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Exceptional dynamics of interacting spin liquids
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We show that interactions in quantum spin liquids can result in non-Hermitian phenomenology that differs
qualitatively from mean-field expectations. We demonstrate this in two prominent cases through the effects of
phonons and disorder on a Kitaev honeycomb model. Using analytic and numerical calculations, we show the
generic appearance of exceptional points and rings depending on the symmetry of the system. Their existence
is reflected in dynamical observables including the dynamic structure function measured in neutron scattering.
The results point to different phenomenological features in realizable spin liquids that must be incorporated into
the analysis of experimental data and also indicate that spin liquids could be generically stable to wider classes
of perturbations.
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Quantum spin liquids are low-temperature phases of mat-
ter in which quantum fluctuations prevent the establishment
of long-range magnetic order. Besides the absence of local
order, a more distinct characteristic is the presence of exotic
fractionalized spin excitations (spinons) and emergent gauge
fields [1–4] due to long-range entanglement in the system.
This suggests possible applications ranging from quantum
simulation to spintronics [5].

Much recent work has focused on realizing new types of
spin liquids and understanding their implications in dynamics
and experiments through mean-field approaches. Interactions
and disorder are prominent in many experimental settings,
however, and can affect the dynamics and thermodynamics
[6–18]. A common expectation is that such effects either
renormalize the properties of quasiparticles (and give them
finite lifetimes), or open a gap if they violate certain symme-
tries. Here, we explore an intriguing alternative route where
interactions and disorder can generically lead to qualitatively
different phenomena, through distinct non-Hermitian effects
that depend on the symmetries of the interactions [19–29].
These non-Hermitian components can induce a unique level
attraction in contrast with the usual band degeneracies of Her-
mitian perturbations. We will illustrate this general principle
in the context of the Kitaev honeycomb model, which has
received much attention recently in view of potential exper-
imental realizations [30–39], whereas our symmetry analysis
may apply to a variety of models. The presence of disorder and
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phonons can lead to the appearance of so-called exceptional
rings and exceptional points which possess an unusual square-
root dispersion [40,41]. This results in unusual features in
experimental observables including asymmetric Fermi arcs,
which cannot be achieved generically in Hermitian settings.
The resulting generic phenomena also illustrate that spin liq-
uids can be stable to a wider variety of perturbations and are
less fragile and richer than typically assumed.

Effective non-Hermitian description. Elucidating the sub-
tle signatures of a spin liquid in experiments requires an
understanding of dynamical observables such as the spec-
tral function and dynamic structure factor. Linear response
connects these observables to tangible measurements such
as scattering cross sections. Calculating these observables in
interacting systems is not easy, although they have been quan-
tified in some crucial cases such as an interacting electron gas
(Fermi-liquid theory).

A fundamental object to calculate dynamical observables
is the Green’s function where interactions are accounted for
through a self-energy. The Green’s function for an interacting
or disordered system satisfies the Dyson equation [ω − H0 −
�A/R(ω)]GA/R(ω) = I , where I is the identity operator and
H0 is the unperturbed Hamiltonian, and the superscripts A, R
refer to advanced or retarded. The retarded version is appro-
priate for calculating the time evolution of simply specified
initial (“in”) states. The self-energy �A/R(ω) terms are in-
duced by the interaction or the disorder. The Green’s function
has poles at ω = E whenever det[E − H0 − �A/R(E )] = 0.
At low energy, the self-energy can be expanded in pow-
ers of ω, �R(ω) = �R(0) + ω�(1) + · · · . Unlike the original
Hamiltonian, the self-energy is usually not Hermitian [42].
We denote the Hermitian and anti-Hermitian component of
the self-energy as �̄ and �̃. The linear term �(1) plays an
important role in wave-function renormalization and friction
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FIG. 1. The Kitaev honeycomb model with interactions carried
by a bosonic field or bond disorders. Depending on whether inversion
(IV) symmetry and time-reversal (TR) symmetry are preserved, we
can have different types of non-Hermitian phases or a trivial gapped
phase. The real parts of the “energy” difference �E (yellow) between
the two Majorana bands are shown as a function of momenta for
different scenarios.

for bosonic operators [43]. Here, we assume ||�(1)|| � 1
and neglect it for simplicity. The leading-order term in the
Dyson equation can be treated as an effective Hamiltonian
H eff = H + �R(0).

Symmetries of interactions and exceptional degeneracies.
This effective Hamiltonian is usually non-Hermitian and can
exhibit “exceptional” degeneracies in its spectrum depending
on the symmetries obeyed by the interactions [44–46]. We
illustrate this through the Kitaev honeycomb model.

