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Coherently converting quantum states between distinct elements via quantum transducers remains a crucial
yet challenging task in quantum science. Especially in demand is quantum transduction between optical fre-
quencies, which are ideal for low-loss transmission across long distances, and microwave frequencies, which
admit high-fidelity quantum operations. We present a generic formalism for N-stage quantum transduction that
covers various leading microwave-to-optical, microwave-to-microwave, and optical-to-optical linear conversion
approaches. We then identify effective circuit models and the resulting generalized matching conditions for
achieving maximum conversion efficiency. The generalized matching condition requires resistance matching
as well as frequency matching beyond the usual resonant assumption, with a simple impedance-matched
transmission interpretation. Our formalism provides a generic toolbox for determining experimental parameters
to realize efficient quantum transduction and suggests different regimes of nonresonant conversions that might
outperform all-resonant ones.
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Global quantum networks for secured communication, dis-
tributed quantum computation, and beyond is among the
appealing applications of future quantum technologies [1–4].
Lying at the heart of networking quantum devices are quantum
transducers, coherent interfaces that can faithfully transmit
quantum information between components with distinct en-
ergies [5–7]. Major interests have been placed on coherent
conversions between optical and microwave frequencies, with
the former ideal for reliable long-range communications
through optical fibers or in free space [8,9], and the latter
admitting high-fidelity local quantum operations using super-
conducting processors [10,11].

A variety of physical implementations for direct state trans-
fer between microwave and optical systems have been rapidly
developed in the past decade. Direct conversion between mi-
crowave and optical frequencies can be established through
electro-optics [12–16], electro-optomechanics [17,18], opto-
magnonics [19,20], piezo-optomechanics [21,22], and atom-
assisted conversion schemes that involve two or more
intermediate atomic levels [23–27]. Despite the wide range
of experimental settings, these approaches can be modeled
as multistage coupled bosonic chains with two end modes
coupled externally. The same model applies to optomechani-
cal photon-phonon translators [28], microwave-to-microwave

*chiaowang@phys.ntu.edu.tw

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

frequency converters [29] in superconducting circuits, and
optical-to-optical frequency converters via cavity optome-
chanics [30] or coupled-resonator optical waveguides through
eight-ring resonators [31].

When the environmental thermal noise is negligible or can
be fully suppressed by cooling [32,33], the performance of a
direct quantum transducer is measured by the transmissivity
η, i.e., the coherent conversion efficiency between the input
signal and the output signal [34]. A perfect direct quantum
transducer should be of unity efficiency and hence can faith-
fully transfer quantum signals with zero information loss.
With more complicated experimental implementations, such
as three- to six-wave mixing atom-based transducers [23–25],
being pursued, a systematic approach to designing physi-
cal parameters for achieving unity efficiency transduction is
pressing.

In this Letter, we derive a unity-efficiency-achieving con-
dition inspired by the widely known impedance-matching
condition in electrical engineering. Based on this discov-
ery, we establish an effective electric circuit model to
clarify the analogy between direct quantum transduction
and electrical power transmission. The generality of our
unity-efficiency-achieving condition allows us to loosen the
stringent constraints imposed on previous quantum transduc-
tion schemes, such as the requirement that all involved modes
must be on resonance in the rotating frame to achieve maxi-
mum efficiency (after consideration of frequency shifts given
by the rotating-wave approximation) [17,28,35], which may
extend the applicability and flexibility of direct quantum trans-
duction. We also investigate the robustness of this condition
and its working range under the influence of environmental
dissipation introduced to the intermediate stages.
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FIG. 1. (a) Schematic of the N-stage quantum transduction sys-
tem with photon number conversion efficiency ηN and internal
photon number conversion efficiency ηN,int . (b) Schematic of an
effective circuit network for N-stage transduction (with odd N) with
power efficiency η

p
N = ηN and internal power efficiency η

p
N,int =

ηN,int .

Model of N-stage direct quantum transduction. The
transduction device we are considering is a bosonic chain
consisting of N + 2 modes, where each mode in this chain is
coupled to their nearest neighbors through passive interactions
[Fig. 1(a)] regardless of their physical carriers (e.g. optical
modes, microwave modes, acoustic modes, magnons, etc.).
The implementation of such systems has been demonstrated in
existing quantum transduction experiments [12–31] by prop-
erly driving the involved modes. The whole device can be
described by the following Hamiltonian,

ĤN = −
N+2∑
j=1

� j m̂
†
j m̂ j +

N+1∑
j=1

g j (m̂
†
j m̂ j+1 + m̂†

j+1m̂ j ), (1)

with m̂ j, m̂†
j the annihilation and creation operators of each

mode, � j the detuning of each mode in the rotating frame,
and g j the coupling strength of each interaction. To stress the
presence of the intermediate modes, we address each of them
as a stage. Therefore, a device with N + 2 modes contains N
stages as the intermediate modes. For similar reasons, we use
â as an alternative denotation for m̂1 and b̂ for m̂N+2 as shown
in Fig. 1(a).

