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The chiral anomaly underlies a broad number of phenomena, from enhanced electronic transport in topological
metals to anomalous currents in the quark-gluon plasma. The discovery of topological states of matter in
non-Hermitian systems raises the question of whether there are anomalous conservation laws that remain
unaccounted for. To answer this question, we consider both two and four space-time dimensions, presenting a
unified formulation to calculate anomalous responses in Hermitianized, anti-Hermitianized, and non-Hermitian
systems of massless electrons with complex Fermi velocities coupled to non-Hermitian gauge fields. Our results
indicate that the quantum conservation laws of chiral currents of non-Hermitian systems are not related to those
in Hermitianized and anti-Hermitianized systems, as would be expected classically, due to different anomalous
terms that we derive. We further present some physical consequences of our non-Hermitian anomaly that may
have implications for a broad class of emerging experimental systems that realize non-Hermitian Hamiltonians.

DOI: 10.1103/PhysRevResearch.4.L042004

Introduction. Quantum anomalies explain transport phe-
nomena in many branches of physics, including high-energy
physics [1–4], astrophysics [5,6], and condensed matter
physics [7–9]. Anomalies account for the fact that, upon
quantization, the conservation law associated with a classical
symmetry can be broken, resulting in observable anomalous
transport currents [10]. While anomalous currents can be cor-
rected by interactions among particles, the chiral anomaly
[11], the imbalance between left and right movers due to
quantum fluctuations [12], remains universal. The universal
chiral anomaly coefficient appears in dissipationless transport
currents [10] due to electromagnetic [13–18] and strain fields
[19] in condensed matter systems, and in anomalous transport
in the quark-gluon plasma [3,10].

The universality of the chiral anomaly, i.e., its robustness
against local perturbations, is intimately related to topo-
logical properties of the Hamiltonian [20]. While most of
these Hamiltonians respect the Hermiticity condition, non-
Hermitian Hamiltonians, which are effective descriptions of
systems coupled to an environment [21–25], introduce new
classes of topological systems which do not have any Hermi-
tian analog [26–30]. This motivates the question we address in
this Letter: Are chiral quantum anomalies in non-Hermitian
systems different in any way from those of (anti-)Hermitian
systems? So far, one of the main links between anomalous
field theories and non-Hermitian systems are the extension
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of the index theorem to non-Hermitian systems [31] and the
reinterpretation of the non-Hermitian skin effect as a conse-
quence of an anomaly [32,33]. The skin effect [34–39] is one
of the central differences between topological non-Hermitian
and Hermitian systems and results in a macroscopic number
of states accumulating at the boundary of the system. The
action describing a non-Hermitian system in d + 0 dimen-
sions is mathematically equivalent to that of a [(d − 1) +
1]-dimensional Hermitian system [33]. This establishes a link
between the non-Hermitian skin effect of a d-dimensional
system to a [(d − 1) + 1]-dimensional anomalous Hermitian
theory. Additionally, Ref. [31] showed that a lattice version
of a PT -symmetric continuum model, i.e., non-Hermitian
systems with a real spectrum, can display quantum anoma-
lies similar to those in Hermitian systems. In PT -symmetric
systems the chiral magnetic effect [4], an anomalous transport
current parallel to a magnetic field, can exist in equilibrium in
non-Hermitian systems [40].

In this Letter, we present a generic (d + 1)-dimensional
non-Hermitian formulation that consolidates anomalous
chiral responses in (d + 1)-dimensional Hermitian, anti-
Hermitian, and non-Hermitian systems. More specifically, we
study the chiral anomaly in two and four space-time di-
mensions for non-Hermitian massless Weyl fermions, with
complex Fermi velocities, coupled to complex gauge fields.
We also (anti)symmetrize the non-Hermitian action and in-
troduce an (anti-)Hermitianized action. All these models lack
PT and Lorentz symmetry.

