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Drag-induced dynamical formation of dark solitons in Bose mixture on a ring
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Andreev-Bashkin drag plays a very important role in multiple areas such as superfluid mixtures, super-
conductors, and dense nuclear matter. Here we point out that the drag phenomenon can be also important
in the physics of solitons, ubiquitous objects arising in a wide array of fields ranging from tsunami waves
and fiber-optic communication to biological systems. So far, fruitful studies have been conducted in ultracold
atomic systems where nontrivial soliton dynamics occurred due to intercomponent density-density interaction.
In this work we show that current-current coupling between components (Andreev-Bashkin drag) can lead to a
substantially different kind of effect, unsupported by density-density interactions, such as a drag-induced dark
soliton generation. This also points out that soliton dynamics can be used as a tool to experimentally study the
dissipationless drag effect.
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Solitons are ubiquitous objects appearing in various physi-
cal systems, including nonlinear optics, fluid dynamics [1–9],
and ultracold atomic systems [10,11]. Ultracold bosons form
Bose-Einstein condensate effectively described by the Gross-
Pitaevskii equation (GPE) [10–12]. The nonlinearity present
in the GPE can balance dispersive effects, supporting nonuni-
form solutions (solitons) preserving shape in time. This,
together with great progress in cold-atom experimental tech-
niques, makes ultracold bosonic systems an excellent platform
for studies on matter-wave solitons [13–27]. Solitons also
occur in fermionic ultracold atomic systems [28–32].

A conventional superfluid is described by a complex
field ψ = √

neiϕ . The phase gradient can be identified with
the superfluid velocity v = h̄

m ∇ϕ, where m is the particle
mass [10–12,33]. Andreev and Bashkin demonstrated that
in a two-component interacting superfluid mixture the rela-
tion between superfluid velocities and superflows becomes
very nontrivial due to existence of a dissipationless drag
transport effect [34]. Indeed, the corresponding free-energy
density takes the form f = ∑

α ραv2
α/2 + ρd va · vb, where ρα

(vα) represents a superfluid density (superfluid velocity) of
component α ∈ {a, b} and ρd is the Andreev-Bashkin (AB)
drag coefficient [34]. Consequently, the superflows, i.e., jα =
∂vα

f = ραvα + ρd vβ �=α , reveal that the component possessing
no superfluid velocity, e.g., va = 0, will still exhibit a nonzero
superflow, ja �= 0, as long as vb �= 0.

The AB effect strongly affects vortex lattices in superflu-
ids [35,36] and can change the nature of topological solitons in
superconductors [37]. It is also crucial for the understanding
of properties of dense nuclear matter [38,39] and observed
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pulsar dynamics [40–42]. At the microscopic level the drag
effect originates from intercomponent particle-particle in-
teraction [34,43–47]. Especially interesting is the case of
strongly correlated superfluids whose parameters are pre-
cisely controllable in optical lattices [48,49]. There the AB
drag originates from the interplay between intercomponent
particle-particle interaction and lattice effects and can be, in
relative terms, arbitrarily strong and ρd can be also nega-
tive [43–47,50–59]. Interestingly, AB drag signatures have
been found in quantum droplets collisions [60]. The drag
effect can have various forms. Recently, it was demonstrated
that in certain asymmetrical lattices there exists also a perpen-
dicular entrainment referred to as vector drag [61].

In binary systems very interesting solitonic effects are
driven by intercomponent density-density interaction [62–80].
In this paper we study the consequences of the AB effect
(current-current interaction) on the solitonic dynamics. We
consider a one-dimensional (1D) binary bosonic superfluid
mixture modeled by the energy functional E = N

∫
(ε0 +

εd )dx, with ε0 = ∑
α (−h̄2ψ∗

α∂2
x ψα/2m + gαN |ψα|4/2) and

εd = gd N
∑

α J2
α/2 + gd NJaJb = gd N (Ja + Jb)2/2. Here ψα

is the condensate field of component α ∈ {a, b} normalized
to unity |〈ψα|ψα〉|2 = 1. The particles, whose numbers are
equal and conserved in both components, Nα = N , possess
equal masses mα = m and are confined in a ring of circumfer-
ence L, i.e., we assume periodic boundary conditions (PBC)
ψα (x + L, t ) = ψα (x, t ). The condensates are subjected to an
intracomponent contact interaction of strength governed by
gα0 and the AB intercomponent drag incorporated by scalar
product of Jα = h̄ψ∗

α∂xψα/2mi + c.c. with strength given by
gd > 0. The contributions proportional to J2

α in εd are required
for E to be bounded from below. Such a phenomenological
effective model of the AB drag has been studied previously in
other contexts [37,81].

