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Correlated Chern insulators in two-dimensional Raman lattices: A cold-atom regularization of
strongly coupled four-Fermi field theories
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We show that synthetic spin-orbit coupling for ultracold atoms in optical Raman potentials can be exploited to
build versatile quantum simulators of correlated Chern insulators connected to strongly coupled four-Fermi field
theories similar to the Gross-Neveu model in (2 + 1) dimensions. Exploiting this multidisciplinary perspective,
we identify a large-N quantum anomalous Hall (QAH) effect in absence of any external magnetic field, and
use it to delimit regions in parameter space where these correlated topological phases appear, the boundaries of
which are controlled by strongly coupled fixed points of these four-Fermi relativistic field theories. We further
show how, for strong interactions, the QAH effect gives way to magnetic phases described by a two-dimensional
quantum compass model in a transverse field. We present a detailed description of the phase diagram using the
large-N effective potential, and variational techniques such as projected entangled pairs.
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Special relativity and quantum mechanics predict the cou-
pling of the intrinsic angular momentum of the electron
with its own motion, yielding the fine structure of atomic
spectra [1]. This spin-orbit coupling (SOC) is intimately re-
lated to relativistic quantum field theories (QFTs) via Dirac’s
equation [2,3] and, ultimately, quantum electrodynamics [4].
Indeed, it is the comparison of perturbative calculations of this
weakly coupled QFT [5,6] with high-precision measurements
of the intrinsic magnetic moment of the electron [7] and the
fine structure constant [8] that yields one of the most stringent
tests of a physical theory to date.

SOC is also a cornerstone of modern condensed matter
[9,10], underlying the discovery [11–15] of a topological
mechanism for the ordering of matter [16–18]. Chern insula-
tors [19–21], characterized by a nonzero topological invariant
at the bulk and by current-carrying states at the boundaries,
epitomize this ordering mechanism. It is remarkable that elab-
orate concepts of algebraic topology [22], i.e., Chern numbers
[23] of the Bloch bundle, lead to the quantization of the
Hall conductivity in absence of external magnetic fields. This
so-called quantum anomalous Hall (QAH) effect [24,25] may
have promising technological applications [26].
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These two consequences of SOC are very well under-
stood: Chern insulators employ free-electron band-structure
calculations, while quantum electrodynamics uses perturba-
tion theory about a weakly coupled fixed point. However,
open questions arise as one abandons these limits to ex-
plore (i) correlated Chern insulators for strong SOC and
interparticle interactions, and (ii) relativistic QFTs with SOC
controlled by nonperturbative strongly coupled fixed points.
As shown below, these two topics can be connected by consid-
ering SOC in light of specific discretizations [27] of strongly
coupled four-Fermi QFTs [28–30]. Originally introduced by
Fermi for the weak interactions [31], four-Fermi QFTs such
as the Nambu-Jona-Lasinio [32] or Gross-Neveu (GN) [33]
models are nowadays considered as effective QFTs for the
strong interactions. We show that, working in (2 + 1) dimen-
sions and dispensing with the notion of chirality, a Hubbard
model [34] with strong SOC leads to analogous four-Fermi
QFTs with ground states corresponding to correlated Chern
insulators.

Leveraging this connection, we develop nonperturbative
studies of Chern insulators following two strategies: (i) View-
ing the lattice as an artificial regularization [35], we exploit
the lattice-field-theory machinery [36] to connect the quantum
phase transitions delimiting the correlated Chern insulators to
strongly coupled fixed points. (ii) Considering experimental
setups where the lattice is real, and the SOC and four-Fermi
interactions appear naturally, such as Fermi gases with syn-
thetic SOC in optical lattices [37,38], we obtain a physical
regularization of strongly coupled QFTs that serve as quantum
simulators for a correlated QAH effect [39–41].
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The model. We consider a Wilsonian discretization [27] of a Hamiltonian QFT for N flavors of self-interacting Dirac fields
{ψ f (x)}N

f =1 which, in natural units h̄ = c = 1, reads

H = a1a2

∑
x∈�s

{ ∑
j=1,2

[
−�(x)

(
iγ j

2a j
+ r j

2a j

)
�(x + a je j ) + �(x)

(
m

4
+ r j

2a j

)
�(x) + H.c.

