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In Hund’s metals, the local ferromagnetic interaction between orbitals leads to an emergence of complex
electronic states with large and slowly fluctuating magnetic moments. Introducing the Hund’s coupled mixed-
valence quantum impurity, we gain analytic insight into recent numerical renormalization group studies. We
show that valence fluctuations drastically impede the development of a large fluctuating moment over a wide
range of temperatures and energy, characterized by quenched orbital degrees of freedom and a singular log-
arithmic behavior of the spin susceptibility χ ′′

sp(ω) ∝ [ω ln(ω/T eff
K )2]−1, closely resembling power-law scaling

χ ′′
sp(ω) ∼ ω−γ . Finally, we outline how such singular spin fluctuations can play an important role in generating

a superconducting state through Hund’s driven Cooper pairing.

DOI: 10.1103/PhysRevResearch.4.L042011

Introduction.—The concept of Hund’s metals was first in-
troduced in the context of iron-based superconductors [1–3],
with the nomenclature now being extended to include the
ruthenates [4–6]. In both cases, the local physics is charac-
terized by electronic shells that are one filling away from
half-filling [7,8]. Although the onsite Coulomb interaction U
is the largest scale, its effect is overshadowed by that of the
ferromagnetic interorbital Hund interaction [9]. This class of
materials presents an intermediate paramagnetic regime dom-
inated by slowly fluctuating high-spin configurations [10–12]
and largely suppressed Fermi liquid coherence scales, leading
to anomalous transport properties [13–15]. It has been spec-
ulated that Cooper pairing emerges out of this intermediate
state in iron-based compounds [16–22].

The link between large moments generated by Hund’s cou-
pling and the exponential reduction of Fermi liquid scales in
Kondo impurity models has been studied extensively [23–28].
However, the physical valence of Fe or Ru atoms in Hund’s
metals deviates from half-filled shells. This has led to a
vigorous interest in doped multiorbital models, where an in-
termediate coupling non-Fermi-liquid fixed point was pointed
out through analytical [29] and NRG studies [30–32] for the
S = 1, three orbitals system. Most of these studies were per-
formed for exactly two electrons among three orbitals; few
explicitly addressed charge fluctuations out of this state [9,33].
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Motivated by the potentially new physics in the mixed
valence regime, here we extend our previous work on the
Hund-Kondo impurity [28]. This, coupled with the unique
property of the large-N self-consistent equations which enable
a direct access to real frequency correlation functions [34],
has led us to study in detail the dynamical properties of the
intermediate regime generated by Hund’s coupling.

In this Letter, we show that the treatment of charge and
spin dynamics on equal footing within the dynamical large-N
approach [28,34–42] leads to new insight into the dynami-
cal properties of hole doped multi-orbital impurities. Based
on computed thermodynamic quantities, we unveil the com-
plete phase diagram [see Fig. 1] as a function of impurity
occupancy. Furthermore, we characterize the large emergent
moment regime [28] as one with spin-orbital separation [43].
The spin susceptibility shows logarithmic corrections due to
the extremely slow approach to Kondo screening, reminiscent
of the low-energy properties of the underscreened Kondo
model [44–47]. At a strongly renormalized Kondo temper-
ature T eff

K � T 0
K , the charge degrees of freedom eventually

gap out, resulting in a local Fermi liquid. The scaling of the
local spin susceptibility in the spin-orbital separated regime is
found to exhibit quasi-power-law scaling due to the unusually
strong logarithmic corrections.

