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Traditionally, interatomic potentials assume local bond formation supplemented by long-range electrostatic
interactions when necessary. This ignores intermediate-range multiatom interactions that arise from the re-
laxation of the electronic structure. Here, we present the multilayer atomic cluster expansion (ml-ACE) that
includes collective, semi-local multiatom interactions naturally within its remit. We demonstrate that ml-ACE
significantly improves fit accuracy and efficiency compared to a local expansion on selected examples and
provide physical intuition to understand this improvement.
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Recent years have seen tremendous progress in modeling
atomic interactions [1–7]. State-of-the-art machine learning
potentials interpolate reference data from high-throughput
electronic structure calculations with errors on the order of
meV/atom [8–10]. Commonly, the energy or other atomic
quantities are represented as a function of the local atomic
environment enclosed within a cutoff radius centered on each
atom. Contributions to the energy from electrostatics cannot
be partitioned into local atomic environments and methods
to incorporate long-range interactions efficiently have been
developed [11], including self-consistent models that mimic
the charge transfer of the underlying electronic structure cal-
culations [12,13].

However, electronic structure calculations contain contri-
butions that evade a local chemical description and cannot
be captured by long-range electrostatic models either, even
if self-consistent charge transfer is included. We introduce
the term “semi-local” for interactions that reach significantly
beyond the local atomic environment but are not directly
associated to long-range charge transfer or directed bond
formation. Semi-local interactions are ubiquitous in density
functional theory (DFT) and arise from the relaxation of
the electronic structure, yet they have not been discussed in
the context of machine learning potentials. Examples are the
change of interaction in small clusters with size that approach
bulk interactions only slowly; intraatomic occupation changes
upon hybridization, such as the promotion of electrons in
carbon from s to p states, that alter the carbon bonding
characteristics; variation in atomic hybridization in different
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atomic environments that induces metal-insulator transitions
with consequences for the decay of the density matrix and re-
lated bond formation; electronic states along one-dimensional
chains that can extend far beyond the local chemical environ-
ment.

We build our analysis of semi-local interactions on a local
description of the electronic structure and expand the DFT
energy with respect to modifications of the density matrix
[14–17]

E = E0 + tr(H�ρ) + tr(J�ρ�ρ) + . . . , (1)

with E0 = E [ρ0], the Hamiltonian matrix H , and the density
matrix ρ = ρ0 + �ρ. For making contact with interatomic
interactions we assume orbitals α, β, . . . , that are local-
ized on atoms i, j, . . . , and density matrix elements ρiα jβ =
〈iα|ρ̂| jβ〉. The spectrally resolved density matrix niα jβ (EF ) =
dρiα jβ

dE (EF ) is linked to the Hamiltonian through the general-
ized moments theorem [7,18]∫

EN niα jβ (E ) dE = 〈iα|ĤN | jβ〉

=
∑
kγ lδ

Hiαkγ Hkγ lδHlδ... . . . H... jβ, (2)

with Hiα jβ = 〈iα|Ĥ | jβ〉 and where the orbitals are orthonor-
mal and complete. This enables to reconstruct the density
matrix from products of Hamiltonian matrix elements of vary-
ing order [7,19,20],

ρiα jβ = χ1Hiα jβ + χ2

∑
kγ

Hiαkγ Hkγ jβ + . . . , (3)

where the response functions χN = χN (EF ) depend on the
Fermi level. In the tight-binding approximation off-diagonal
Hamiltonian matrix elements Hiα jβ with i �= j depend only
weakly on electronic redistribution, while the diagonal el-
ements Hiαiα follow the effective one-particle potential and
adjust to optimize energy for hybridization and charge transfer
[15]. The detailed change �Hiαiα is a function of the local
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FIG. 1. Semi-local interactions in electronic structure calcula-
tions. Density matrix element ρiα jβ is modified by �Hkγ kγ . Changes
in the onsite levels are a function of the local environment that de-
pends on the onsite levels of further distant atoms (left). Abstraction
in ml-ACE. The energy Ei of atom i depends on state of neighboring
atoms through indicator field θ

(2)
k on atom k that depends on further

indicator fields θ
(1)
k′ (right).

atomic environment of atom i, which may be understood from
Eq. (2) and applied to the local density of states niαiα (E ). For
example, in metals often the charge transfer is negligible and
�Hiαiα adjusts to variations in the local density of states for
constant electron count.