For transduction, this device will be passively coupled with
external channels to receive the input signal â†

in,ex at the rate

κa,ex and to emit the output signal b̂†
out,ex at the rate κb,ex,

requiring the modes â† and b̂† to be of disparate frequencies
(e.g., â† may be a microwave mode while b̂† is an optical
mode). Taking environmental dissipation into consideration,
we introduce an intrinsic loss rate κ j for each mode. The
intrinsic loss rates for the first and the last modes are re-
ferred to as κa,i and κb,i, respectively, to be consistent with
our conventions. Thus, the rates κa = κa,i + κa,ex and κb =
κb,i + κb,ex are used to denote the total dissipation rates of
the two modes. Similarly, the other parameters �1, �N+2, g1,
gN+1 are referred to as �a, �b, ga, gb, respectively.

The conversion efficiency η of the transducer quantifies
the fraction of photon (boson) number power that can be

successfully transferred from one end to the other. Treating
the N-stage transducer as a scattering matrix SN between
the external input and output modes as shown by the red
dashed boundary in Fig. 1(a), the photon number conversion
efficiency from â† to b̂† is defined as ηN ≡ |SNb̂†

out,ex â†
in,ex

|2.
Here, we have been focused on the scheme of a bosonic
chain with only nearest-neighbor beam-splitter interactions
such that there is neither nonreciprocity [36] nor amplification
effects [37]. A perfect transduction is well defined in this
scenario by the unity efficiency condition ηN = 1.

The N-stage conversion efficiency at a signal frequency ω

can be expressed in a general form [38]

ηN [ω] = κa,exκb,ex

κaκb

∣∣∣∣∣
√

κaκb
∏N+1

j=1 ig j∏N+2
j=1 χ−1

j,eff

∣∣∣∣∣
2

= ηextηN,int[ω], (2)

where χ j,eff is the effective susceptibility for m̂†
j , a modi-

fication to the bare mode susceptibility χ j ≡ [i(ω + � j ) +
κ j/2]−1, due to the couplings g j, . . . , gN+1(= gb),

χ−1
j,eff ≡ χ−1

j + g2
j

χ−1
j+1 +

. . .

. . . + g2
b

χ−1
b

. (3)

Here, ηext = κa,exκb,ex/κaκb is the external conversion ef-
ficiency and ηN,int[ω] is the N-stage internal conversion
efficiency.

The internal efficiency ηN,int[ω] can be understood as the
efficiency of the internal scattering process SN,int as shown by
the green dashed boundary in Fig. 1(a). The relevant scatter-
ing modes are the total input and output modes â†(b̂†)in/out

coupled to â†(b̂†) at an overall rate κa(b), due to the inter-
action with both the external channels and the dissipative
environment.

The external efficiency ηext, on the other hand, represents
the average fraction of information that can be successfully
transferred through the external channels, without being lost
to the dissipative environments at rates κa,i and κb,i, while
leaving or entering the end modes â† and b̂†. In the strong
external coupling limit such that κa,ex � κa,i and κb,ex � κb,i,
one can reach maximal external efficiency ηext = 1. We will
thus focus on the general criteria for system parameters to
attain unity internal conversion efficiency. Since the system
dynamics is invariant under a global energy shift, we will use
ν j ≡ ω + � j as the relevant frequency variables.

As a starting example, we study the simplest case of
0-stage transduction [Fig. 2(b)] relevant for electro-optical
quantum transducers [12–16]. The 0-stage internal efficiency
is

η0,int =
∣∣∣∣ g

√
κbκa

g2 + χ−1
a χ−1

b

∣∣∣∣
2

. (4)

