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Correlations of network trajectories
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Temporal networks model how the interaction between elements in a complex system evolves over time. Just
as complex systems display collective dynamics, here we interpret temporal networks as trajectories performing
a collective motion in graph space, following a latent graph dynamical system. Under this paradigm, we propose
a way to measure how the network pulsates and collectively fluctuates over time and space. To this aim, we
extend the notion of linear correlation functions to the case of sequences of network snapshots, i.e., a network
trajectory. We construct stochastic and deterministic graph dynamical systems and show that the emergent
collective correlations are well captured by simple measures, and we illustrate how these patterns are revealed in
empirical networks arising in different domains.
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I. INTRODUCTION

Temporal networks [1–3] are a mathematically handy way
of modeling how different elements in a complex system
interact and how such interactions evolve over time. While
a substantial amount of research activity has studied how
dynamical processes running on a network—e.g., diffusion,
synchronization, epidemics, etc.—are affected when such a
network backbone is itself dynamically modified [4–11], the
program of studying the network’s intrinsic dynamics—the
dynamics of the network—has been seldom explored [12–15],
even if such intrinsic dynamics is itself indicative of the inter-
action dynamics taking place in complex systems.

Our contention is that, just as complex systems display
collective dynamics, temporal networks perform a collective
motion in a (high dimensional) phase space—a graph phase
space—rather than being just an aggregation of independently
varying links. Accordingly, we propose to interpret temporal
networks as whole yet not punctual objects performing a
trajectory in graph space governed by a latent graph dynam-
ical system [16]. Depending on the level of description and
the system under study, the dynamical rules by which the
graph object evolves over time might be driven by a system’s
Hamiltonian, by an effective (possibly dissipative) theory, or
by stochastic processes. This perspective opens up room to
describe how networks collectively pulsate and fluctuate using
the solid grounding offered by dynamical systems theory and
stochastic processes and time series analysis.
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Here, we illustrate such a program by investigating the ex-
tension of correlation functions—classically defined to study
linear autocorrelation and cross correlation of signals—to the
case where the object under analysis is a network whose
dynamics displays normal modes and develops linear correla-
tions accordingly. Formally, let G = {G(s)}N

s=1 be an ordered
sequence of N network snapshots. The index s can be associ-
ated with time t (hence addressing temporal autocorrelations),
space x (i.e., spatial correlations), or some other property that
allows ordering the sequence.

For concreteness we consider labeled, unweighted net-
works with a fixed number of m nodes and s ≡ t , i.e., G =
{A(t )}N

t=1, where A(t ) = {Ai j (t )}m
i, j=1 is the adjacency matrix

of the t th network snapshot. Conceptually, the autocorrelation
function of an object is the inner product of itself with itself
at a later time (the lag), averaged over the dynamics. Accord-
ingly, here we propose to define the network’s autocorrelation
matrix C̃ (τ ) at lag τ as

C̃ (τ ) = 1

N − τ

N−τ∑

t=1

[A(t ) − μ] · [A(t + τ )ᵀ − μᵀ], (1)

where Aᵀ is the transpose of matrix A and μ = 1
N

∑N
t=1 A(t )

is the annealed adjacency matrix of the temporal network. We
then coarse-grain such matrix by projecting it using the Frobe-
nius inner product 〈·, ·〉F to obtain the scalar autocorrelation
c̃(τ ) as

c̃(τ ) =
∑

t

〈A(t ), A(t + τ )〉F − 〈μ,μ〉F = tr(C̃ (τ )), (2)

where tr(·) denotes the trace operator, i.e., c̃(τ ) sums up
all edge autocorrelations at lag τ . The full correlation ma-
trix C̃ takes into account not only autocorrelations (found
in the diagonal of the matrix), but also cross correlations
(found in the off-diagonal terms), and is conceptually close
to the comemory matrix [15]. More particularly, each off-
diagonal term C̃i j (τ ) (i �= j) displays the cross correlation
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FIG. 1. White temporal networks. c̃(τ ) evidences the classi-
cal Dirac-delta behavior, as expected. The insets show C̃i j (0) and
C̃i j (10), certifying that only autocorrelations emerge, and only at the
trivial τ = 0.

∑
t Aik (t )Ajk (t + τ ) of pairs of edges forming a path of size 2

between node i and node j that goes through an intermediate
node k, and aggregates this over all intermediate nodes k.
These off-diagonal terms aggregate the distance-2 temporal
dependencies between nodes i and j that emerge as a result
of their indirect correlation via the rest of the nodes, and
thus provides an estimation of the network-mediated temporal
dependence between nodes i and j.

II. RESULTS

To validate how C̃i j (τ ) and c̃(τ ) work, we proceed to
create generative models of network trajectories as network
extensions of benchmark dynamics.