Model.—We consider a degenerate three-orbital impurity
model, in analogy to the t2g orbital subset generated due to
the tetrahedral environment around the iron atoms in Fe-based
Hund’s metals. Mixed-valence states are included via a Hund-
Anderson model. We take the limit of U → ∞, such that the
Coulomb interaction enforces a “no double occupancy” rule
for each of the m orbitals. This is a valid limit away from
exactly half-filling where we can focus on the role of Hund’s
coupling. This is enforced through the use of Hubbard opera-
tors [48] for each orbital, which transform the K empty states
|d0 : a, m〉 into the N magnetic states |d1 : α, m〉 filled with
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FIG. 1. (a)–(b) Schematic mixed valence states and of the Hund-
coupled three-orbital Anderson model, referring to Eq. (2). (c) Phase
diagram obtained as a function of total impurity filling nimp (left side
is holon dominated). Torb and T eff

K are crossover temperatures where
the specific heat cv has a local maxima, as in Fig. 2. Generically,
screening occurs in two steps. The formation of a large emergent
fluctuating moment, while orbital degrees of freedom are quenched,
occurs at Torb. In this spin-orbital separated (SOS) regime, we see a
Curie-like spin susceptibility χsp ∼ μ2/T while the orbital suscepti-
bility reaches a plateau. Then, at T eff

K � T 0
K , with T 0

K the bare Kondo
temperature for JH = 0, the large moment is screened and forms a
local Fermi liquid. � = πρV 2 is the bare hybridization width.

local d electrons for each orbital m. In the large-N formalism,
local moments transform as spin-S representations of SU(N),
and there are K = 2S electronic channels present to maintain
perfect screening. Schwinger bosons X (m)

α,β = b†
mαbmβ are used

to express the spin degrees of freedom through spinons b†

which form a symmetric representation of the spins. Together
with the use of slave fermions (holons χ†), Hubbard operators
can faithfully be represented as

X (m)
α,a ≡ |d1 : α, m〉〈d0 : a, m| = b†

mαχma,

X (m)
a,α ≡ |d0 : a, m〉〈d1 : α, m| = χ†

mabmα,

X (m)
a,b ≡ |d0 : a, m〉〈d0 : b, m| = χ†

maχmb,

X (m)
α,β ≡ |d1 : α, m〉〈d1 : β, m| = b†

mαbmβ, (1)

while the Hamiltonian is itself expressed as H = ∑
m H (m)

c +∑
m H (m)

K + HH, with individual terms

H (m)
c =

∑
k

εc
kc†

kmαackmαa, (2a)

H (m)
K = V

(
c†

0mαaX (m)
a,α + X (m)

α,a c0mαa
) + ε f X (m)

a,a , (2b)

HH = −JH

N

∑
m

X (m)
αβ X (m+1)

βα . (2c)

A visual representation of the mixed valence states and
the Hund-Anderson model is presented at Fig. 1(a). Here,
V is the hybridization between conduction electrons and the
Hubbard operators corresponding to adding or removing an
impurity electron (� = πρV 2 is the bare hybridization width).
We denote the energy of a hole as ε f which, when tuned,

leads to different nimp as the average valence of each state is
changed. A more realistic model which includes crystal field
splitting effect between the orbitals could be implemented by
tuning ε

(m)
f for each orbital independently [49,50]. This would

lead to orbital differentiation [51,52], and is beyond the scope
of our work [53]. The Hund’s term HH can be treated through
a Hubbard-Stratonovich decoupling in the hopping channel:

HH →
∑

m

[�̄m(b†
m+1,αbmα ) + h.c.] + N |�m|2

JH
. (3)

A mean-field equation relates JH to the spinon gap �,
such that generically �/JH = 〈∑m b†

m+1bm〉 [28]. If JH is
large enough to generate a finite �, their relationship will be
such that N� = 2SnimpJH for T � T 0

K . Furthermore, the total
charge

Qm =
∑

α

b†
mαbmα +

∑
a

χ†
maχma = 2S, (4)

at each orbital commutes with the Hubbard operators and is
a conserved quantity, setting the size of the local moments.
This is a constraint on the spinons/holons, enforced through
a common Lagrange multiplier λ. In the large-N limit, the dy-
namics of holons and spinons is dominated by the noncrossing
Feynman diagrams, which leads to the self-energy equations

