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Asymmetry of velocity increments in turbulence
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We use well-resolved direct numerical simulations of high-Reynolds-number turbulence to study a funda-
mental statistical property of turbulence—the asymmetry of velocity increments—with likely implications on
important dynamics. This property, ignored by existing small-scale phenomenological models, manifests most
prominently in the nonmonotonic trend of velocity increment moments (or structure functions) with the moment
order, and in differences between ordinary and absolute structure functions for a given separation distance. We
show that high-order structure functions arise nearly entirely from the negative side of the probability density of
velocity increments, essentially removing the ambiguity between ordinary and absolute moments, and provide a
plausible dynamical interpretation of this result.
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Velocity fluctuations in three-dimensional homogeneous
and isotropic turbulence have a symmetric distribution but
it is known since Kolmogorov’s seminal paper [1] that the
longitudinal velocity differences are asymmetric. This char-
acteristic imposes a structure on turbulence, which is often
interpreted as an important indicator of vortex stretching
and a forward cascade of energy. But what are its addi-
tional consequences? This paper addresses the question and
its fundamental significance. We answer it particularly in the
context of structure functions, which are moments of velocity
increments over a chosen separation distance. We use very
large and well-resolved direct numerical simulations of high-
Reynolds-number turbulence for the purpose.

a. Background. Structure functions of turbulence, as orig-
inally introduced by Kolmogorov [2], are ordinary moments
of velocity increments δru (u being a velocity component)
over two space points chosen with the separation distance r.
Numerous other authors since then (some will be mentioned
below) have considered only absolute moments, while im-
plying that they have the same scaling properties as ordinary
moments. That is, if

〈(δru)n〉 = C1(r/L)ζn , 〈|δru|n〉 = C2(r/L)ξn , (1)

where C1 and C2 are r-independent prefactors, and L is a
normalizing scale (see section on Data) the presumption has
been that ζn = ξn for n � 0.
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Thus, most phenomenological models [3–10] consider
only absolute moments. An influential example is the so-
called extended self-similarity [11], which plots structure
functions of an arbitrary order against the absolute third mo-
ment, with the assumption that the latter will scale as the
ordinary third order structure function—which varies linearly
with inertial separation [1]. This assumption is only roughly
true [12–14]. The difference for the so-called longitudinal
structure functions (i.e., the velocity u in the direction of the
separation distance r) arises because the probability density
function (PDF) of δru is not symmetric for inertial range
separation (also in the dissipative range [15]), and one does
not know a priori whether absolute moments, which arise
from sums of positive and negative sides of the PDF of δru,
would scale the same way as ordinary moments, which are
differences between those contributions.

b. Data. In this paper, we use direct numerical simulations
(DNS) of incompressible Navier-Stokes equations in a peri-
odic cube of length L0 = 2π using N3 collocation points. The
simulations are forced to a statistically steady state, which was
attained by forcing the low wavenumber magnitudes k � 3
using the scheme described in Ref. [16]. At least ten snap-
shots of the DNS saved in the statistically steady state, over
more than eight eddy-turn over times L/u′, where L ≈ 0.2L0

is the integral scale and u′ is the root-mean-square velocity
fluctuation, were used for the analysis. The Reynolds number
Rλ = u′λ/ν is given in terms of the Taylor-microscale λ [17]
and the kinematic viscosity ν. Averages were performed over
space, time, and the solid angle, as in [18]. More details on the
DNS data, including temporal and spatial resolution checks,
as well as convergence of statistical averages, can be found
in Ref. [18]. We show results mainly from the 40963 DNS
at Rλ = 650 with small-scale resolution �/η ≈ 1.1 where �

is the uniform grid-spacing and η = (ν3/ε)1/4 is the Kol-
mogorov length scale, ε being the average dissipation rate.
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Our conclusions hold for the 81923 data as well (but the
latter are more sparsely processed because of computing time
requirements). Despite these and other confidence-building
checks, the precise numerical values of very high-order quan-
tities may have uncertainties, which we cannot completely
quantify, but our qualitative conclusions have withstood re-
peated scrutiny.

c. Asymmetry of structure functions. To study the asym-
metry of δru we can decompose it into positive and negative
parts [19] as

δru+ = 1
2 [|δru| + δru] ; δru− = 1

2 [|δru| − δru]. (2)

Both δru+ and δru− are non-negative, represent the magni-
tudes of the positive and negative parts of δru, respectively,
and follow the relation

〈(δru)n〉 = 〈(δru+)n〉 + (−1)n〈(δru−)n〉 (3)

for n � 1. It has been shown elsewhere [20] that the positive
and negative increment contributions also display robust iner-
tial range power laws, with exponents ζ±

n and the respective
power-law prefactors C3 and C4, as

〈(δru+)n〉 = C3(r/L)ζ
+
n , 〈(δru−)n〉 = C4(r/L)ζ

−
n . (4)

Since δru+, δru−, and |δru| are all non-negative, application
of Hölder inequality for high Rλ or r/L � 1 shows that the
corresponding scaling exponents ζ±

n and ξn are concave func-
tions of the moment order n [21]. However, concavity cannot
be demanded for the longitudinal exponents ζn with respect to
n, since the sign of the longitudinal moments 〈(δru)n〉 depends
on whether n is even or odd.