A. White networks

An independent and identically distributed (i.i.d.) sequence
of N Erdős-Rényi graphs ER(p) is a network version of white
noise. In Fig. 1 we show the result of c̃(τ ) for p = 0.2,

m = 10, N = 100, showing the characteristic Dirac-delta
shape of a white noise’s autocorrelation and lacking temporal
cross correlations, as expected; see Supplemental Material
(SM) [17].

B. Noisy periodic networks

In a second step, we build periodic networks of period T,
by first constructing an i.i.d. sequence of T Erdős-Rényi
graphs ER(p) and then concatenating several of these se-
quences one after the other to build the temporal network
with N snapshots. To make the quantification of periodicity
more challenging, we pollute the (pure) periodic temporal
network pattern with a certain amount of noise: Each edge is
independently affected by noise with probability q, and those
edges affected by noise are set to 1 with probability p and to 0
with 1 − p (by construction, the periodic pattern is completely
washed out for q → 1). Figure 2 illustrates the result for
(m, T, N, p, q) = (10, 20, 120, 0.1, 0.4). The temporal net-
work shows a clear periodic pattern at T as its autocorrelation
function peaks at τ = T and successive harmonics, and there
is no trace of cross correlation or autocorrelations at τ �= T , as
expected [17]. In order to quantify the periodic detectability as
a function of the noise level, we compute a z score of c̃(T ) (see
SM). In the right panel of Fig. 2, we plot such a z score as a
function of q, for T = 30. Assuming a detectability threshold
of 4 (rejecting the null hypothesis of nondetectability with
very large confidence), one can assert that the noisy network
has a periodic backbone up to very high noise levels q ≈ 0.9
(this property surely depends on other parameters such as the
number of nodes m, the wiring probability p, etc.).

C. Memory

As a third step, we now generate synthetic models of
temporal networks with prescribed memory. We first con-
sider the so-called discrete autoregressive network model or
DARN(p) [14,15], which is the network version of a discrete
autoregressive process of finite order p [18]. In this model,
each link evolves independently and at each time step either
makes a copy of its state from its past (taking the copy from

FIG. 2. Noisy periodic networks. Left: c̃(τ ) evidences the peaks at multiple harmonics of the period, as expected. The insets show C̃ (10)
and C̃ (30). Right: Period detectability, for which we compute the z-score statistic associated with c̃(30) (see SM). As a guide, we highlight the
detectability threshold z score = 4, for which the deviations between c̃(30) and the average interperiod signal c̃(1 · · · 29) are four times larger
than expected by chance, and conclude that the hidden periodicity can be captured even for very high levels of noise.
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FIG. 3. DARN(p). Semilog plot of c̃(τ ) for a DARN(p) of m =
10 nodes and N = 10 000 snapshots, with parameters q = 0.6, y =
0.1. The network displays a constant correlation for τ � p and de-
cays exponentially fast thereafter as exp(−βτ ). The inset describes
the relation between the decaying exponent β and the order of mem-
ory p, and the best fit gives β ∼ p−0.7. DAR, discrete autoregressive.

a random position of its past p states) or updates randomly.
Formally, the dynamics of a single link follows �t = Q�t−Z +
(1 − Q)Y , where Q is either 0 or 1 (Bernoulli trial), Z is a
random variable that draws values from {1, 2, . . . , p}, and Y
is again a binary random variable that results from another

Bernoulli trial. This model generates binary values for each
link �, and one can prove that overall the process is non-
Markovian, with order p. In Fig. 3 we plot the values of c̃(τ )
for different memory orders p. We observe that the correlation
is constant for τ � p and seems to have an exponential decay
thereafter, as expected. The rate of decay itself decreases when
the memory order p increases, as shown in the inset (the solid
curve corresponds to an analytical result on DAR(p) processes
which involves a local approximation and is only valid when
β is fitted in p + 1 < τ < 2p [18]). Overall, results suggest
that c̃(τ ) adequately captures the linear temporal correlations
of the network.

To complete this example, we now relax the assumption
that each edge samples its future state from its own past
and allow, with a certain probability w, that such sampling
is performed from the past of a different link. This induces
non-negligible cross correlations, and as a result the network
pulsation is more complex. In this scenario, c̃(τ ) does not
capture all the macroscopic temporal correlations, and one
needs to consider the full correlation matrix C̃ (τ ). We illus-
trate this effect in Fig. 4, where we can appreciate that, as
the probability w increases, off-diagonal terms emerge and
eventually take over the diagonal ones for large values of w.