χ (τ ) = gc,0(−τ )GB(τ ), B(τ ) = −kgc,0(τ )Gχ (τ ), (5)

where k = K/N = 2S/N and gc,0(z) = ∑
k[z − εc

k]−1 cor-
responds to the conduction electron’s bare propagator for
imaginary frequencies z. Equations (5) are solved self-
consistently together with the Dyson equations Gb(z) =∑

m GB(m, z) = ∑
p[z − εp − V 2b(z)]−1 and Gχ (z) = [z −

ε∗
f − V 2χ (z)]−1. Here, we used the following definitions:

GB(m, z) is the spinon’s Green’s function on orbital m, εp =
(λ − 2� cos p) is the energy of the spinon states, and ε∗

f =
λ + ε f is the effective holon energy. We also defined the chi-
rality p = 0,±2π/3 which denotes the chosen Hund energy
levels such that p = 0 is the aligned state (maximum total
spin). λ and � are adjusted to fit the constraint of Eq. (4) and
the mean-field relation between JH and �.

Thermodynamic and dynamical observables are obtained
from the Green’s functions [28,34,35]. Notably, the impurity
entropy Simp(T ) can be extracted exactly in the large-N limit
[54,55] and is given by

Simp = −Tr
∫

dω

π

(
∂nB

∂T

[
Im ln

( − G−1
B

) + G′
B′′

B

]

+ γ
∂nF

∂T

[
Im ln

( − G−1
χ

) + G′
χ′′

χ − g′′
c,0̃

′
c

])
, (6)

where the trace is over all α and a spin and channel indices and
chiralities p, and ̃c(τ ) = Gχ (−τ )GB(τ ). G′

ξ is the real part
of the retarded Green’s function while ′′

ξ is the imaginary
part of the self-energy for the corresponding fields. From
this closed form, we can extract the specific heat as cv,imp =
T ∂Simp/∂T .

Summary of results.—In the absence of Hund’s coupling,
one simply recovers three copies of infinite-U Anderson
models. In this case, the presence of holons (decreasing
nimp) increases the bare Kondo temperature T 0

K ∼ De−1/J0
K ρ ∼

L042011-2



INTERPLAY OF CHARGE AND SPIN FLUCTUATIONS IN … PHYSICAL REVIEW RESEARCH 4, L042011 (2022)

FIG. 2. (a) The impurity’s local moment μ2
imp obtained from the

spin susceptibility, for varied impurity occupations nimp. The large
emergent moment, seen as a low-temperature higher plateau, is de-
stroyed as more holons are added, following the trend of Fig. 1. (b)
The specific heat cv,imp, obtained from the closed form of the entropy
for the multiorbital Anderson model, see Eq. (6). Both Torb and T eff

K

are crossovers associated with cv peaks. Dashed lines are high and
intermediate temperature limits for the μ2

imp, obtained in Ref. [28].

D exp (−|ε f |/�) for a fixed hybridization width �, conduc-
tion electron bandwidth D, and effective holon energy ε∗

f .
The holon occupation number nχ can be absorbed through
a Gutzwiller renormalization of the hybridization V → Ṽ ∼
V

√〈nχ 〉 [48], such that as nχ → 0, T 0
K → 0 exponentially.

Solving the self-energy equations for JH = 0 leads to this
expected trend, shown in black in Fig. 1(c) [56].

For a finite Hund’s coupling, the situation changes drasti-
cally. The emergence of an intermediate large moment phase
in the Kondo limit is consistent with our previous work on
the Hund-Kondo model [28]. We can now connect this phase
continuously throughout the hole-doped regime. At some crit-
ical holon doping, there is no longer enough local moments to
lock together; the two-step Kondo screening reverts to a single
step Kondo crossover. The obtained phase diagram of Fig. 1 is
consistent with other NRG + DMFT studies [9] of hole-doped
multiorbital impurity models.