]
− g2

2N

(
�(x)�(x)

)2
}

, (1)

where the vector �(x) = (ψ1(x), . . . , ψN (x))t is composed
of N spinor fields, �(x) = (ψ†

1 (x)γ 0, . . . , ψ
†
N (x)γ 0) is the

adjoint, and γ 0, γ 1, γ 2 are the gamma matrices for a
(2 + 1)-dimensional spacetime {γ μ, γ ν} = 2gμνI with gμν =
diag(1,−1,−1) and spacetime indexes μ, ν ∈ {0, 1, 2}.
Here, only the spatial coordinates are discretized [42]
with lattice spacings a1, a2, yielding �s = {x = n1a1e1 +
n2a2e2, ∀ (n1, n2) ∈ ZN1 × ZN2}. In Eq. (1), we have also
introduced the Wilson parameters {r j}, a bare mass m,
and a coupling g2 controlling the simplest Lorentz-invariant
interparticle interaction. In the long-wavelength limit, one
obtains 4 fermion doublers [43,44], each described by a con-
tinuum Dirac field {�nd (x)}nd , nd = (nd,1, nd,2) ∈ {0, 1} ×
{0, 1} with a different bare mass

mnd = m + 2nd,1r1/a1 + 2nd,2r2/a2. (2)

Let us discuss the connection of Eq. (1) to SOC. In (2 + 1)
dimensions, one can choose 2 × 2 gamma matrices, such that
the spinor representation of rotations allows us to interpret
the components ψ f ,1(x) [ψ f ,2(x)] as spin up (down) fermions.
If one chooses γ 0 = σ z, γ 1 = iσ x, γ 2 = −iσ y, the spin-
flip tunnelings (1), �†(x) iσ x

2a2
�(x + a2e2) − �†(x) iσ y

2a1
�(x +

a1e1), correspond to the lattice-field-theory version of Rashba
SOC e3 · (p ∧ σ) = iσ x∂y − iσ y∂x [9], where the derivatives
are discretized by finite differences on adjacent lattice sites.
Other basis of gamma matrices lead to variants of this SOC
[38]. We note that, in contrast to (2 + 1)-dimensional Gross-
Neveu models [28], where discrete chiral symmetry �(x) →
γ 5�(x) can be enforced by using 4-component spinors, there
is no chirality in our case as γ 5 = iγ 0γ 1γ 2 = −I.

Quantum simulator. We now map the couplings of the
single-flavor Hamiltonian (1) in the standard Dirac basis γ 0 =
σ z, γ 1 = iσ y, γ 2 = −iσ x to the experimental parameters of
ultracold atoms in Raman optical lattices [45–47]. To get a
fully tunable quantum simulator of Eq. (1) in this basis, we
generalize the SOC scheme of [48,49], such that atoms in two
states {|↑〉, |↓〉} are subjected to the periodic potential

V = V0,1

2
cos2(kx1)I2 + Ṽ0,1

2
cos kx1ei(kx2−	ωt−φ1 )σ+

+ V0,2

2
cos2(kx2)I2 + Ṽ0,2

2
cos kx2ei(kx1−	ωt−φ2 )σ+

+ H.c. (3)

Here, V0, j (Ṽ0, j) stem from ac-Stark shifts (Rabi frequencies)
of pairs of counterpropagating (orthogonal) laser beams with
wavelength λ = 2π/k. The Raman term Ṽ0,1 (Ṽ0,2) with rela-
tive phase φ1 (φ2) induces a two-photon transition between
the internal states σ+ = |↑〉〈↓| when the laser beat note is
	ω = ω0 − δ, where ω0 is the transition frequency and δ 

ω0 is the detuning. Accordingly, the periodic Raman potential

is due to processes where the atom absorbs a photon from the
standing wave along the x1 (x2) axis, and subsequently emits
it in the traveling wave along x2 (x1). To minimize residual
photon scattering and heating, one may consider working with
lanthanide [50–52] or alkali-earth [53,54] atoms.