Our goal is to investigate the effects of current-current
interaction. Hence, in this work we specifically set the
well-studied intercomponent density-density interaction to
zero. However, the effect of the latter is discussed in
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FIG. 1. Illustration of well-localized solitons confined in a ring
of circumference L = 1: (a) lowest-energy bright soliton density and
(b) densities of two types of dark solitons, black (solid line) and gray
(dashed line). The corresponding phase distributions are depicted in
the respective insets. While the stationary bright soliton in (a) has
a uniform phase, a dark soliton notch is always accompanied by a
phase slip that can be either facing down or facing up. The upper and
lower insets of (b) show phase distributions characterized by W = 1
and 0, respectively.

the Supplemental Material [82]. The corresponding system
of dimensionless time-dependent Gross-Pitaevskii-like equa-
tions reads (α ∈ {a, b} and γ �= α)

i∂tψα = −∂2
x ψα

2
+ gα|ψα|2ψα + gdJαα + gdJαγ , (1)

where the length scales are measured in units of the ring
circumference L, time in units of mL2

h̄ , and energy in units

of h̄2

mL2 . Here we also rescaled gα → mL
h̄2 gαN, gd → N

mL gd , and
defined Jαβ = [2(∂xψα )Jβ + ψα (∂xJβ )]/2i with the redefined
dimensionless Jα = ψ∗

α∂xψα/2i + c.c.. In the absence of drag,
i.e., for gd = 0, Eq. (1) becomes independent and supports
both bright and dark soliton solutions that for PBC can be
expressed analytically in terms of Jacobi functions [83–87].
A stationary bright soliton in ring geometry (PBC) forms
spontaneously in the ground state when gα < gc = −π2. On
the other hand, dark solitons are collective excitations char-
acterized by density notches accompanied by phase slips in
phase distribution ϕ and appear for any gα > 0 [87,88]. For
finite rings, i.e., L < ∞, a single dark soliton always prop-
agates with some finite velocity because the phase cyclicity
condition ϕ(L) − ϕ(0) = 2πW , where the winding number
W ∈ Z, requires a nonzero phase gradient to be satisfied in
the presence of a solitonic phase slip. In the limiting case of
a totally dark, i.e., black, soliton the corresponding density
vanishes in the dip where the phase reveals a single-point
discontinuity by π . Therefore, to satisfy PBC the phase ϕ has
to accumulate at least as ±iπx/L. Solitons with a shallower
density notch accompanied by a smooth ϕ(x) are often called
gray solitons. Note that two gray solitons revealing identical
densities may possess phase distributions characterized by
different W and in consequence different average momenta
〈p〉 = −ih̄

∫
dx ψ∗∂xψ . In Fig. 1 we show typical density and

phase distributions of the lowest-energy bright soliton and two
types of dark solitons: black and gray.

From the many-body perspective, dark solitons are di-
rectly connected with a specific class of the so-called yrast
states [89–106], i.e., lowest-energy states for a given to-
tal momentum. Similar many-body excitations correspond to
dark solitons also in the presence of open boundary condi-
tions [107] (for an overview see [87]). Here we study whether

current-current drag interactions can lead to yrast excitations,
inducing the formation of dark solitons.