In Fig. 2, we present the thermodynamic measurements of
the total impurity’s magnetic moment μ2 ∼ T χsp as well as
the impurity specific heat for select impurity occupations nimp

throughout the entire temperature range. For Kondo-like sys-
tems (nimp = 2.7) there is a clear nonmonoticity in the local
moment, signaling the intermediate formation of an emergent
large moment due to Hund’s coupling. As the holon occu-
pancy increases, there are less spinons in the system and the
emergent moment can no longer form; the shoulder disappears
at nimp ≈ 0.7. In the specific heat, this disappearance of the
intermediate phase is seen as the low and high temperature
crossover features merge to become one as nimp = 0.7, where
single-step Kondo screening occurs.

Previous works [9,31,32,43,57] have characterized the in-
termediate large moment phase as a regime with spin-orbital
separation. We can take advantage of the Hubbard operators’
description in terms of spinons and holons to write compos-
ite orbital operators. This procedure would not be possible
with virtual holons, as obtained in past treatments of the
Hund-Kondo model [28]. The finite holon occupancy in the
Hund-Anderson model leads to a well-defined orbital degrees

of freedom. Starting with the total impurity spin operators
at imaginary time τ , described as Sαβ (τ ) = ∑

m X (m)
αβ (τ ) =∑

m b†
mα (τ )bmβ (τ ) (α, β are SU(N) spin states), we then har-

ness the SO(3) orbital symmetry and describe impurity orbital
operators L̂γ (γ = x, y, z corresponding to the three degener-
ate orbitals) as L̂γ = (1/NK )

∑
mm′αa X (m)

αa (Lγ )mm′X (m′ )
aα . The

Lγ are generators of the SO(3) group [58] such that (Lγ )mm′ =
iεγ mm′ with εi jk the antisymmetric Levi-Civita tensor. The spin
and orbital susceptibilities in the large-N limit can thus be
expressed as

χsp(τ ) = 1

N2

∑
γ

∑
αβ

〈
S(γ )

αβ (τ )S(0)
βα (0)

〉
c

→
∑

m

GB(m, τ )GB(−m,−τ ), (7a)

χorb(τ ) = 1

3

∑
γ

〈L̂γ (τ )L̂γ (0)〉c

→ 1

K

(
�

JH

)2

Gχ (τ )Gχ (−τ ), (7b)

where 〈· · · 〉c denotes averages over connected diagrams. The
derivation of the expression for the spin susceptibility is iden-
tical to our previous work [28]. The expression for the orbital
susceptibility is obtained through two essential steps. Firstly,
after the L̂γ operators are represented in terms of Hubbard
operators, Wick contractions over the bosonic and fermionic
degrees of freedom leaves only two relevant contributions in
the large-N limit. Secondly, the absence of holon interorbital
hopping leads to many terms being zero. Summing over γ =
x, y, z leads to the quoted result. The full expression for the
dynamical susceptibilities in real frequency are presented in
the Supplemental Materials [56], as well as further details on
this derivation. Note that the orbital susceptibility has a 1/K
factor reduction compared to χsp; we nevertheless can plot
Kχorb and obtain valuable insight. The static components of
these susceptibilities, χorb(τ = 0) and χsp(τ = 0), are shown
in panel (a) of Fig. 3. The clear splitting of both susceptibil-
ities at Torb, and the subsequent plateau in χorb, signals the
formation of the large moment and the separation of spin
and orbital scales (SOS). Throughout this regime, orbital and
charge fluctuations are nearly frozen while the spin suscepti-
bility remains Curie-like.

Dynamical susceptibilities.—The emergent moment
regime has clear thermodynamic attributes, as described
above (see Fig. 2). Further insight into this phase is
provided by the dynamical spin and orbital susceptibilities,
as defined in Eqs. (7). We show these in Fig. 3 for two
different total impurity valences. It can be clearly seen
that at high frequencies, both spin and orbital degrees of
freedom fluctuate freely. For ω < Torb, the lower-energy
high-spin configurations split off, which is associated with
the separation of the spin and orbital dynamical susceptibility.
In this regime, the charge fluctuations freeze and the valence
stabilizes below Torb; this quenching of orbital degrees of
freedom leads to the decrease in χ ′′

orb with respect to χ ′′
sp.