As customary for ultracold atoms [55–57], for deep poten-
tials V0, j, Ṽ0, j � ER = k2/2m, where m is the atomic mass,
the dynamics can be expressed as a lattice model where atoms
tunnel between neighboring potential minima, and collide in
pairs with an s-wave scattering length as. The specific interfer-
ence pattern in Eq. (3) is crucial, as it ensures that the Raman
terms do not contribute with on-site spin flips, but drive in-
stead spin-flip tunnelings along the two spatial directions with
a tunable relative phase. Using a basis of Wannier functions
in the single-band approximation, and working in a rotating
frame with respect to the Raman terms, one finds

H = −
∑
n, j

[t j (c†
n,↑cn+e j ,↑ + c†

n,↓cn+e j ,↓) + H.c.]

−
∑
n, j

[it̃ j e−iφ j,n (c†
n,↑cn+e j ,↓ − c†

n,↑cn−e j ,↓) + H.c.]

+
∑

n

U↑↓c†
n,↑c†

n,↓cn,↓cn,↑ + δ

2
(c†

n,↑cn,↑ − c†
n,↓cn,↓),

(4)

where the fermionic operators c†
n,s (cn,s) create (annihilate)

an atom in state s ∈ {↑,↓} at xn = ∑
j (

λ
4 + λ

2 n j )e j . The
above Hamiltonian parameters, obtained by different overlaps
of Wannier functions, lead to spin-independent tunnelings

t j = 4(ER/
√

π )(V0, j/ER)3/4e−2
√

V0, j/ER , and contact Hubbard
interactions U↑↓ = √

8/πk0asER(V0,1V0,2/E2
R)1/4. Using a

Gaussian approximation for the Wannier functions, we ob-
tain a spin-flip tunneling along the x j axis with strength t̃ j =
Ṽ0, je

−(π2/4)
√

V0, j/ER and phase φ j,n = φ j − π (n1 + n2).
To find the mapping of Eq. (4) to Eq. (1), we rescale

the atomic operators and perform a gauge transformation
ψ1 (xn) = cn,↑/

√
a1a2, ψ2 (xn) = eiπ (n1+n2 )cn,↑/

√
a1a2.

Setting the Raman-beam phases to φ1 = 0, φ2 = π/2,
we find that model (4) maps to the lattice field theory (1) for
N = 1 with

aj = 1

2t̃ j
, r j = t j

t̃ j
, m = δ

2
− 2(t1 + t2), g2 = U↑↓

4t̃1t̃2
.

(5)

We note that the anisotropic lattice spacings of the field theory
(1) are mapped onto the atomic tunneling strengths, not to
the optical-lattice spacing λ/2. Therefore, the continuum limit
does not require modifying the laser wavelength λ → 0, but
instead setting the experimental parameters (t j, t̃ j, δ,U↑↓) to
certain values, such that the bare couplings (m, aj, r j, g2) lie
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in the vicinity of a critical point. Here, the energy gap is
very small 	ε 
 t̃ j , and the relevant length scale ξ is much
larger than the lattice spacing ξ ∝ 1/	ε � a j , such that a
continuum coarse-grained QFT can capture the low-energy
physics.

Large-N QAH effect. In the noninteracting g2 = 0 and
isotropic a1 = a2 =: a, r1 = r2 = 1 limits, the single-flavor
Hamiltonian (1) corresponds to a square-lattice version
[20,21] of Haldane’s model [19,58] of the QAH effect [25].
This model has been realized in semiconducting ferromag-
netic films [59,60], observing a quantized Hall conductance
for vanishing magnetic fields. Regarding Eq. (1), this quanti-
zation depends on the Chern number via

σxy = e2

h
NCh, NCh = N

2

∑
nd

(−1)(nd,1+nd,2 )sgn(mnd ). (6)

