
approach, including important features of actual neural net-
works, such as more heterogeneous network architectures,
distributed synaptic weights, refractory periods, etc., will be
explored elsewhere.
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