Therefore, electronic relaxation �Hkγ kγ on atom k affects
the density matrix to lowest order as

�ρiα jβ ∝ Hiαkγ �Hkγ kγ Hkγ jβ . (4)

The off-diagonal Hamiltonian elements decay rapidly with
distance and local neighbors k have the strongest effect on the
bond i − j, cf. Refs. [7,15,20]. The onsite Hamiltonian matrix
elements on atom k, in turn, are determined variationally.
This involves the density of states nkγ kγ (E ) that depend on
the environment of atom k, which includes atoms k′ further
distant from the bond i– j, and so on. Therefore, the bond i– j is
modified by a decaying cascade of modifications on neighbors
of neighbors, resulting in semi-local interactions as illustrated
in Fig. 1. We show the first moment of the atomic density of
states μ

(1)
i = ∑

α Hiαiα of a linear chain of Cu atoms in Fig. 2.
We present a general framework for integrating semi-local

interactions from electronic structure calculations efficiently
into machine-learned potentials. Initially, atoms condense in-
formation about their local environment into an indicator field.

FIG. 2. Normalized first moment of atomic density of states
along 19-atom linear Cu chain (upper panel). Indicator of the first
layer of a two layer ACE (lower panel).

Next atoms combine indicator fields of their neighbors into
their own indicator field, see Fig. 1. This is repeated and with
each layer information from atoms at larger distances is incor-
porated, mimicking the electronic structure relaxation cascade
in self-consistent calculations and enabling the description of
collective interactions that extend multiple times beyond the
local cutoff radius.

The atomic cluster expansion (ACE) [6,21–23] provides a
complete and efficient local representation of the energy as a
sum over atomic contributions

Ei = F
(
ϕ

(1)
i , . . . , ϕ

(P)
i

)
, (5)

where F is a general nonlinear function. Each atomic property
ϕ

(p)
i is given by a linear expansion

ϕ
(p)
i =

∑
v

c̃(p)
v Aiv , (6)

with expansion coefficients c̃(p)
v and multiatom basis functions

Aiv .
Other variables than the atomic positions, for example,

charges or magnetic moments, may be taken into account [24].
To this end, the state σ is introduced that collects all necessary
variables and comprises edges and vertices. We include semi-
local interactions by extending the state by an indicator field
θ. The field is general and it may comprise several scalar,
vectorial or tensorial elements. For an expansion on atom i, the
state of a neighboring atom j is defined as σ ji = (z j, r ji, θ j ) ,

while the state of atom i is given by σii = (zi, θi ) , where
zi, ri denote, respectively, the chemical element and position
of atom i. These variables are absorbed into a complete set
of single-particle single-bond basis functions φv (σ ji ), respec-
tively, from which the atomic base is computed

Aiv =
∑

j

φv (σ ji ) , (7)

and A(0)
iv = φ(0)

v (σii ). The products of the atomic base Aiv =
A(0)

iv0

∏
n Aivn of various orders form a complete set of basis

functions and enable Eq. (6) to represent any atomic function
of σ, including scalar, vectorial, or tensorial objects [24].

Often one chooses product basis functions of the form

φv (σ ji ) = eκ (z j )Rnl (r ji )Y
m

l (r̂ ji )Tk (θ j ) , (8)

where v collects indices and the functions Tk are complete in
the space spanned by the indicator fields [24]. Indicator fields
θ

(n)
j and expansion coefficients c̃(p,n) then depend on layer n

and enter ACE as ϕ
(p,n)
i = ∑

v c̃(p,n)
v Aiv (θ(n) ). The indicator

field in layer n + 1 is obtained from a nonlinear function as
Eq. (5)

θ
(n+1)
i = H

(
ϕ

(1,n)
i , . . . , ϕ

(P,n)
i

)
. (9)

Layer nmax is the output layer, while the input layer n =
0 is initialized via Tk (θ(0) ) = 1, see Fig. 1. The indicator
fields in general carry particular symmetries, most impor-
tantly covariance under rotation and inversion, which requires
symmetrization [21,24]. We denote the resulting model the
multilayer atomic cluster expansion (ml-ACE).