According to the doubler masses (2), and using Eq. (6) in the
single-flavor limit N = 1, one finds that the Chern number is
quantized to a nonzero integer NCh = −1 when ma ∈ (−2, 0),
whereas NCh = +1 when ma ∈ (−4,−2), both of which lead
to a QAH conductance, and NCh = 0 otherwise. Let us note,
however, that interactions do not seem to play any relevant
role in these semiconducting realizations [59,60]. Instead, for
cold atoms with the Dirac-Wilson SOC (4), the spinor is
formed by two internal states that interact naturally via such
s-wave scattering. The key advantage is that the coupling
g2, as well as all other microscopic parameters (5), can be
experimentally tuned. This brings a unique opportunity to
realize correlated Chern insulators with a neat connection to
strongly coupled relativistic QFTs. In this context [61–67],
topological insulators in different symmetry classes and di-
mensions [68] correspond to lower-dimensional versions of
domain-wall fermions [69], where the topological invariants
control a Chern-Simons-type response [21,70–72].

We now describe the fate of this QAH effect as interactions
are switched on. From the analogy with the GN model [33],
one expects dynamical mass generation via a scalar conden-
sate �0 ∝ 〈�(x)�(x)〉 to arise. We note, however, that due
to the particular representation of the gamma matrices, this
condensate is not associated with chiral symmetry breaking as
in even spacetime dimensions [33,63–67], or in odd ones with
a reducible representation of the gamma matrices [28,29]. If
such models are discretized following the Wilson prescription,
it is well known that the fermions can also form a pseudoscalar
condensate �0 ∝ 〈�(x)iγ 5�(x)〉 through the spontaneous
breakdown of parity, which also appears in situations where
the interactions are mediated by a gauge field [73,74]. In
contrast, we identify two π condensates, �1 ∝ 〈�(x)γ 1�(x)〉
and �2 ∝ 〈�(x)γ 2�(x)〉, the nonzero values of which lead
instead to the spontaneous breakdown of inversion symmetry.
In the language of the underlying Hubbard model (4) for a
single flavor, these π condensates represent two possible fer-
romagnetic orderings �1 ∝ 〈 f †

n,↑ fn,↓〉 + 〈 f †
n,↓ fn,↑〉, and �2 ∝

i〈 f †
n,↑ fn,↓〉 − i〈 f †

n,↓ fn,↑〉.
To understand how these condensates affect the QAH, we

make use of nonperturbative large-N techniques developed for
QFTs in Euclidean spacetime x = (it, x) [75]. Let us outline
our calculation. First of all, we introduce three auxiliary scalar
fields σ (x), π1(x), π2(x), which do not propagate, but medi-

ate instead the contact four-Fermi term (1). This allows us
to organize the Feynman diagrams of the QFT according to
their order in N , identifying the leading contributions when
N → ∞ as those with a single fermion loop and an even
number of external lines for the auxiliary fields. In this way,
we can obtain analytically the radiative corrections to the
classical potential, namely the leading-order [33,76] effective
potential [77]. In our case, we are interested in the effective
potential for π(x) = (π1(x), π2(x)), the minimum of which
can be used to locate the spontaneous breakdown of inversion
symmetry � := (�1,�2) = 〈π(x)〉 �= 0, ∀x. By resumming
the diagrams to all orders of the coupling, we obtain

Veff (�̃)

N
= �̃

2

2g̃2
−

∑
k

ln

(
1 +

∑
μ �̃2

μ

M2
k + ∑

μ p2
μ,k

)

− 1

2

∑
k

ln

[
1 −

(
2

∑
μ �̃μ pμ,k

M2
k + ∑

μ(p2
μ,k + �̃2

μ)

)2]
,

(7)

where we work in discretized Euclidean time with spac-
ing a0 and antiperiodic boundary conditions after N0 time
steps, such that the momentum lies in the Brillouin zone k =
(k0, k) ∈ BZ = [−π, π )3. Here, we have introduce a short-
hand notation

∑
k = ∑

k∈BZ /N0N1N2, pμ,k = 2κμ sin kμ, and
Mk = m̃ + 1 − 2κμ cos kμ + �̃0, with κμ = 1/2aμ(

∑
ν a−1

ν ),
rμ = 1, and use dimensionless quantities [78] setting �̃0 = 0.