By establishing a unified notation for the Hermitianized,
anti-Hermitianized, and non-Hermitian systems, we show
that all of these systems classically conserve both the vector
and chiral currents but exhibit anomalous responses when
quantized (Fig. 1). Furthermore, the anomalous currents
in non-Hermitian systems are not given by the simple
addition of currents associated with the Hermitianized and
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FIG. 1. Anomalies in Hermitianized, anti-Hermitianized, and
non-Hermitian actions. For the non-Hermitian Hamiltonian Snh, as
well as its Hermitianized (Sh) and anti-Hermitianized (Sah) forms,
the conserved classical chiral current will be anomalous upon includ-
ing quantum fluctuations. Note that the definition of current remains
the same in all systems and d̃μ = f ν

μ∂ν where f ν
μ is introduced in

Table I. While Snh = Sh + Sah, for the anomalous currents we get
Anh �= Ah + Aah.

anti-Hermitianized actions, as would be expected classically
(Fig. 1).

In the main text, we follow Fujikawa’s path-integral ap-
proach [41–44], which proves to be a controlled method
to evaluate the chiral anomalies emerging from the non-
Hermitian system. Based on these results, we present a
Chern-Simons description of our non-Hermitian models and
briefly discuss currents associated with the non-Hermitian
anomalous Hall effect and non-Hermitian chiral magnetic
effect. We also evaluate the (1 + 1)-dimensional anomalies
using the diagrammatic method, for which we discuss some
subtleties arising from the non-Hermicity of the action. De-
tailed calculations can be found in the Supplemental Material
(SM) [45], which also includes an effective bosonic theory for
the (1 + 1)-dimensional non-Hermitian systems.

Non-Hermitian chiral anomaly from Fujikawa’s method.
Within Fujikawa’s method [41–44], the covariant form of the
chiral anomaly [10] is evaluated by the change of the mea-
sure of the path integral after applying both vector and chiral
transformations.

We apply Fujikawa’s method to the three different actions
presented in Fig. 1. These three systems, in the language of
the path integral, correspond to a non-Hermitian action and
its (anti)symmetrized form, generating the (anti-)Hermitian
action.

We consider a non-Hermitian, non-PT symmetric system
consisting of massless fermions, with complex Fermi ve-
locities, coupled to non-Hermitian gauge fields (V,W ) [46]
described by the non-Hermitian Euclidean-space action Snh

and the partition function Znh,

Znh ∝
∫

D�D�̄eSnh , (1)

Snh = i
∫

dd x[�̄γ μ(Dnh,μ�)], (2)

/Dnh = γ μDnh,μ = γ μMν
μ∂ν − iγ μMν

μ

(
Vν + γ 5Wν

)
, (3)

in units where c = h̄ = 1. The dimension d is even, and the
greek indices take values between 1 and d , where repeated
indices are summed over. The gamma matrices γ μ obey
{γ μ, γ ν} = 2gμν , where gμν = −δμν is the Euclidean metric,
and the fifth gamma-matrix is γ 5 = −∏

μ γ μ. The M is a
rank d diagonal matrix such that M = diag[v1, . . . , vd ] with

TABLE I. f , Ã, and F̃ for Hermitianized, Sh, anti-Hermitianized,
Sah, and non-Hermitian, Snh, systems. A stands for gauge fields V
and W . F̃ is presented for two and four dimensions. The matrix B
for non-Hermitian systems is introduced in Eq. (17).

Sh Sah Snh

f ν
μ Re

[
Mν

μ

]
Im

[
Mν

μ

]
Mν

μ

Ãμ Re
[
Mν

μAν

]
Im

[
Mν

μAν

]
Mν

μAν

F̃2 4π |Re[vf ]| 4π |Im[vf ]| 4π
√

det[B]
F̃4 32π 2| det[Re[M]]| 32π 2| det[Im[M]]| 32π 2

√
det[B]

vd = 1 and spatial elements vi �=d are complex-valued Fermi
velocities. Here, Dnh is the Dirac operator, and � = �†γ 0

denotes the Dirac adjoint with γ 0 = iγ 4.
In the SM [45], we propose a microscopic model based on

a nonreciprocal anisotropic heterostructure as a platform to
experimentally realize the introduced linear band system with
complex Fermi velocities.