By adding layers of indicator fields ml-ACE becomes high-
dimensional and sparse basis sets are required for converging
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ml-ACE parametrizations. In the present work this is accom-
plished by physical intuition and hierarchical analysis. The
further a layer is away from the final layer, the smaller its
impact will be on the energy, i.e., the details are often lost in
the distance. This means that the complexity of the indicator
field needs to be varied across the layers for best performance
and efficient convergence. Because of the layered structure of
ml-ACE, gradients may be obtained efficiently and the com-
putational expense for energy and force evaluation is linear or
less with the number of layers, as some basis functions can be
reused between layers, in particular the spherical harmonics
(see Appendix A).

The ml-ACE may be adapted to represent various message
passing networks architectures. In fact, general message pass-
ing networks may be obtained as special cases of ml-ACE, see
Batatia et al. [25] and Nigam et al. [26]. For example, Thomas
et al. [27] and the closely related NEQUIP [28] may be cast in
the form of particular low-order ACE on each layer. In turn,
ml-ACE injects the completeness of the ACE basis into mes-
sage passing network architectures and can therefore be used
to extend oftentimes empirical message passing networks to
make them systematically convergent.

In simple tight-binding models the differences of the onsite
levels are fixed and their shifts may be characterized by the
first moment of the atomic density of states μ

(1)
i = ∑

α Hiαiα

using Eq. (2). For a basic version of ml-ACE we, therefore,
take a single indicator variable, which in addition we assume
to be rotationally invariant, and that is represented by ACE as
Eq. (6). We expect a linear change of the energy for small in-
dicator fields, Eq. (4). To make contact with traditional neural
networks, we further choose θi = H(ϕi ) = tanh(ϕi ) and Tk as
Chebyshev polynomials of the first kind.

We demonstrate the performance of the ml-ACE with
examples of two distinct cases, namely, small metallic Cu
clusters and ten small organic molecules. In a small cluster
of N atoms to which one more atom is added, the extra atom
can significantly change the interaction between all atoms
in the cluster, implying that (N + 1)-body interactions are
necessary, and (N + 2)-body interactions when a further atom
is added. One expects a slow convergence to bulk interactions
only as N−1/3, simply as in a compact cluster the number of
surface atoms with a significantly modified density of states is
proportional to N2/3. We employ a dataset of nearly 70 000
small Cu clusters containing 2 to 25 atoms. Energies and
forces of the cluster configurations were computed with FHI-
AIMS [30,31] using the tight basis set. Most of the clusters
were generated by randomly placing atoms inside a sphere
and ensuring that the distance between any pair of atoms is
not smaller than 80% of the bulk nearest-neighbor distance.
In addition, cuts from various crystalline bulk phases were
used as well as geometries obtained with empirical potentials.
For clusters of up to four atoms the positions were varied
systematically to sample the complete configuration space.
The distribution of size and energies of the clusters is shown
in Fig. 3(a). All the cluster structures were distinctly dif-
ferent, none of the clusters were relaxed, and in particular,
we did not use data along molecular dynamics trajectories
to avoid correlations. We randomly selected 10% of the
dataset for training and the remaining 90% of the clusters for
testing.

FIG. 3. (a) Distribution in Cu clusters test set. Color shows clus-
ters with given energy and size. (b,c) Test MAE with ml-ACE with
various number of layers, where 1 denotes a standard nonlayer ACE.
Insets demonstrate convergence of the ml-ACE predictions for entire
test set.

Figure 3 shows the convergence of mean average error
(MAE) of ml-ACE for a single, scalar invariant indicator
variable. A major improvement of nearly a factor of 2 is
achieved compared with the standard single layer ACE model.
A further increase in the model depth yields smaller yet con-
sistent improvements, in accordance with the expected rapid
convergence with the number of layers [20]. Small clusters
with up to four atoms and larger clusters with about 15 or
more atoms show errors of only a few meV. The description of
small clusters with up to four atoms benefits from the accurate
description of the many-body potentials up to body-order four
enabled by ml-ACE. Larger clusters from about 15 atoms ben-
efit from the accurate description of semi-local interactions.
The largest errors are observed for cluster sizes between about
five to ten atoms.