We minimize the effective potential (7) considering a
homogeneous scalar condensate �0 = 〈σ (x)〉 ∀x, and then
obtain its value through the self-consistency equation

�̃0 = g̃2
∑

k

Mk

M2
k + ∑

μ(pμ,k + �̃μ)2
. (8)

From this pair of equations (7) and (8), one can extract
the effects of correlations on the large-N QAH effect. First,
in the parity-symmetric phases without π condensates, we
find a nonzero scalar condensate �0(g2) �= 0 for any g2 > 0
[79]. This condensate contributes to the static part of the
fermionic self-energy �(0, k) = �0(g2)γ 0, which is defined
via G−1(ik0, k) = ik0 − (Mkγ

0 + ∑
j p j,kγ

0γ j ) + �(ik0, k),
and obtained from the Fourier and Matsubara transforms
of the two-point function G(x − y) = 〈T{�†(x)�(y)}〉. Re-
markably, the static self-energy can be used for a practical
calculation [80–83] of topological invariants [84,85] beyond
the noninteracting limit [86]. In our case, we obtain a closed
expression for the dependence of the Chern number on the
interaction strength

NCh(g2) = N

2

∑
nd

(−1)(nd,1+nd,2 )sgn[mnd + �0(g2)], (9)

which predicts the existence of correlated phases where the
interacting fermions still display a quantized Hall conductivity
σxy = ± e2

h N . These regions, depicted in Fig. 1, show that the
QAH effect survives for considerably large interactions.

Let us now discuss the π condensation, which occurs via
two possible channels: (�1, 0) for a1 > a2, or (0,�2) for
a1 < a2, each of which corresponds to orthogonal ferromag-
netic orders [87]. As clarified below, this differs from the
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FIG. 1. Phase diagram of the four-Fermi QFT. Contour plots
of the Chern number NCh (blue) and π condensate (orange) for
a2 = 2a1, predicting large-N QAH phases, trivial band insulators
(TBIs), and a ferromagnetic phase (FM). These phases are sepa-
rated by dashed lines (Euclidean) obtained from Eqs. (7) and (8)
in gray scale with an increasing timelike anisotropy ξ1 = a1/a0 ∈
{10, 20, 40, 64}. The black solid line is obtained by solving self-
consistent equations (Gap) in the time-continuum limit a0 → 0,
which can only delimit the area of the FM but give no further
information about the TBI or QAH phases. The green solid lines
(Variational) represent the product-state prediction for the compass
model (12), and the red dashed-dotted lines correspond to iPEPs.

standard ferromagnetism in solid-state materials as, in partic-
ular, we find that low-energy excitations are gapped. The set
of parameters where the π condensates form define critical
lines separating the correlated QAH phases from long-range-
ordered ferromagnets (FMs), as depicted in Fig. 1. From a
closer analysis of the effective potential, we note that these
critical lines describe second-order quantum phase transitions
which, interestingly, become first-order around the central
region. This will be discussed in detail in future work.

Quantum compass model and projected-entangled pairs.
The above results have unveiled a rich phase diagram with
correlated Chern insulators, trivial band insulators, and fer-
romagnetic parity-broken phases, separated by critical lines
related to the specific values of σ and π condensates, and con-
trolled by strongly coupled QFTs. However, these predictions
are strictly valid in the N → ∞ limit, whereas the cold-atom
realization (4) yields N = 1. Although future experiments
could validate whether our large-N predictions survive in the
ultimate quantum limit of N = 1, exploring the characteristic
scaling of the strongly coupled fixed points, it would be reas-
suring to have a partial independent confirmation.