To show the differences between non-Hermitian and
(anti-)Hermitian systems, we also explore the chiral
anomaly in the (anti-)Hermitianized form of Eq. (2).
By symmetrizing/antisymmetrizing Snh in Eq. (2), the
Hermitian/anti-Hermitian action Sh/ah yields

Sh/ah = i

2

∫
dd x[�̄γ μ(Dnh,μ�) ∓ (Dnh,μ�)γ μ�], (4)

= i
∫

dd x�̄γ μDh/ah,μ�, (5)

where (Dnh,μ�) = (Dnh,μ�)†γ 0. Here, Dh, Dah are the modi-
fied Dirac operators which are given by

Dh,μ = Re
[
Mν

μ

]
∂ν − iRe

[
Mν

μVν

] − iγ 5Re
[
Mν

μWν

]
, (6)

Dah,μ = iIm
[
Mν

μ

]
∂ν + Im

[
Mν

μVν

] + γ 5Im
[
Mν

μWν

]
. (7)

Note that our Hermitianized system with M ∈ R represents
the Lorentz preserving Hermitian model when M = 1d×d and
{V,W } ∈ R.

Our calculations are simplified by defining a unified repre-
sentation that incorporates all cases

Z̃ ∝
∫

D�D�̄eS̃ , with S̃ = i
∫

dd x�̄γ μD̃μ�, (8)

D̃μ = d̃μ − iṼμ − iγ 5W̃μ. (9)

Here, d̃μ = f ν
μ∂ν . The matrix f and the gauge field Ã ∈

{Ṽ ,W̃ }, with their associated elements given in Table I,
map our generic action S̃ into the Hermitianized, anti-
Hermitianized, or non-Hermitian actions.

Classically, S̃ , or equivalently, Sh, Sah, or Snh, carries a
local UA(1) × UV(1) symmetry, where UA(V)(1) is the chiral
(vector) U (1) symmetry; see the SM [45]. Quantum mechan-
ical fluctuations reduce this underlying classical symmetry in
all cases, as we will show in the following.

While the quantum action in Eq. (8) remains invariant
under a chiral transformation of the spinor,

�rot = e−iγ 5β�, (10)
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the rotated partition function acquires a phase given by the
Jacobian of its measure. Hence, we continue by calculating
the Jacobian of the rotated path-integral measure. For this
purpose, one may decompose the rotated spinors into the

eigenbasis of the non-Hermitian Dirac operator ( /̃D �= /̃D
†
),

which is biorthogonal with right and left eigenvectors. How-
ever, rather than working with the eigenbasis of /̃D, which
introduces unnecessary complications due to the biorthogonal
basis of a non-Hermitian /̃D, we employ an equally correct but
more straightforward approach which is using the eigenbases
of the Hermitian Laplacian operators /D /D† and /D† /D, given by

/̃D /̃D
†|ηn〉 = |λ|2n|ηn〉, /̃D

†
/̃D|ξn〉 = |λ|2n|ξn〉, (11)

/̃D
†|ηn〉 = λ∗

n|ξn〉, /̃D|ξn〉 = λn|ηn〉. (12)

Here, {λn} are complex eigenvalues and {|ξ 〉} and {|η〉} are
the corresponding eigenvectors (see the SM [45]). Using these
eigenbases and following the standard Fujikawa method al-
lows us to write

D�rotD�̄rot = J̃ 5[β]D�D�̄ = eS̃5[β]D�D�̄, (13)

S̃5[β] = i
∫

dd xβ(x)Ã5(x), (14)

where J̃ 5 is the path-integral Jacobian due to an infinitesimal
chiral transformation. The exponent of this Jacobian is regu-
larized by the heat-kernel regularization method [47,48] (see
details in the SM [45]). Up to the first order in the fields, Ã5

in d = 2 dimensions reads

Ã5 =−εμν

F̃2
[i(F̃μν[Ṽ †] − F̃ †

μν[Ṽ ])], (15)

and up to the second order in the fields, Ã5 in d = 4 dimen-
sions casts

Ã5 = εμνηζ

F̃4
[F̃μν[Ṽ †]F̃ηζ [Ṽ †] + F̃ †

μν[Ṽ ]F̃ †
ηζ [Ṽ ]