Under the traditional all-resonant assumption νa(≡ ω +
�a) = νb(≡ ω + �b) = 0, the matching condition to fulfill
η1,int = 1 was given by Ca,b ≡ 4g2/κaκb = 1, where Ca,b is
the cooperativity between modes â† and b̂† [28]. On the
other hand, two off-resonant peaks in efficiency have also
been observed in the strong-coupling regime Ca,b > 1 with
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FIG. 2. (a) An exemplar frequency diagram for 0-stage trans-
duction from â† to b̂† in the laboratory frame. Here, ωa(b) is the
frequency of mode â†(b̂†) and ωin(out) is the frequency of the input
(output) signal. The system can be described with a time-independent
Hamiltonian as in Eq. (1) by moving b̂† and b̂†

out,ex to the rotating
frame at the laser pump frequency ωp that mediates the linear up- and
down-conversion. (b) Schematic of the 0-stage quantum transduction
model. (c) Effective circuit model that reproduces the 0-stage inter-
nal conversion efficiency by setting L1 = 1, R1 = i�a, R1 = κa/2,
C2 = 1/g2, R2 = g2/(i�b), and R2 = 2g2/κb.

κa = κb [39]. However, there is no systematic analysis of these
off-resonant peaks.

A natural question arises: What is the most general condi-
tion to achieve unity internal conversion efficiency? Solving
for the solution of νa ≡ ω + �a given η0,int[ω] = 1, we arrive
at a set of independent criteria

νa = g2νb

ν2
b + κ2

b /4
, (5)

κa = g2κb

ν2
b + κ2

b /4
, (6)

where νb ≡ ω + �b. The all-resonant condition νa = νb = 0
fulfills the nonlinear condition of Eq. (5), which might have
other solutions. Before proceeding with the general solution
to the matching condition, we would like to point out that the
conditions of Eqs. (5) and (6) admit an impedance-matching
interpretation analogous to the electric circuit power transfer
theory.

Impedance-matching interpretation for unity efficiency
transduction. In electric circuits, for an active voltage trans-
ferred from a source impedance ZS to a load impedance
ZL, maximum transfer power is obtained if the conjugate
impedance-matching condition ZL = Z∗

S is satisfied [40]. For
the 0-stage transduction system, unity internal conversion
efficiency is also achieved when the system has impedance-
matched parameters. Viewed from the â† port, χ−1

a,eff is

modified by g2χb due to the coupling with the b̂† mode.
By interpreting the original inverse susceptibility of mode â†

as the source impedance in the unit of rates, ZS = χ−1
a , and

the coupling-induced inverse susceptibility modification as
the load impedance, ZL = g2χb, the first condition Eq. (5) is
equivalent to having Im[χ−1

a ] = −Im[g2χb] while the second
condition Eq. (6) corresponds to Re[χ−1

a ] = Re[g2χb], which
altogether fulfill ZL = Z∗

S .

To construct a rigorous connection between maximal
conversion efficiency for transducers and the impedance-
matching condition for electric circuits, we now establish
an effective circuit model. Specifically, the effective circuit
shown in Fig. 1(b) can reproduce an identical frequency re-
sponse as an N-stage quantum transducer in Fig. 1(a) with
an odd N , such that the electric power internal efficiency is
the same as the photon number internal efficiency η

p
N,int[ω] =

ηN,int[ω], by setting [38]

L−1
j C−1

j+1 = g2
j, RjL

−1
j = κ j/2, R jL

−1
j = i� j, odd j,

C−1
j L−1

j+1 = g2
j, GjC

−1
j = κ j/2, G jC

−1
j = i� j, even j.

(7)

The circuit is composed of elements with inductance Lj ∈
R, capacitance Cj ∈ R, resistance Rj = 1/Gj ∈ R, and gen-
eralized resistance R j = 1/G j ∈ iR. The resistance at the
two ends can be separated into external coupling and in-
trinsic loss components, R1(N+2),exL−1

1(N+2) = κa(b),ex/2 and
R1(N+2),iL

−1
1(N+2) = κa(b),i/2, to replicate the total conversion

efficiency η
p
N [ω] = ηN [ω]. Here, we have introduced the gen-

eralized resistance of imaginary values R j to account for
the independent mode detunings � j , which is distinct from
prior numerical [41] or synthetic methods [42,43] for coupled
resonator arrays.

With the explicit circuit correspondence, we see a clear
analogy between the scattering process of the input/output
modes, â†(b̂†)in/out, for transducers and the incident/reflective
power waves, α(β )in/out, for electric circuits [40,44,45]. With
the effective circuit parameters shown in Fig. 2(c), the
impedance-matching analogy for attaining unity 0-stage in-
ternal efficiency naturally follows through.