The Kitaev honeycomb model [47] is defined through com-
pass interactions linking directions in spin space and real
space of spin-1/2,

H0 = −
∑
〈 jk〉α

Jασ α
j σα

k , (1)

where 〈 jk〉α labels the lattice (Fig. 1) and α = x, y, z labeling
the three types of links of a hexagonal lattice with σα the
corresponding Pauli matrices. At low energies, the system
is effectively described by Majorana quasiparticles ca with a
Dirac dispersion interacting with a Z2 gauge field, where a
labels the two sublattice indices.

The Majorana operators always possess a particle-hole
symmetry, Cca,kC−1 = ca,−k, reflecting the underlying real
bosonic spin degrees of freedom. The honeycomb lattice is
inversion invariant: Under inversion transformation, the two
orbitals are interchanged while the Z2 gauge field coupling
the two orbitals obtains a minus sign. Therefore the Ma-
jorana operators transform as Pca,kP−1 = ∑

b εabcb,−k. The
time-reversal symmetry is crucial in protecting the gapless

phase. The transformation rule is given by T c1,kT −1 = c1,−k,
T c2,kT −1 = −c2,−k. With these rules, we can explicitly com-
pute how the self-energy transforms under T , P , and C. They
are summarized in Table I.

From these symmetries, we find different types of ex-
ceptional degeneracies. We first look at particle-hole (PH)
symmetry and inversion symmetry. PH symmetry requires
the non-Hermitian (NH) component of the self-energy to sat-
isfy �̃R

ab(ω, k) = �̃R
ba(−ω,−k). Inversion symmetry imposes

�̃R
22(ω, k) = �̃R

11(ω,−k) and �̃R
12(ω, k) = −�̃R

21(ω,−k). So
when both of them are present, the NH self-energy can only
be proportional to an identity matrix at ω = 0, �̃R

ab(0, k) =
δab�̃

R(0, k). Under this circumstance, the NH components are
trivial, merely broadening the resonance peaks of the Majo-
rana operators. So in order for a nontrivial NH self-energy, we
need to break either PH or inversion symmetry. The former is
an intrinsic property of Majorana operators. Thus we can only
choose to break the inversion symmetry.

Looking at the time-reversal symmetry, it requires
τz�

R(ω, k)τz = [�A(ω,−k)]∗ with τz = diag(1,−1) the z-
Pauli matrix. Together with PH symmetry, we find that time-
reversal symmetry implies �̄R

aa(0, k) = 0 and �̃R
ab(0, k) =

0(a �= b). We can only have purely imaginary numbers in
the diagonals of �R(0, k) when time-reversal symmetry is
present.

With the symmetry restrictions, we discuss the topology of
band touchings. The Majorana Hamiltonian can be expressed
in terms of the Pauli matrices Hm = d0I + d · τ. The d0 vector
merely shifts the touching energy level and we only need
to focus on E = ±√

d · d. When the system preserves time-
reversal symmetry, we have dz = id̃z and dx/y = d̄x/y. So we
have

E (k) = ±
√

d̄2
x (k) + d̄2

y (k) − d̃2
z (k). (2)

Now the energy vanishes at d̄2
x (k) + d̄2

y (k) = d̃2
z (k) and is

purely imaginary when d̄2
x (k) + d̄2

y (k) < d̃2
z (k). The solution

to d̄2
x (k) + d̄2

y (k) = d̃2
z (k) is a one-dimensional (1D) closed

curve, the exceptional curve. Inside the exceptional curve,
the energy is purely imaginary; the system is gapless for the
real part of the energy. When the time-reversal symmetry is
lifted, the system usually possesses a gap � ∼ min

√
d̄2(k).

However, the inclusion of a nontrivial NH term can change
the situation. The energy is given by

E (k) = ±
√

d̄2(k) − d̃2(k) + 2id̄(k) · d̃(k). (3)

By dimension counting, the imaginary and real parts in the
square root can vanish robustly at an isolated point k = k∗
since these are two restrictions for a two-dimensional (2D)
problem. This is different from the Hermitian case where all
the three components dx, dy, and dz must vanish. The NH
components generate a level attraction and may close the
(real) gap, leading to an exceptional point at k∗.

Exceptional points are general features of NH effective
Hamiltonians. However, the exceptional point itself is not
directly reflected in the single-body spectral function. The ex-
istence of exceptional points is always accompanied by Fermi
arcs. Compared to the Dirac point, the Fermi arc is extensive
in one direction while narrow in the orthogonal direction. Its
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TABLE I. Summary of symmetries. We use a general complex fermion notion. For Majorana operators used here, we need to substitute
ψa,k = ca,k, ψ†

a,k = ca,−k.