D. Edge of chaos

We now proceed to construct deterministic temporal
networks with complex dynamics, including chaos and frac-
tality. To construct “chaotic networks,” we initially generate

FIG. 4. Full heat-map plots of C̃i j (τ ) for a modified DARN(1) model with m = 10 nodes and N = 103 snapshots, with parameters q = 0.6,
y = 0.1, where with probability w, when the link update Ai j is from its past, we instead update it with the past of Aii′ , j ′ = j + 2 mod (m).
When w = 0, the model is just a standard DARN(1). As w increases, the links increasingly develop network-mediated cross correlations at the
expense of autocorrelations.
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FIG. 5. Edge of chaos. Bottom: c̃(τ ) for a logistic temporal net-
work of m = 100 nodes and N = 10 000 snapshots poised at the edge
of chaos (r ≈ r∞). The network trajectories display a fractal structure
with infinitely many periods (hierarchically organized as powers
of 2), captured as periodic peaks of different heights by the corre-
lation function. Top: A scaling relation between such heights and the
period they relate to, with a nontrivial exponent.

a dictionary of networks D = (G1, G2, . . . , GL ) such that
||Gp − Gq|| = |p − q|, and we “networkize” chaotic trajec-
tories accordingly, by matching phase space points with
networks from the dictionary [17]. For illustration, we choose
the logistic map xt+1 = rxt (1 − xt ), 0 < r � 4, x ∈ [0, 1].
This map generates a period-doubling cascade of signals with
period T = 2k as r increases, with a period diverging at a
finite r∞ ≈ 3.569 945 6. For r > r∞ the map produces chaotic
trajectories intertwined with other routes to chaos.

We analyzed c̃(τ ) for two interesting cases: r = 4 (fully de-
veloped chaos) and r = r∞ (edge of chaos), for L = 1000 and
networks with m = 100 nodes and p = 0.4. The r = 4 case
is indistinguishable from the case of white networks (Fig. 1),
as expected given that fully developed chaos lacks linear cor-
relations. The r∞ case is reported in Fig. 5, finding a rich,
self-similar correlation structure with an intertwined hierarchy
of periodically separated peaks, reminiscent of the infinitely
many modes with period T = 2k of the dynamics at the edge
of chaos. The height of these peaks increases as a function of
the specific mode k in such a way that, when looking at how
the correlation peaks approach c̃(0) (in units of the correlation
function), we unveil a scaling c̃(0) − c̃(T ) ∼ T −α , with a non-
trivial exponent α ≈ 1.77, possibly reminiscent of—although
not obviously related to—Feigenbaum constants.

E. Empirical networks

To round off this study, we now apply our methodology
to a range of social, technological, and biological temporal

networks that characterize evolving interaction patterns in
different systems (see Appendix for details). Across these
systems, we find a wide range of emerging stylized correlation
patterns that match the prototypical structures found for c̃(τ )
in the synthetic models, from pure periodicity—which high-
lights temporally pulsating networks—to both short-range and
long-range correlation structures. Finer analysis of the full
correlation matrices reveals the emergence of coherent groups
of nodes which display network-mediated cross correlations
(see Appendix). Overall, these results point to the fact that
empirical temporal networks indeed describe collective fluc-
tuations which can be captured and interpreted using our
network extension of the linear correlation formalism.

III. DISCUSSION

We have presented a parsimonious way to capture the cor-
relation structure in a sequence of networks by interpreting
this sequence as a trajectory of a latent graph dynamical
system. For a (complementary and) microscopic analysis of
memory, we in turn refer the reader to Ref. [15]. As previ-
ously stated, the measure proposed here can equally explore
temporal correlations (when the ordering index represents
time) or spatial correlations, and can be trivially extended
to assess cross correlations between two sequences of net-
works. We have certified that the trace of the correlation
matrix correctly captures a range of different macroscopic
temporal patterns—from periodic pulsation to decaying au-
tocorrelations of different kinds—while the full correlation
matrix is capable of finding network-mediated cross correla-
tions between groups of links. We found that different stylized
temporal correlation patterns also emerge in empirical tem-
poral networks, which provide important insights into the
collective evolution of these systems.

We foresee that applications of this method pervade phys-
ical systems, e.g., condensed matter (fluctuating spin lattices)
or biophysics (proximity networks of active matter [19,20]),
and include areas beyond physics such as social mobility [21],
technological transportation networks, or ecological systems
where spatial correlations characterize adaptation to Earth’s
longitudinal or latitudinal gradients [22–25]. From a method-
ological viewpoint, further research should also consider the
cases (i) where the vertex set size also fluctuates over time
or space, (ii) where nodes do not have an explicit label, or
(iii) where links are weighted or directed. Problem (i) can be
tentatively addressed by sampling the maximal subgraph that
contains a unique vertex set. Problem (ii) is more computa-
tionally challenging and relates to the problem of canonically
embedding an unlabeled network into a labeled one; a pos-
sible solution (computationally affordable for medium-size
networks) relates to labeling nodes via Hausdorff-Gromov
embeddings.

In this Research Letter, we deliberately chose an intu-
itive property—linear correlations—to convey our idea of
interpreting temporal networks as trajectories. The broader
research program extends above and beyond correlations: We
envisage other dynamical properties (e.g., dynamical stability)
to be similarly extended to analyze network trajectories.