+ F̃ †
μν[W̃ ]F̃ †

ηζ [W̃ ] + F̃μν[W̃ †]F̃ηζ [W̃ †]]. (16)

Here, F̃μν[Ã] = d̃μÃν − d̃ν Ãμ, and F̃ †
μν[Ã] = d̃†

μÃν − d̃†
ν Ãμ

with d̃†
μ = − f ∗ν

μ ∂ν . The explicit form of F̃d+1 for all cases is
presented in Table I, where it is formulated in terms of the
determinant of a matrix B, with matrix elements:

Bαβ = δμν f ∗α
μ f β

ν − 1

2
[γ μ, γ ν]

f ∗α
μ f β

ν − f α
μ f ∗β

ν

2
. (17)

For real gauge fields V and W , and for M = 1d×d , Ã5 repro-
duces the Lorentz invariant Hermitian results [12,45,49].

We evaluate the change of the path-integral measure under
a local vector transformation using the same method as for the
chiral rotations,

�rot = e−iκ (x)�, (18)

where κ is the rotation angle. For an infinitesimal κ ,

D�rotD�̄rot = eS̃[κ]D�D�̄ = ei
∫

dd xκ (x)ÃD�D�̄. (19)

Up to the first order in the fields, Ã in d = 2 dimensions is

Ã =−εμν

F̃2
[i(F̃ †

μν[W̃ ] − F̃μν[W̃ †])], (20)

and up to the second order in the fields, Ã in d = 4 dimensions
casts [50]

Ã = −εμνηζ

F̃4
[F̃μν[Ṽ †]F̃ηζ [W̃ †] + F̃ †

μν[Ṽ ]F̃ †
ηζ [W̃ ]], (21)

In the limit where W = 0, V ∈ R, and M = 1d×d , Ã reduces
to the well-known Lorentz preserving Hermitian result A = 0
[12,41].

The rotated action in Eq. (8) is modified under the chiral
and vector transformations in Eqs. (10) and (18), such that

S̃rot − S̃ = −
∫

d2x[β(x)d̃μ j5,μ − κ (x)d̃μ jμ], (22)

where the chiral and vector currents are j5,μ = �̄γ μγ 5� and
jμ = �̄γ μ�, respectively. To enforce the invariance of Z̃
under the chiral and vector rotations, we differentiate the par-
tition function with respect to β and κ and obtain the anomaly
equations Ã5 = id̃μ j5,μ and Ã = −id̃μ jμ.

After analytical continuation τ → it , we obtain the diver-
gence of currents in the Minkowski space. Using the elements
of M and V , we rewrite the divergence of chiral currents as

d̃μ j5,μ ∝ v1Ẽ†
1 + v∗

1 Ẽ1 in d = 2, (23)

d̃μ j5,μ ∝ v1v2v3(Ẽ† · B̃† + Ẽ5† · B̃5†)

+v∗
1v

∗
2v

∗
3 (Ẽ · B̃ + Ẽ5 · B̃5) in d = 4. (24)

Here, the complex electric fields read Ẽ j = (exp[2iφ j]∂tVj −
∂ jV0) and Ẽ5

j = (exp[2iφ j]∂tWj − ∂ jW0), where exp[iφ j] =
v j/|v j | with i, j, k �= t being a spatial index. Similarly,
the complex magnetic field casts B̃i = εi jk B̃ jk and B̃5,i =
εi jk B̃5

jk with B̃ jk = exp[2iφk]∂ jVk − exp[2iφ j]∂kVj and B̃5
jk =

exp[2iφk]∂ jWk − exp[2iφ j]∂kWj . It is notable that d̃μ j5,μ in
Eqs. (23) and (24) obey the common form of the chiral
anomaly reported in Hermitian systems in the absence [44]
or presence [51] of interactions.

The non-Hermitian anomaly [d̃μ j5,μ]nh is different from
the naive summation of [d̃μ j5,μ]h + [d̃μ j5,μ]ah. One can see
this difference by noticing, for example, that the prefactor F̃2

in (15) [or F̃4 in Eq. (B73)] is different for all three cases. This
is the main result of this Letter (see Fig. 1).