Generalized matching condition. We now extend the con-
cept of impedance matching to N-stage quantum transduction.
An impedance-matching condition viewed from the â† mode
(taking L1 = 1) reads(

χ−1
a

)∗ = g2
aχ2,eff . (8)

When all the intermediate modes are lossless, κ2 = · · · =
κN+1 = 0, this condition also leads to impedance matching
viewed from the b̂† mode (taking LN+2 or CN+2 = 1),(

χ−1
b

)∗ = g2
bχN+1,eff,r, (9)

where χ j,eff,r is the effective susceptibility of mode j viewed
from the reversed direction due to the couplings g1(=
ga), . . . , g j−1,

χ−1
j,eff,r ≡ χ−1

j + g2
j−1

χ−1
j−1 +

. . .

. . . + g2
a

χ−1
a

. (10)

One can achieve ηN,int = 1 by requiring a lossless condition
κ2 = · · · = κN+1 = 0 together with an impedance-matching
condition Eq. (8) or (9).

There exist additional physical interpretations for the above
matching conditions Eqs. (8) and (9). First, they give rise
to zero internal reflections. Similar to the fact that the
power wave reflection coefficient at the source, rp

S = (ZL −
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Z∗
S )/(ZL + ZS ), vanishes for a conjugate matched lossless

electric circuit, the above conditions also suggest zero internal
reflection for the transducer. Specifically, the internal reflec-
tion coefficients are given by

rN,a = SN,int â†
out â

†
in

= g2
aχ2,eff − (

χ−1
a

)∗

g2
aχ2,eff + χ−1

a

, (11)

rN,b = SN,int b̂†
out b̂

†
in

= g2
bχN+1,eff,r − (

χ−1
b

)∗

g2
bχN+1,eff,r + χ−1

b

. (12)

It is clear that Eq. (8) implies rN,a = 0 while Eq. (9) implies
rN,b = 0. Second, the matching conditions also correspond to
critical effective cooperativities along the transduction chain
when the system is lossless,

Ceff
j, j+1 ≡ g2

j(
χ−1

j,eff,r

)∗
χ−1

j+1,eff

= 1. (13)

We summarize the generalized N-stage matching condition
in a matrix determinant form [38],

MN = 0, (14)

MN ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(
χ−1

a

)∗
iga 0 · · · · · · 0

iga χ−1
2 ig2

. . .
...

0 ig2
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . igb

0 · · · · · · 0 igb χ−1
b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
κ2=···

=κN+1=0

.

(15)

We call the real part of the equation the generalized resistance
matching condition, Re MN = 0 and the imaginary part of the
equation the generalized resonant condition, ImMN = 0.

The generalized matching condition Eq. (14) takes a sym-
metric form in a and b. For example, the generalized 0-stage
matching condition reads

M0 = 0 ⇒
{

Re : g2 = κaκb
4 + νaνb,

Im : νa
κa

= νb
κb

,
(16)

(17)

which is mathematically equivalent to the previous set of
criteria Eqs. (5) and (6) for getting η0,int[ω] = 1.

Note that in quantum transduction systems there exist �i

degrees of freedom associated with the generalized resistance
of imaginary values, which are unavailable in real-world lin-
ear electric circuits where the resistors are always real. The
above expression is thus a generalized version of a match-
ing condition beyond the all-resonant assumption ∀ j, ν j ≡
ω + � j = 0, which corresponds to circuits with purely real
resistors while setting the signal frequency to be zero, ω = 0,
in the rotating frame.

Tuning the off-resonant frequencies. In a typical analysis,
the frequencies ν j’s, after including the frequency shifts given
by the rotating-wave approximation, if any, are often cho-
sen to be zero (all resonant) in order to achieve maximum
conversion efficiency [17,28,35]. Here, we consider generic
schemes such that ν j’s may be nonzero (off resonant) to offer
extra tunability for transduction. One might adjust the system

TABLE I. Optimal frequencies for 0-stage transduction.

N = 0 Ca,b > 1 Ca,b � 1

νa ≡ ω + �a ± κa
2

√
Ca,b − 1 0

νb ≡ ω + �b ± κb
2

√
Ca,b − 1 0

ηmax
0,int 1 4Ca,b

(Ca,b+1)2

parameters to achieve an ideal conversion for output signal
frequencies detuned from ωb. In the strong-coupling regime
Ca,b > 1 of 0-stage transduction, unity internal efficiency is
achieved with nonresonant frequencies νa 	= 0 and νb 	= 0.
The optimal frequencies and the maximal internal efficiency
for a given Ca,b are summarized in Table I. Note that the trans-
duction process still follows energy conservation even with
nonresonant ν j’s. For example, ωout = ωin + ωp is always true
for the 0-stage case shown in Fig. 2(a), while ν j’s merely
represent the frequency differences between the input/output
signals and modes â† or b̂†.