PYTHON implementations of all algorithms are available
[26].
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APPENDIX: EMPIRICAL NETWORKS

Empirical networks include online (email networks [27])
and offline social interaction in different settings (proximity
networks in a university [28], a hospital ward [29], a pri-
mary school [30], a high school [31], or interactions in a
village [32]), transportation networks (New York City sub-
way, U.S. air traffic [33]), and biological systems (a protein
interaction network [34]) [17]. Values of c̃(τ ) for all systems
are plotted in Fig. 6. We find that social-interaction-based
networks typically display linear correlations at the network
size that decay with different speeds but do not show evidence

of harmonicity, suggesting that the underlying complex so-
cial system evidences different degrees of memory (see also
Fig. 7, where we show how temporally correlated commu-
nities strongly emerge in these systems). This contrasts with
online interactions (emails), which follow a markedly regu-
lar pattern with a collective periodicity of T ≈ 1 day, with
a second periodic mode showing up at T ≈ 1 week. Such
a periodic structure—possibly reminiscent of an underlying
scheduling—is also found in origin-destination flows in both
subway and air transport (daily periodicity), which on the
other hand display hidden, network-mediated anticorrelations,
as unveiled by the full correlation matrices (see below). More
surprising is to observe that periodic modes also emerge in a
biological system such as a protein interaction network: Here,
we speculate that the observed periodicity is related to the
typical length of a full metabolic cycle [35].

To be able to visually display the full correlation matrices
of empirical temporal networks, we have proceeded to
preorder nodes by aggregating the adjacency matrices
over all snapshots and by feeding this weighted matrix to
Louvain’s community detection algorithm [36]. Hence pairs
of nodes whose edges have similar overall activity are initially
grouped together. In Fig. 7 we have then plotted C̃i j (τ ) at
different relevant lags. Results suggest the emergence of

FIG. 6. Empirical networks. Plots of c̃(τ ) as a function of τ (hours) for different empirical temporal networks (see the main text and the
Appendix for details). Some of the panels are in semilog scale, some of them are in log-log scale, and some of them are in linear scales.
The dotted and dashed vertical lines correspond to τ = 1 and 12 h, respectively. Across these systems we find a wide range of emerging
stylized correlation patterns that match the prototypical structures found in the synthetic models, from pure periodicity (blue)—highlighting
temporally pulsating networks—to both short-range (orange) and long-range correlation structures (green). The bottom-right panel depicts the
correlation lifetime τCLT and activity-preserved correlation lifetime τACLT, defined as the first time after which the curves hit c̃ = 0 and the first
time after which the curve crosses a properly shuffled null model, respectively (these quantities are well defined only for decaying correlation
curves, not so for periodic ones). For a deeper analysis of internal correlation structure, see the full correlation matrices in Fig. 7. We find that
social-interaction-based networks typically display linear correlations at the network size that decay with different speeds (exponentially or
with a power-law decay) but do not show evidence of harmonicity, suggesting that the underlying complex social system evidences different
degrees of memory. This contrasts with online interactions (emails), which follow a markedly regular pattern with a collective periodicity
of T ≈ 1 day, with a second periodic mode showing up at T ≈ 1 week. Such a periodic structure—possibly reminiscent of an underlying
scheduling—is also found in origin-destination flows found in both subway and air transport (daily periodicity). More surprising is to observe
that periodic modes also emerge in a biological system such as a protein interaction network: Here, we speculate that the observed periodicity
is related to the typical length of a full metabolic cycle of ≈ 5 h [34,35].
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FIG. 7. Correlation matrices of empirical networks. Heat-map plots of the full correlation matrices C̃i j (τ ) for τ = 0, τCLT/2, τCLT (see
Fig. 6), for those empirical temporal networks where no pulsation was detected (the networks shown on the left-hand side of the figure), and
for τ = 0, T/2, T for those empirical temporal networks where pulsation was previously detected in c̃(τ ) at τ = T and subsequent harmonics
(the networks shown on the right-hand side). The values have been multiplied by the number of nodes N so that the color code matches the scale
of values found for c̃(τ ). Nodes have been preordered in terms of their aggregated activity via Louvain’s community detection method [36].
We can see that at lag τ = 0, the reality mining network (social contacts in a university environment) only shows autocorrelations, whereas the
rest of the aperiodic networks also show important network-mediated cross correlations. In pulsating networks, important network-mediated
cross correlations emerge; for instance, for the U.S. air traffic activity, links are significantly anticorrelated, something reminiscent of the
asynchronous nature of origin-destination flows.

network-mediated temporal cross correlations between
groups of links, only visible via the preordered full correlation

matrices, that complement the macroscopic patterns captured
by the trace c̃(τ ).
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