A Chern-Simons description of non-Hermitian Weyl
semimetals. To explore some physical consequences of non-
Hermitian anomalies, we explore a situation in which the
chiral gauge field W is absent. In this case, the anomaly-
induced action, given in Eq. (14), in real-time representation
casts a Chern-Simons action as

S̃5[β] =
∫

dtd3x
4εμνηζ

F̃4
d̃μβ(x)Ṽ †

ν d̃ηṼ †
ζ

+
∫

dtd3x
4εμνηζ

F̃4
d̃†

μβ(x)Ṽν d̃†
ηṼζ , (25)

where we have performed an integration by parts and dropped
a total derivative term. We then obtain the associated current
as a sum of the functional derivatives of S̃5[β] with respect to
both V and V †, which results in

Mα
ν jν =8εμνηζ ∂δβ

F̃4
Re

[
Mα∗

ν Mδ
μMρ

ζ Ẽ†
ρ

]
, μ = 1, 2, 3, (26)
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Mα
ν jν =8ε0νηζ ∂tβ

F̃4
Re

[
Mα∗

ν M ι
ηMρ

ζ B̃†
ιρ

]
, (27)

where the complex electric (Ẽ ) and magnetic fields (B̃) are
defined below Eq. (24). In the limit where V ∈ R and M =
14×4, Eq. (26) represents the Hermitian anomalous Hall effect
and Eq. (27) coincides with the Hermitian chiral magnetic
effect [52]. ∂0β and ∂δβ can be associated to the energy and
spatial separation of Weyl nodes, respectively, which for a
non-Hermitian Weyl semimetal can be complex valued. As
a result, one can view the complex currents in Eqs. (26) and
(27) as a representation of the non-Hermitian anomalous Hall
effect and non-Hermitian chiral magnetic effect.

Assigning j as the polarization current as j = ∂t P where P
denotes the electric polarization, Eq. (27) simplifies to

Mα
ν Pν =8ε0νηζ β

F4
Re

[
Mα∗

ν M ι
ηMρ

ζ B̃†
ιρ

]
. (28)

When β = π , which can occur in time-reversal-invariant
topological insulators [53], the quantized magnetoelectric
effect of Hermitian systems, written as P = e2B/4π , is mod-
ified to

Mα
ν Pν = ε0νηζ

4π
√

det[B]
Re

[
Mα∗

ν M ι
ηMρ

ζ B̃†
ιρ

]
, (29)

in non-Hermitian systems. Such a modified magnetoelec-
tric polarization will modify the electromagnetic responses
of non-Hermitian topological insulators, including image
monopole charges [54] or the Casimir effect [55]. In the SM,
we study the Witten effect as an example. The polarization in
Eq. (29) will change the induced electric charge created by a
magnetic monopole from e/2 of the Hermitian system [56], to
an arbitrary value (see SM) that depends on the phase of the
complex Fermi velocity.

One-loop diagrammatic calculation of the (1 + 1)-
dimensional anomaly. We also derive the chiral anomaly for
the (anti)-Hermitianized, and non-Hermitian actions in 1 +
1 dimensions using the diagrammatic method (see the SM
[45]). Within this approach, we integrate out the fermionic
degrees of freedom from the underlying partition function,
which results in an effective action for the gauge fields.
The functional integration of an Hermitian action, with a
Lagrangian density L = �†(iγ 0 /D )�, requires an orthogo-
nal eigenbasis of the self-adjoint operator (iγ 0 /D ) to yield
the effective action �[V,W ] = −i ln[det(iγ 0 /D )]. By using
the product rules of determinants and logarithms, and omit-
ting any constant vacuum contributions, �[V,W ] is rewritten
as �[V,W ] = −i ln[det(i /D )]. When the operator (iγ 0 /D ) is
not self-adjoint, one should instead use the corresponding
biorthogonal eigenbasis to evaluate the functional integral.
To take advantage of the well-developed Hermitian field
theory and to avoid the complexities of finding functional
determinants from a biorthogonal basis, we construct the self-

adjoint operator /D /D†
L, where /D†

L ≡ γ μD†
μ. Formally, this is

done by considering the sum of the effective actions with
respect to the operators iγ 0 /D and iγ 0 /D†

L and using properties
of the determinant and the logarithm to obtain �[V,W ] =
− i

2 ln[det( /D /D†
L)] (see SM [45]). For the various actions given

in Eqs. (2) and (5), we expand this effective action up to
the second order in the gauge fields. These calculations give
rise to divergent momentum integrals which are treated with
gauge-invariant regularization methods [57].