We illustrate the correlation between indicator field and
electronic structure in Fig. 2, where we show the first moment
of the atomic density of states along a 19-atom linear chain of
Cu atoms and compare this to the values of the scalar indicator
field of a two-layered ACE model. The indicator field picks
up the largest deviations at the boundary of the chain. (Linear
chains were not part of the training set.)
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TABLE I. Performance of ACE models with various number of
layers for the ethanol molecule from revised MD17 dataset [29].

# of layers MAE E, meV MAE F, meV/Å

1 1.9 9.8
2 1.0 6.2
3 0.8 5.4
4 0.7 4.4

Extended interactions also contribute to bond formation
in small molecules. Table I shows the convergence of ml-
ACE models for an ethanol molecule from the revised MD17
dataset [29,32,33]. Adding a second layer gives the biggest
performance gain, while every further layer results in smaller
yet consistent improvements. Thus, for all other molecules we
trained four-layer ACE models and the corresponding perfor-
mance metrics are summarized in Table II (see Appendix A
for model details). The resulting models outperform most ma-
chine learning potentials [32,34,35]. Here we only compare
to models trained on the revised MD17 dataset and Table II
shows a comparison to the closely related linear ACE model
and the best performing equivariant NEQUIP [28]. For other
related models see Refs. [35–38]. Performance improvement
of the ml-ACE via semi-local information is evidenced by
comparing to linear ACE models. These models contain an
order of magnitude more independent basis functions yet they
are outperformed by ml-ACE for all molecules. On the other
hand, NEQUIP models improve over ml-ACE for almost all
molecules with varying performance differences. The largest
absolute difference in force MAE (∼ 6.5 meV/Å) is observed
for the aspirin molecule, while the smallest difference is ob-
served for benzene (0.1 meV/Å) with the ml-ACE model

TABLE II. MAE for energies (E , meV) and forces (F , meV/Å)
evaluated on the test set for the four-layer ACE models and compared
to the linear ACE models [35] and NEQUIP [28] (we show values
corresponding to l = 3).

Molecule ml-ACE (this work) Linear ACE NEQUIP

Aspirin E 4.7 6.1 2.3
F 14.9 17.9 8.5

Azobenzene E 2.3 3.6 0.7
F 7.7 10.9 3.6

Benzene E 0.02 0.04 0.04
F 0.2 0.5 0.3

Ethanol E 0.7 1.2 0.4
F 4.4 7.3 3.4

Malonaldehyde E 1.3 1.7 0.8
F 8.6 11.1 5.2

Naphthalene E 0.7 0.9 0.2
F 3.6 5.1 1.2

Paracetamol E 3.2 4.0 1.4
F 10.7 12.7 6.9

Salicylic acid E 1.5 1.8 0.7
F 7.7 9.3 4.0

Toluene E 0.8 1.1 0.3
F 4.3 6.5 1.6

Uracil E 0.6 1.1 0.4
F 4.0 6.6 3.2

being slightly more accurate. This discrepancy can be under-
stood from the structures of the molecules. Charge density is
nearly uniform in the benzene molecule, and therefore, small
variations in the atomic environments during dynamics do
not introduce significant charge redistribution and the semi-
local information provided by a scalar invariant indicator is
sufficient. On the contrary, in the aspirin molecule charge
distribution is nonuniform and changes during dynamics [39].
This leads to a variation of s-p hybridization on the atoms and
nonuniform onsite level modifications for s and p orbitals. The
NEQUIP potential benefits from propagating additional non-
scalar equivariant information across the layers which scalar
invariant indicators of the current implementation of ml-ACE
are unable to capture (see Appendix B for more details).

To conclude, we introduce ml-ACE that efficiently cap-
tures semi-local interactions in self-consistent schemes such
as DFT. We show that the indicator fields from ml-ACE can be
understood from physical and chemical intuition and note that
message passing networks may be cast in the form of ml-ACE.
We demonstrate ml-ACE numerically for the special case of a
single scalar invariant per atom. This invariant ml-ACE allows
us to reduce errors for small metallic clusters and molecules
to about 50% as compared to single-layer models. Employing
only a single scalar invariant is also the main limitation of the
numerical implementation presented here. Including several
indicator variables with nonscalar rotational characteristics,
corresponding to p, d , and so on onsite Hamiltonian elements
are the necessary next steps for reducing the remaining errors
further. As the focus of our work is on semi-local interactions,
our implementation further neglected long-range interactions
due to charge transfer. Both contributions, equivariant indica-
tor fields associated to p- and d-valent onsite levels as well
as charge transfer need to be taken into account for our next
implementation of ml-ACE.
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APPENDIX A: MODEL AND FITTING DETAILS