The extra degrees of freedom given by nonresonant ν j’s
can also serve as optimizable parameters in experiments. In
practice, the loss rate of the intermediate modes may be
non-negligible, and the system can no longer satisfy MN =
0 to reach unity internal efficiency. The mode cooperativ-
ities C j, j+1 ≡ 4g2

j/(κ jκ j+1) are thus finite and limited by
experimental constraints. On the other hand, the frequen-
cies and detunings of the modes are typically tunable by
laser drives. In such experimental settings, one can find the
optimal ν j’s that lead to maximal efficiency at the given
values of C j, j+1’s.

We find that the optimal parameters with intermedi-
ate losses can again be interpreted as impedance-matched
parameters of lossy circuits. Take the case of 1-stage
transduction, appropriate for electro-optomechanical [17,18],
optomagnonical [19,20], or piezo-optomechanical [21,22]
quantum transducers, for example. When κ2 	= 0, we can de-
fine mode cooperativities Ca,2 = g2

a/κaκ2 and C2,b = g2
b/κ2κb.

When one of the modes is overcoupled, for instance, if Ca,2 >

C2,b + 1, a relevant regime for piezo-optomechanical trans-
ducers in which the microwave mode is over coupled [21,22],
the maximal internal efficiency is achieved by the choice
of optimal frequencies satisfying (χ−1

a )∗ = g2
a/(χ−1

2 + g2
bχb)

and νb = 0. This corresponds to impedance matching at the
â† mode while treating m̂†

2 and b̂† altogether as the load. If
|Ca2 − C2b| � 1, the conversion is optimized when the system
is all resonant. This condition can again be understood as
an impedance-matched lossy circuit while treating the middle
mode as a lossy component partly in the source and partly in
the load [38].

For 0-, 1-, and 2-stage transduction, we identify the
regimes where maximal internal conversion efficiency is
achieved with off-resonant frequencies ν j ≡ ω + � j 	= 0 in
the parameter space of mode cooperativities as shown in
Fig. 3 [38]. These examples manifest the exotic behavior that a
quantum transducer operating at off-resonant frequencies may
outperform all-resonant ones.

Our method may be extended for conversion through an
ensemble of intermediate modes. For instance, considering

L042023-4



GENERALIZED MATCHING CONDITION FOR UNITY … PHYSICAL REVIEW RESEARCH 4, L042023 (2022)

FIG. 3. Phase diagrams for 0-, 1-, and 2-stage transduction in
the parameter space of mode cooperativities. In the colored regimes,
maximal internal efficiency is achieved with off-resonant frequencies
as labeled.

transduction schemes mediated by two excited levels of a
large number of atoms NA [24,25], we can treat the atomic
excited states as collective modes Ŝ2(3) = 1√

NA

∑
k m̂2(3),k and

obtain the same form of conversion efficiency as in Eq. (2) but
with enhanced coupling rates ga(b) → √

NAga(b). To include
the effect of inhomogeneous broadening by taking the con-
tinuous limit

∑
k → N

∫ ∞
−∞ dω2,kdω3,kρ(ω2,k )ρ(ω3,k ) and

assuming Lorentzian energy level distributions ρ(ω2(3),k ) =
�2(3)/2π

(ω2(3),k−ω2(3) )2+(�2(3)/2)2 , one can show that the updated con-
version efficiency formula is associated with the broadened

linewidth κ2(3) → κ2(3) + �2(3). We may also expand our
discussion to include thermal noise, which will introduce
added noise to the transduction [38].

Conclusion and outlook. In conclusion, we have presented
the generalized matching condition for N-stage quantum
transduction and suggested different regimes of nonresonant
conversions that can outperform all-resonant ones. Moreover,
we drew a rigorous connection between transducer mod-
els and electric circuits, which brought the available circuit
design toolboxes into this field. While our discussion has
been focused on quantum transducers, it may also apply to
general physical systems described by the externally cou-
pled bosonic-chain model for other applications including
microwave photon detectors [46], optical delay lines [47],
and optical buffers [48]. Our work provides a generic for-
malism for determining experimental parameters to realize
efficient quantum transduction in various platforms, with po-
tential future extensions for transduction schemes utilizing
two-mode-squeezing interactions [49,50] or inhomogeneous
couplings of the mediating ensemble.
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