From Fig. 3, we see that, for many decades in fre-
quency between T eff

K and Torb, the spin susceptibility seems
to grow in a power-law χsp ∼ ω−γ (dot-dashed green line). In
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FIG. 3. (a) Static spin and orbital susceptibilities for nimp = 2.7, showing a clear separation at Torb below which the Curie-like χsp ∼ μ2/T
spin susceptibility is in stark constrast to the constant χorb. (b)–(c) Imaginary part of the dynamical spin and orbital susceptibilities, Eqs. (7),
presented for different occupations of the three-orbital impurity: nimp = 2 and nimp = 2.7 from left to right. The value of the Hund coupling
JH/D = 0.37 is fixed, and results are presented for T � 0.1T eff

K . The dashed black line corresponds to the derived second-order perturbation
scaling of the spinon susceptibility, Eqs. (8), while the dot-dashed green line is the quasi-power-law form of Eq. (10) (with small offset for
readability). At the top right, we show the second order contribution to χsp which leads to the logarithmic scaling. Conduction electron (spinon)
Green’s functions are represented as solid (wavy) lines.

Kondo impurity problems, such behavior is often indicative
of non-Fermi-liquid fixed points [31,32], for example in the
2-channel spin-1/2 Kondo model [59–64]. Closer examina-
tion reveals that this is not the case in this system, having
maintained perfect screening (2S = K ) throughout. Instead,
we find a good agreement at intermediate temperatures and
frequencies with the scaling

χ ′′
sp(ω) =

(
Jeff

K ρ
)2

ω
∝

(
ω

[
ln

(
ω

T eff
K

)]2)−1

. (8)

Here we cover the basic steps of this derivation and
leave the details for the supplementary materials [56]. Firstly,
we solve a single iteration [28] of the self-energy equa-
tions of Eq. (5) analytically, starting from the bare Green’s
functions Gξ,0(z). This leads to an expression for the renor-
malized Kondo temperature T eff

K . Furthermore, for T eff
K �

max(ω, T ) � Torb, we can map the mixed valence problem
onto a Kondo problem, leading to an effective holon propa-
gator G̃χ (ω) = −Jeff

K (ω), with

1

ρJeff
K (ω)

� ln

(
max(ω, T )

T eff
K

)
. (9)

Secondly, after having obtained this effective running
Kondo coupling, we proceed in a second-order perturbation in
Jeff

K of the spinon bubble of the spin susceptibility [65]. This
is shown in the top right of Fig. 3. Blue boxes corresponds to
factors of ρJeff

K , and the calculation of this diagram leads to the
scaling presented in Eq. (8). One can see in Fig 3 that it agrees
perfectly within the intermediate regime T eff

K < ω < Torb with
only T eff

K as an input parameter. A downturn is observed at
lower frequencies consistent with Im χsp ∝ ω in the Fermi

liquid regime. This scaling holds for all nimp of the phase
diagram where the SOS phase is present.

In the SOS regime, the large separation of scales between
T eff

K and Torb leads to a peculiar observation about Eq. (8). For
intermediate frequencies, we find that a quasi-power-law form
for the spin susceptibility,

χpwl ∼ ω−γ and γ = 1 − 2/ ln

(
T eff

K

D

)
, (10)

with D = min(�, Torb), is indistinguishable from the form
with the logarithmic correction. These two start to deviate as
one gets to very small frequencies ω � D [56], which results
in the upturn seen close to T eff

K in Fig. 3. For very small
T eff

K /Torb, due to strong Hund’s coupling and the resulting
nearly frozen charge fluctuations, the slow logarithmic scaling
presents itself as this quasi-power-law for many decades in
frequency. We find that, for a given fixed JH/D = 0.37, γ �
1.2 for nimp = 2.7 and γ � 1.4 for nimp = 2.0. This exponent
γ changes continuously as nimp is varied.