Let us assume that in our system one of the components,
say, the b component, exhibits Jb �= 0 while Ja = 0. If the
spatial translation symmetry is broken and Jαγ �= 0, then a
dynamic drag-related current generation and a momentum
transfer between the components can be expected. To study
this problem, we consider the case in which component a is
initially prepared in the uniform ground state ψa0 for repulsive
interaction ga > 0. At the same time the b component is pre-
pared in the ground state ψb0, but for attractive interactions
characterized by gb < gc that is associated with a stationary
bright soliton. In such a case 〈pa〉 = 〈pb〉 = 0, Ja = Jb = 0,
and the drag interactions have no impact on these states. To
have Jb,Jαγ �= 0 we additionally set the bright soliton in
motion such that initially 〈pb〉, Jb �= 0.

Basing on the relationship between yrast states and dark
solitons in a single-component repulsive Bose gas with PBC,
one can ask if the drag-related momentum transfer from com-
ponent b to a can induce a dark soliton formation in the latter
component. We argue that preparing component b in a well-
localized bright soliton state may reduce excitations of kinds
other than the collective solitonic ones. That is, the bright
soliton would slow down its propagation when transferring the
momentum from b to a, while preserving an approximately
unchanged shape due to strong intracomponent attraction. In
such a case, there is a chance that most of the energy gained
by component a would correspond to the collective motion
characterized by the transferred momentum. Thus, excluding
the drag interaction energy, the resulting excited state in com-
ponent a would have energy close to the one possessed by the
yrast state with 〈pa〉. If so, then one may expect an emergence
of dark soliton signatures (density notch and phase slip) in the
a component.

Given that the above-mentioned scenario takes place, the
induced dark soliton is expected to be different depending on
the amount of momentum injected into component a: The
latter is likely to change over time. One may ask whether
or not it is possible for a specific dark soliton to form in
component a that would coexist with the bright soliton in
the other component for timescales longer than the period of
a single revolution of the anticipated dark soliton along the
ring. We suppose that this can happen when both the target
dark soliton and the bright soliton propagate with comparable
velocities.

The well-localized (narrow in comparison to L) bright
soliton can be approximately described by the famous
sech-shaped soliton wave function [11] which reveals its par-
ticlelike behavior. Note that 〈p〉 = h̄

∫
dx|ψ |2∂xϕ and ϕ(x) =

ϕ(0) + mvx/h̄ + S (x), where S (x) encodes other phase fea-
tures like phase slips. For well-localized bright solitons ∂xS ≈
0 in the vicinity of the soliton clump and thus such states prop-
agate with the velocity v ≈ 〈p〉/m. Generally,

∫
dx|ψ |2∂xS

is non-negligible for dark solitons, making the relationship
between v and 〈p〉 more complicated. The special case is a
black soliton, for which ∂xS �= 0 only at the soliton dip where
|ψbs|2 = 0. Thus, for the black soliton vbs = 〈pbs〉/m, where
〈pbs〉/h̄ = π/L + 2πn/L, with n ∈ Z.

Let us operate with the dimensionless units and restrict
our considerations to states ψα possessing 0 � 〈pα〉 � 2π
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FIG. 2. Time evolution of (a) and (b) the overlap |〈ψa|ψbs〉|2 and
(c) and (d) the momentum difference (〈pb〉 − 〈pa〉)/π obtained for
gd = 0.1, with (a) and (c) gb = −20 and (b) and (d) gb = −30 char-
acterizing the bright soliton state. The regions where |〈ψa|ψbs〉|2 >

0.9 coincide with small values of |〈pb〉 − 〈pa〉| indicating that a
(nearly) black soliton forms when approximately half of 〈pb〉|t=0 =
2π is transferred to component a.

measured in h̄/L units. We are going to analyze the possibility
of a drag-induced formation of the most distinct of dark soli-
tons, namely, the black soliton. We suppose that a long-living
coexistence of black and bright solitons may be possible when
both objects propagate with comparable velocities. Therefore,
at t = 0, we set the initial ground-state bright soliton (b com-
ponent) in motion with 〈pb〉 = 2〈pbs〉 = 2π . This is done by
multiplying ψb0(x) by ei2πx, i.e., ψb(x, t = 0) = ψb0(x)ei2πx.
Since 〈pb〉 + 〈pa〉 = 2π is a conserved quantity in our system,
we expect that if the momentum is transferred from com-
ponent b to a, the above-mentioned coexistence my appear
when 〈pb〉 − 〈pa〉 ≈ 0. In such a case 〈pb〉 ≈ 〈pa〉 ≈ π and
the corresponding solitons should propagate with comparable
velocities.