Symmetry of Green’s functions

Time reversal Particle-hole Inversion

T ψa,kT −1 = ∑
b Uabψb,k Cψa,kC−1 = ψ†

a,−k Pψa,kP−1 = ∑
b U I

abψb,−k

�R
ab(ω, k) = ∑

cd UacU ∗
bd [�A

cd (ω,−k)]∗ �R
ab(ω, k) = −�A

ba(−ω,−k) �R
ab(ω, k) = ∑

cd U I
acU

I∗
bd �R

cd (ω,−k)
E (k) → E (−k) E (k) → −E∗(−k) E (k) → E (−k)

effective dispersion is also biased at finite frequency (see Sup-
plemental Material [48]). Such a highly anisotropic feature
could be observed in inelastic neutron scattering. Exceptional
rings in a disordered Kitaev honeycomb model. Now we spe-
cialize to the Kitaev honeycomb model, a Z2 spin liquid with
Dirac cones. We find that including disorder respecting time
reversal on average and breaking inversion symmetry realizes
a phase with degeneracies on, and square-root dispersion near,
the exceptional rings.

We consider a random magnetic field with zero average.
This type of disorder is different from vacancies [49,50], ran-
dom vortex backgrounds [51], or nearest-neighbor exchange
disorders [52,53] that have been considered previously in the
literature. We treat the random magnetic field perturbatively,
assuming that the ground state remains in the zero flux sector.
As explained in the Supplemental Material (SM) [48], this
results (at lowest orders) in a Majorana hopping model with
disordered first- and second-neighbor hoppings. The model
preserves time-reversal symmetry on average. To observe ex-
ceptional rings, we break inversion symmetry by allowing
different magnitudes of the random external field on the two
sublattices. This can be achieved experimentally by proximity
coupling to a paramagnetic substrate with inequivalent atoms
near the two sublattices.

As the symmetry analysis shows, we need to break inver-
sion symmetry. This can be done by introducing a disorder
potential for the next-nearest hopping amplitudes of the Ma-
jorana modes on orbital 1, iVl(r)ψ1(r + l)ψ1(r), where the
hopping vector can be l = a1, a2, a1 + a2. This term breaks
time-reversal symmetry while the exceptional rings require
time-reversal symmetry. The strategy is to preserve this sym-
metry in average. That is to say, the statistical average of the
time-reversal breaking term vanishes 〈Vl(r)〉 = 0. We show
in SM [48] that the transformation rules in Table I still
apply. The disorder is assumed to be uncorrelated at differ-
ent sites 〈Vl(r)Vl′ (r′)〉 = −F lδl,l′δ(r − r′). The self-consistent
Born approximation reads as

�R
11(ω, k) = −

∑
k′,l

[1 − e−i(k+k′ )·l]F l(k − k′)G11(ω, k′).

(4)
If d̃0 is taken to be infinitesimal, the NH part of the above
equation vanishes as ω → 0. To circumvent this situation, we
may consider including a finite d̃0 brought by other inversion-
symmetry preserving mechanisms, such as nearest-neighbor
Majorana disorder potentials. This type of disorder brings a
small finite lifetime to the Majorana excitations.

In Figs. 2(c) and 2(d) we show the resulting effective
Hamiltonian, with clear evidence of an exceptional ring

around the K points. We also show the single Majorana
spectral function in Figs. 2(a) and 2(b), with signatures of
a zero-frequency drumhead state inside the exceptional ring.
Somewhat surprisingly, the total density of states, shown in
Fig. 2(e), has a dip, instead of a peak at zero energy. This is
a consequence of a strong suppression of the zero-frequency
spectral weight outside the exceptional ring (ER), combined
with the larger available phase space outside the ER, allow-
ing the finite-frequency density of states to surpass the zero
frequency value.

FIG. 2. Exceptional ring in a disordered Kitaev honeycomb
model. Spectral function along the ky = 0 cut from (a) disor-
dered numerics and (b) SCBA. (c) Real and (d) imaginary part
of the gap in the effective Hamiltonian near the K point. The
real gap vanishes inside, the imaginary gap outside the exceptional
ring. (e) Density of states and (f) specific heat for clean (blue),
nearest-neighbor disordered without exceptional ring (orange), and
second-neighbor disordered with exceptional ring (green) systems,
the low-temperature linearized specific heat with dotted lines.
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FIG. 3. The spectral functions of Majorana excitations A(ω, k) = −tr[GR(ω, k) − GR†(ω, k)]/(2iπ ), and their spin structure factors in the
presence of Heisenberg and cross-term interactions. The energy unit is J . (a)–(c) The Dirac point for Hermitian systems. The single-particle
spectral function is supported at a point. The spin structure factor as a function of the frequency � and momentum q takes a conic structure
for both the qx-direction cut and the qy-direction cut. (c)–(f) A Fermi arc with NH components d̃0 = −0.35J , d̃x = 0.25J , associated with the
exceptional points in the single-body Majorana spectral function. The spin structure is now anisotropic due to the strong asymmetric behaviours
of the Fermi arc. (g), (h) The spectral functions of the Fermi arc at finite positive and negative frequencies. The Fermi arc becomes convex at
finite frequencies. The direction of the deformation depends on the sign of the frequency. (i) The cuts of the spin structure factor at � = 0.2J
along (0, qy ) and (qx, 0).