Multilayer ACE models are trained via minimizing a loss
function of the following form

L = (1 − κ )
Nstruct∑
n=1

w(E )
n

(
EACE

n − E ref
n

nat,n

)2

+ κ

Nstruct∑
n=1

nat,n∑
i=1

w
(F )
ni

(
FACE

ni − F ref
ni

)2
, (A1)

where κ is a trade-off between energy and force contri-
bution, Nstruct is the number of structures employed in the
parametrization, nat,n the number of atoms in structure n, and
w(E )

n and w(F )
n are the per-structure and per-atom weights

for the energy and force residuals, which were set to 1 for
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TABLE III. Details of the potential configurations used in this work.

Time per force
System # of layers cutoff, Å κ # functions/element call, ms/atom

Cu clusters 1 8 0.1 993 0.41 (0.22)
2 1421 0.78
3 1911 1.06
4 2401 1.36

Ethanol 1 4 0.99 1207 1.09 (0.14)
2 1363 1.04
3 2269 1.33
4 2982 1.67

Aspirin 4 5 0.99 2982 0.96
Naphthalene 2922 0.80
Azobenzene 4 4 0.99 2982 0.92
Malonaldehyde 2982 1.52
Salicylic acid 2982 1.10
Toluene 2922 0.85
Benzene 2922 0.97
Paracetamol 2906 1.03
Uracil 2906 1.44

every structure and normalized by the number of structures
and atoms, respectively. For small molecules, we select struc-
tures for fitting according to the first split from the revMD17
dataset [29]. Multilayer ACE models were implemented and
fitted within the TENSORPOTENTIAL package [23] and Table III
summarizes the model hyperparameters used for each system.
The table also contains the timings for each model obtained
using a 2.50-GHz Intel Xeon Gold 6248 CPU for a single

FIG. 4. Correlation between first moment μ
(1)
i and indicator

value θ
(3)
i for carbon (top) and hydrogen (bottom) atoms in the

benzene molecule. Values are computed for 15 randomly selected
molecules from the training set.

molecule or the biggest Cu cluster. We note, however, that this
implementation is intended for efficient training of the models
on large datasets and is not optimized for fast evaluation of
a single structure. As a reference, the performance of the
PACE code [22] is given in parentheses where applicable for
single-layer ACE. A comparable performance improvement
can be expected for ml-ACE models when implemented in
PACE. Our ml-ACE models are several times faster than those
reported in Kovács et al. [35] for the same level of accuracy,
including the linear ACE models.

APPENDIX B: SMALL MOLECULES

For understanding the difference in performance of the
multilayer ACE models for different molecules we con-

FIG. 5. Correlation plot between first moment μ
(1)
i and indicator

value θ
(3)
i for atoms in the aspirin molecule. Values are computed for

15 randomly selected molecules from the training set. Index in the
legend denotes the group of an atom, where 1 is benzene ring, 2 the
acetyl group, and 3 the carboxyl group.
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sider two cases—the best performing model for the benzene
molecule and the worst performing model for the aspirin
molecule. Figure 4 shows the correlation between values of
the scalar indicator θ

(3)
i of the four-layer ACE model and

the first moment μ
(1)
i of the atomic DOS for each atom

type computed for 15 randomly selected molecules from
the training set using FHI-AIMS [30,31] with tight settings.
As expected, the electronic distribution in benzene is rather
uniform and does not change significantly during dynamics,
which is illustrated by the narrow window of values of the
first moment. Thus, the invariant scalar indicator is able to

capture these small differences via propagating the semi-local
information through the local atomic environments, which is
illustrated by the linear correlation between values of μ

(1)
i

and θ
(3)
i . Figure 5 shows the correlation for 15 randomly

selected aspirin molecules, recomputed with FHI-AIMS with
tight settings. Data are grouped according to their type and
position in a particular functional group. However, unlike
Fig. 4, no clear correlation between value of θ

(3)
i and μ

(1)
i is

observed. This implies that in this case the scalar indicator
provides incomplete information leading to inferior model
performance.
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