We prepare the initial bright soliton state ψb0(x) by means
of an imaginary time evolution of (1) with α = b, gd = 0, and
four different gb = −20,−25,−30,−35 separately. These
values of gb are all substantially below the critical value
gc = −π2, which guarantees that the resulting bright soliton
density is well localized. This state is then set in motion with
〈pb〉|t=0 = 2π by incorporating a phase factor as previously
described. Component a is prepared in a similar way but
with ga ∈ {20, 25, . . . , 90} resulting in the lowest-energy state
ψa0 = ψa(x, t = 0) = 1 (up to a global phase). After the state
preparation we switch on the AB drag by setting gd = 0.1
while keeping ga and gb fixed. We then numerically evolve
Eq. (1) in real time up to t = 10, a time more than 30 times
longer than the characteristic period of the black soliton revo-
lution around the ring T = 1/π ≈ 0.32.

Our results indicate that the bright soliton in the b
component survives the evolution for all the parameters con-
sidered. For each of gb = −20,−25,−30,−35 we find a
region in the ga parameter where clear dark soliton signa-
tures (density notch and phase slip) emerge in ψa(x, t ) (see
Ref. [82] for snapshots of typical system dynamics). Figure 2
shows the temporal behavior of the overlap |〈ψa|ψbs〉|2 and

the momentum difference (〈pb〉 − 〈pa〉)/π for different ga

and gb = −20,−30. The overlaps |〈ψa|ψbs〉|2 are calculated
with the analytical black soliton solution ψbs characterized
by the corresponding ga and located at a position of the
phase slip recognized in ψa(x, t ). By choosing a specific
color code in the overlap plots we discriminate the regions
where |〈ψa|ψbs〉|2 > 0.9 (red intensity) from those where
|〈ψa|ψbs〉|2 < 0.9 (gray intensity). Note that overlaps above
0.9 appear when the momenta 〈pb〉 and 〈pa〉 are similar and
are maintained for timescales significantly longer than T . We
observe that the critical ga above which a dark soliton appears
depends on the value of gb. That is, for stronger attraction, i.e.,
a narrower bright soliton in the b component, the regime of the
(nearly) black soliton formation shifts to larger ga correspond-
ing to the narrower dark solitons. In Ref. [83] we also analyze
how drag-induced states ψa would evolve if drag is quenched
to zero (drag-free dynamics) at a time when |〈ψa|ψbs〉|2 ≈ 1.
It turns out that such generated states reveal a genuine dark
soliton drag-free evolution.

To better understand the system dynamics, in Fig. 3 we
study more closely cases with gb = −30 and ga = 65, 70, 75.
As before, we analyze the time dependence of the overlap
|〈ψa|ψbs〉|2 and momentum 〈pa〉/π . Additionally, we monitor
the minimum Euclidean distance � along the ring between
the bright soliton and the drag-induced dark soliton, the min-
imum reached by an anticipated density notch min[|ψa(t )|2],
and the ratio of the bright soliton height to its initial value
max[|ψb(t )|2]/max[|ψb(0)|2]. In all the cases an initial mo-
mentum transfer leads to the formation of a (nearly) black
soliton. Indeed, the overlap |〈ψa|ψbs〉|2 increases together
with 〈pa〉, and the density notch is simultaneously being
carved as indicated by the decreasing value of min[|ψa(t )|2].
At the same time the distance � reveals an increasing sep-
aration between solitons in the two components reaching a
maximum � ≈ 0.5 at a time in the middle of the plateau of
|〈ψa|ψbs〉|2 ≈ 1. The seemingly linear trend in � for � �
0.1 reveals a constant relative motion between the spatially
separated solitons |vb − va| ≈ 1 three times slower than the
single-component black soliton velocity vbs = π . This behav-
ior of � repeats multiple times during the evolution.