The vector (chiral) currents are defined as the sum of the
functional derivatives of the effective action with respect to V
and V † (W and W †), from which the expressions for diver-
gence of the vector and chiral currents (terms first order in the
gauge fields), e.g., in Eq. (23), follow.

Summary. We have found non-Hermitian anomalies in
massless Dirac fermions with complex velocities coupled
to non-Hermitian gauge fields. We have presented a uni-
fied non-Hermitian formulation to bring the Hermitianized,
anti-Hermitianized, and non-Hermitian cases under one um-
brella. Our results show that non-Hermiticity allows different
anomalous terms in the conservation laws for the chiral cur-
rent in both in two and four dimensions. Interestingly, these
anomalous terms could not be inferred by simply adding the
Hermitianized and anti-Hermitianized results, as would be
expected classically (see Fig. 1). In this sense, these anomalies
are different and richer than those that occur in Hermitian
systems. We further demonstrate this point by presenting the
non-Hermitian anomalous Hall effect and non-Hermitian chi-
ral magnetic effect.

Finally, we note that paritylike anomalies may exist in
non-Hermitian systems. Exploring them might give a different
interpretation to the nonuniversality of the Hall response in
non-Hermitian Chern insulators [58].
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to εμν , in Ã5 and Ã, further nontopological terms, with-
out εμν , can also be generated within Fujikawa’s method
(see SM [45]). It has been pointed out that systems will
be anomalous if quantum fluctuations generate topological

corrections, irrespective of zero or nonzero nontopological
terms [44,59].

[51] C. Rylands, A. Parhizkar, A. A. Burkov, and V. Galitski, Chiral
Anomaly in Interacting Condensed Matter Systems, Phys. Rev.
Lett. 126, 185303 (2021).

[52] A. A. Zyuzin, S. Wu, and A. A. Burkov, Weyl semimetal with
broken time reversal and inversion symmetries, Phys. Rev. B
85, 165110 (2012).

[53] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field
theory of time-reversal invariant insulators, Phys. Rev. B 78,
195424 (2008).

[54] X.-L. Qi, R. Li, J. Zang, and S.-C. Zhang, Inducing a magnetic
monopole with topological surface states, Science 323, 1184
(2009).

[55] A. G. Grushin and A. Cortijo, Tunable Casimir Repulsion with
Three-Dimensional Topological Insulators, Phys. Rev. Lett.
106, 020403 (2011).

[56] G. Rosenberg and M. Franz, Witten effect in a crystalline topo-
logical insulator, Phys. Rev. B 82, 035105 (2010).

[57] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum
Field Theory (CRC Press, Boca Raton, FL, 1995).

[58] M. R. Hirsbrunner, T. M. Philip, and M. J. Gilbert, Topology
and observables of the non-Hermitian Chern insulator, Phys.
Rev. B 100, 081104(R) (2019).

[59] A. Bilal, Lectures on anomalies, arXiv:0802.0634.

L042004-6

https://doi.org/10.1103/PhysRevD.23.2262
http://link.aps.org/supplemental/10.1103/PhysRevResearch.4.L042004
https://doi.org/10.1103/PhysRevD.38.3338
https://doi.org/10.1103/PhysRevLett.126.185303
https://doi.org/10.1103/PhysRevB.85.165110
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1126/science.1167747
https://doi.org/10.1103/PhysRevLett.106.020403
https://doi.org/10.1103/PhysRevB.82.035105
https://doi.org/10.1103/PhysRevB.100.081104
http://arxiv.org/abs/arXiv:0802.0634