To support the self-consistent Born approximation (SCBA)
results, we use the kernel polynomial method [54,55] to ap-
proximate the disorder-averaged retarded Green’s function
〈GR

ab(ω, k)〉dis numerically. From this, we obtain the self-
energy, the effective Hamiltonian, and the single-particle
and two-particle spectral functions, which all show excellent
agreement with the SCBA results. (For details, see SM [48].)
We also show a comparison of the density of states and spe-
cific heat [56,57] for the clean, nearest-neighbor disordered
(without exceptional ring) and second-neighbor disordered
(with exceptional ring) systems in Figs. 2(e) and 2(f). The
key difference between the two disordered cases is the op-
posite deviation from the linearized low-temperature specific
heat. This can be understood using Fermi-liquid theory and
Sommerfeld expansion: The linear term is only sensitive to
the zero-frequency density of states, however, the sign of the
cubic term depends on whether zero frequency is a mini-
mum or a maximum of the density of states. (For details, see
SM [48].)

Exceptional points and Fermi arcs in a Kitaev honeycomb
model interacting with phonons. We show here that a Z2 spin
liquid with Dirac cones when coupled to gapped excitations
such as optical phonons [58] instead can realize a qualita-
tively different phase with pointlike exceptional degeneracies
connected by Fermi-arc degeneracies in the real part of the
spectrum. The phonon couplings can be generated by con-
sidering vibrations of ions around their equilibrium positions
[59,60]. A spin-spin interaction can be generally written as

∑
r1,α,... Jα,β,...(r1, r2, . . .)σα

r1
σ

β
r2 · · · . At the equilibrium po-

sition r j = r(0)
j , we should have Jα,β,...(r

(0)
1 , r(0)

2 , . . .) = 0
except for those J belonging to the Kitaev interaction. For
small ion vibrations, we have the phonon-spin interaction∑

r1,α, j,... ∂r j Jα,β,...(r
(0)
1 , r(0)

2 , . . .)δr jσ
α
r1
σ

β
r2 · · · . These spin op-

erators can be written in terms of Majorana operators. The
low-energy physics is obtained by those do not excite Z2
vortices. For example, a nearest-neighbor Kitaev coupling
gives phonons coupled to the different species of Majorana
operators φc1c2 and a three-spin coupling can lead to phonons
coupled to the same species of Majorana operators φc1c1.

In order to have interesting exceptional degeneracies we
need to break inversion symmetry. This can be achieved by
giving different couplings to the two sublattices of the hon-
eycomb model. For phonons, this will lead to asymmetric
couplings between their normal modes and the two species of
Majorana modes. In order to break time-reversal symmetry,
we require couplings of the form φc1c1.

In the presence of a Heisenberg interaction and cross in-
teraction, the spin operator gets mixed with the low-energy
Majorana operator directly [61]. The spin response func-
tion can be evident even below the flux gap temperature.
We compute the behaviors of the spin structure factor in
Fig. 3. When the Fermi arc is present, the spin struc-
ture constant develops very different directional-dependent
shapes compared to the Dirac cones. The cut along the y
direction is biased while the cut along the x direction is
uniformly broadened for Fermi arcs. This is very different
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from the naive isotropic conic structure for Dirac-Majorana
dispersion.

Discussion. The Kitaev honeycomb model is the subject
of much recent interest due to prominent experimental can-
didates such as α-RuCl3 [30–39]. Recent studies have shown
that phonons can play a significant role in the experimental
setting [58–60]. In this model, the optical phonon energy is
well above the flux gap, and the signature of exceptional
points may be obscured by the effective flux disorders. From
our symmetry analysis, we may instead break the inversion
symmetry by various means such as stacking the 2D mate-
rial on a substrate which does not have such a symmetry.
The exceptional ring could also be realized by depositing
the material on a substrate with random magnetic disorder.
Besides measurement of the dynamic structure factor, recent
techniques using nonlinear spectroscopy [62–66] could also
provide a more direct probe of the single-particle properties
which would more directly reveal the exceptional degenera-
cies.

Our results point to different phenomena in spin liquids
depending on the symmetries of the interactions and kinds
of disorder present in them. One might have feared that
those complications would obfuscate the signature of the spin
liquid. Instead, we suggest that it leads to distinctive excep-
tional degeneracies observable in experimental settings. As
our symmetry study works for generic fermionic excitations,
the exceptional point and ring can also emerge in other 2D
strongly interacting systems. And its generalization to 3D
systems may introduce more interesting degeneracies such as
knots and links [67].
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