Due to different velocities and assumed ring system geom-
etry, the solitons collide multiple times during the course of
evolution. It turns out that the induced (nearly) black soliton
state often is substantially disturbed or even completely de-
stroyed when both solitons meet, i.e., when � → 0, which
results in an abrupt drop of the overlap value |〈ψa|ψbs〉|2.
The dark soliton relocalizes again when � increases. Such
a mechanism is the origin of quasiperiodic patterns visible
in Figs. 2 and 3. However, as indicated by the behavior of
max[|ψb(t )|2]/max[|ψb(0)|2], the bright soliton remains al-
most unaffected when passing through the dark one. On the
other hand, as shown in Fig. 3(b) for t > 7 and Fig. 3(c)
for t > 3, the drag-induced dark soliton can also survive an
encounter with the bright soliton. Additionally, in Fig. 3(c)
for t ∈ (6.3, 7) and t ∈ (8, 9), one can observe signatures of
the existence of long-living dark-bright soliton composites
characterized by � ≈ 0. (For more intuition, see snapshots of
the system evolution in Ref. [82].)

In summary, we have studied the dynamics of a bosonic
binary mixture confined in a 1D ring geometry with
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FIG. 3. Each set of plots shows, from top to bottom, the dy-
namics of the overlap |〈ψa|ψbs〉|2, the relative distance � along the
ring between the bright soliton (b component) and the phase slip
position in ψa(x, t ), the average momentum 〈pa〉/π , and the val-
ues min[|ψa(t )|2] and max[|ψb(t )|2]/max[|ψb(0)|2], for gb = −30
and (a) ga = 65, (b) ga = 70, and (c) ga = 75. The drag-induced
dark (nearly black) soliton often is significantly disturbed, or even
completely destroyed, when passing through the bright soliton, i.e.,
when � → 0. In such a case the phase slip in ψa(x, t ) is rather
tiny or even unrelated to any soliton structure. This is the origin
of the narrow spikes observed in the � plots when � → 0 and
min[|ψa(t )|2] ≈ 1. Nevertheless, as shown in (b) for t > 7 and in
(c) for t > 3, the (nearly) black soliton can survive the encounter
with the bright soliton.

intracomponent contact interactions and intercomponent
Andreev-Bashkin drag. Based on the relationship between
dark solitons and yrast states characterized by the lowest
energy for a given momentum, we formulated and verified the
hypothesis concerning a drag-induced dark soliton formation
process. By numerically computing the system dynamics we
tested the scenario where a propagating bright soliton interacts
with the other component, prepared in the repulsively inter-
acting uniform ground state. We demonstrated that there exist
parameter regimes for which the drag interaction leads to the
formation of a long-living genuine, nearly black, soliton state
in the initially uniform component. While we focused on the
most distinct black soliton case, the general idea provided here
should also allow for generation of gray solitons. Our goal
here was to study the effects of current-current interaction
on soliton dynamics. An interesting question that warrants
further studies is how these effects combine with intercom-
ponent density-density interactions. This question is beyond
the scope of this paper, but in [82] we show that the drag phe-
nomenon is crucial for the dynamical formation of long-living
dark solitons, while density-density intercomponent coupling
does not support this effect in the setup considered. Addi-
tionally, we showed that the effect at least survives inclusion
of not too strong density-density interactions. The discussed
phenomenon could guide experiments for a detection of the
AB drag effect in binary superfluids. This presents the pos-
sibility of studying the drag effect directly in a laboratory,
shedding light on the drag effect in other systems ranging from
multicomponent superconductors to superfluids in neutron
stars.

In conclusion, soliton physics in binary systems was pre-
viously restricted to the role of density-density interaction. In
this paper we report that a different kind of soliton dynam-
ics arises in binary system due to current-current coupling.
The results indicate that the mixed gradient coupling plays
an important role in soliton physics in multicomponent sys-
tems, which warrants further investigation. We expect that
competition between the drag effect and density-density in-
tercomponent interactions will lead to even richer dynamics
of multicomponent systems.
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