We note that χ ′′
sp ∼ ω−1.2 was seen in a different but re-

lated model [31,32], and was invoked in phenomenological
modeling of the spin-fluctuation-induced Cooper pairing in
the iron-based superconductors [66,67]. In those references,
the presence of a putative soft boson with χ ′′

sp ∼ ω−1.2, when
included in a Eliashberg approach, led to a superconducting
instability with universal properties relevant for the iron-based
superconductors, but the origin of this mode was an open
question. Our results provide a tentative identification of this
mode in terms of Hund’s driven Kondo screening.

Eliashberg approach.—We can extend these arguments to
the singular local spin susceptibility obtained here. Firstly, we
can extract two contributions to the interaction kernel for the
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FIG. 4. (a) In red, interaction kernel for the conduction electrons.
In the Schwinger-boson representation, there are two contributions.
For temperatures below Torb, the holons are nearly instantaneous
propagators and the two diagrams can be simplified. A spinon bub-
ble is then the contribution to the pairing vertex �c and fermionic
self-energy c. Holon propagators are represented by dashed lines,
while conduction electrons (spinons) are represented by full (wavy)
lines. (b) Solving Eq. (11) with λ = χ ′′

sp, with different T eff
K chosen.

The inset shows 2�max vs Tc for the presented curves, along with
2�max ∝ 7.0Tc in dashed blue.

conduction electrons at the O(1/N2) level, shown in Fig. 4:
a normal and an anomalous contribution, respectively. In the
SOS regime, the quenching of the local moments, which also
leads to the apparent quasi-power-law behavior, means that
the holon’s propagators can be approximated as instantaneous
Gχ ∝ δ(τ ) [68]. Simplifying the two contributions leads to a
pairing vertex and fermionic self-energy of equal magnitude,
both occurring through χ ′′

sp; this acts as our soft boson.
Following the work of Ref. [66], we can express the Eliash-

berg equations [69–73] for the pairing vertex �c(ωn) and
the fermionic self-energy c(ωn) in a closed form. These
can be factorized using the pairing gap function �(ωn) =
�(ωn)ωn/(ωn + (ωn)), leading to a closed equation for

�(ωn) ≡ �n:

�n = πT
∑
ωm

λ(ωm − ωn)√
ω2

m + �2
m

(
�m − �n

ωm

ωn

)
, (11)

where ωn = πT (2n + 1) is the nth fermionic Matsubara fre-
quency and λ(�) ∼ χ ′′

sp(�) carries the effect of the spin
fluctuation bubble. Note that this form only holds for the
intermediate frequency and temperature window of T eff

K <

T,� < Torb. This can then be used to obtain (ωn). Solving
Eq. (11) shows that as the temperature is lowered, a finite
�n �= 0 develops below Tc. In Fig. 4(b), we show the maxi-
mum gap, achieved at n = 0, as a function of temperature. The
critical temperature and the maximal gap �max = �0(T → 0)
are seen to scale with T eff

K and Tc. For all T eff
K studied, the

SOS window is large enough to generate a superconducting
state within the Eliashberg approach. Furthermore, we find
that 2�max/Tc ∼ 7.0 ± 0.5 for a wide range of T eff

K /Torb, close
to the universal value observed in Ref. [74].

Conclusion.—We have shown that the dynamical large-N
approach can capture the destruction of the Hund’s coupled
emergent large moment due to hole doping. Furthermore, we
show that the intermediate regime is well described through
the concept of spin-orbital separation (SOS) [9,43]. In this
phase, the dynamical spin susceptibility has a logarithmic
component due to the nearly frozen charge fluctuations, which
presents itself as a quasi-power-law for an extended frequency
range because T eff

K � Torb. The non-Fermi-liquid-like fea-
tures in the emergent moment regime can be continuously
connected to the integer valence limit. We have also shown
how the singular aspects of this spin susceptibility can be
included in a Eliashberg treatment and lead to a supercon-
ducting state with quasiuniversal properties reminiscent of the
iron-based superconductors.
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