Exploiting the connection of the four-Fermi field theory
(1) to the Hubbard model with SOC (4), we can derive an
effective description for g̃2 � 1 via Anderson’s exchange
[88,89]. This limit is governed by second-order processes,

where fermions tunnel back and forth forming virtual dou-
ble occupancies. In contrast to the standard Hubbard model,
where this leads to Heisenberg interactions [90], we obtain

Heff =
∑
x∈�s

(
Jxτ

x
x τ x

x+a2e2
+ Jyτ

y
x τ

y
x+a1e1

− hτ z
x

)
. (10)

Here, the bilinears {τα
x = a1a2�

†(x)σα�(x)}α=x,y,z yield
spin-1/2 operators Sx = 1

2τx when each site is occupied by
a single fermion. The exchange couplings obtained read

Jx = − a1

2a2g2
= − 2t̃2

2

U↑↓
, Jy = − a2

2a1g2
= − 2t̃2

1

U↑↓
, (11)

whereas h = (m + a−1
1 + a−2

2 ) is an effective transverse field.
This spin model belongs to the family of quantum compass
models (QCMs) [91], which have a characteristic directional-
ity of the spin-spin interactions responsible for the appearance
of topologically ordered phases of matter with anyonic excita-
tions in the honeycomb lattice [92]. For our rectangular lattice,
the QCM has been thoroughly studied for h = 0 [91], where
gaugelike symmetries [93] enforce a 2-fold degeneracy of the
eigenstates, and can be exploited to encode a logical qubit
for fault-tolerant quantum computing [94,95]. As one tunes
the couplings across the symmetric point Jx = Jy, a first-order
phase transition between two gapped ferromagnetic orders
occurs [96–98], i.e., 〈τ x

x 〉 �= 0 when Jx > Jy, and 〈τ y
x 〉 �= 0

when Jx < Jy.
In contrast to the zero-field case, the transverse-field QCM

remains largely unexplored. Note that the above order pa-
rameters correspond exactly to the previously introduced π

condensates which, according to our large-N results, may also
appear for h �= 0. We have performed a variational study of the
model using two Ansätze. The first Ansatz is a simple product
state where all spins point in a given direction along the equa-
torial plane. It allows us to predict two types of second-order
phase transitions with the following orderings:

〈
τ x

x

〉 = �1 =
(

1 − h2

4J2
x

)1/2

, if 2|Jx| � |h|, Jy > Jx,

〈
τ y

x

〉 = �2 =
(

1 − h2

4J2
y

)1/2

, if 2|Jy| � |h|, Jy < Jx.

(12)

The ground state displays a �1 ∝ 〈τ x
x 〉 (�2 ∝ 〈τ y

x 〉) con-
densate for Jx < Jy < 0 (Jy < Jx < 0) which, according to
Eq. (11), occurs for a1 > a2 (a1 < a2) in agreement with
the large-N results. These critical lines are compared to the
large-N prediction in Fig. 1, showing a remarkable agreement.

The second Ansatz is based on infinite projected-entangled
pairs (iPEPS) [99–101], a powerful framework for the classi-
cal simulation of 2D strongly correlated models that captures
the interplay of locality and entanglement by expressing an
entangled many-body wave function in terms of local tensors
[102]. In Fig. 1 (red line), we present the results for D = 2
obtained by locating the divergence of the magnetic suscepti-
bility χ j = ∂Mj/∂h. As shown in [98] for the h = 0 model
(10), iPEPS with D = 2 already yields better results than
those obtained by combining fermionization with mean-field
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theory. We have checked that, for h �= 0, iPEPS also provides
significantly lower variational energies than the ones obtained
by large-N or the product-state Ansatz. This has allowed us to
draw a more accurate prediction with a clear displacement of
the critical lines and a narrower FM region.

Conclusions. We have shown that 2D Hubbard models with
SOC, which can be realized with neutral atoms in Raman
lattices, give access to the ultimate quantum limit of strongly
coupled QFTs hosting correlated Chern insulators and dis-
playing a QAH effect. The framework hereby presented can
serve as the stepping stone to address open questions, such
as finite fermion densities in searching for cold-atom realiza-
tions of fractional QAH effects [103,104] and contemporary
relativistic QFTs with fractionalization [105].
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