The imbalance between the δru+ and δru− contributions to
the moments 〈(δru)n〉 is illustrated in Fig. 1. The left panels
show the integrands for three odd moments, n = 3, 7, and
11, for the quantity δru/(rε)1/3, corresponding to r/η = 125
(which lies within the inertial range) at Rλ = 650. The fig-
ures show the increasing dominance of the contribution of
δru− over the that of δru+, as the moment order increases.
(The situation is the same for even moments as well, but there
are no cancellations between negative and positive parts.)
In fact, panel (d) shows how ratio of the magnitude of the
negative part of the PDF to its positive part increases mono-
tonically with the order of the moment. It is not certain if
this ratio increases without bound or saturates for moments
beyond a certain order because of resolution and sampling un-
certainties at large orders, but the increasing irrelevance of the
positive part of the PDF with increasing n is incontrovertible.

d. Intermittency in energy transfer rates. Another comment
relates to the intermittent nature of energy transfer, shown in
Fig. 1(e); the net energy transfer across scales is not a simple
unidirectional process but a small difference (notice the scale
on the ordinate) between two large and unbalanced backward
and forward transfer processes; see [22,23].

The right panels of Fig. 1 show the one-dimensional cuts of
the third, seventh, and the eleventh power of δru/(rε)1/3. For
large n, it appears clear that the contributions to the moments
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FIG. 1. Integrands of odd-order moments of the nondimensional
longitudinal increment V = δru/(rε)1/3 for orders 3, 7, and 11 are
shown in panels (a), (b), and (c), respectively, for inertial range
separation r/η = 125 from 40963 DNS at Rλ = 650 in a cube of
edge-length L0. The average energy dissipation rate ε equals the
interscale energy transfer rate. Panel (d) is the ratio of contributions
from the negative and positive parts of the PDF of δru, with in-
creasing moment order. Panels (e), (f), and (g) are instantaneous line
traces along the x direction, contributing to moments 〈V 3〉, 〈V 7〉, and
〈V 11〉, respectively. The reference line at zero is given in all panels.
Panel (h) shows the energy flux at three different scales in the inertial
range, demonstrating that the large excursions are located around the
same spatial positions at all inertial-range scales. This suggests the
presence of coherent structures responsible for the large amplitudes
of forward energy cascade.

of δru come essentially from its negative parts. These traces
show the intermittent feature that is not obvious from the left
panels: (δru)3/r, which represents the local energy transport
in real space, is a highly intermittent process. Another trace
taken at another time reveals the same characteristics but at
different spatial locations. If one imagines a large shower head
with many pinholes that allow water flow, only some pinholes
are open at any given time, with different set of pinholes open
at the next moment.

The intermittency and cancellation for odd-order moments
results in a nonmonotonic, zigzag pattern in the moments
of |〈(δru)n〉|1/n as shown in Fig. 2 with smaller values for
odd moments compared to even orders to either side (which
are free of cancellations), as has been seen before [13,24].
The ratio of the ordinary to the absolute moments, bounded
above by unity, show at most a weak dependence on Rλ at
a fixed odd value of n, as seen in the inset of Fig. 2. This
result indicates that this zigzag pattern is a robust feature of
the longitudinal increment field. This pattern diminishes at
higher orders (though it does not vanish) as seen in the main
part of Fig. 2, because the degree of cancellation between neg-
ative and positive parts decreases [Fig. 1(d)]. There is a clear
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FIG. 2. Longitudinal structure functions |〈(δru)n〉|1/n and
〈|δru|n〉1/n as functions of order n for a 40963 cube, Rλ = 650, with
the scale-separation fixed at r/η ≈ 125. Inset shows their ratio for
odd orders n = 3, 5, 7, and 9 as functions of the Taylor microscale
Reynolds number Rλ. Error bars (too small to stand out) are the
standard deviation of temporal variations of the moments in the
statistically steady state.

suggestion from the inset of Fig. 2 that the zigzag behavior
is independent of the Reynolds number for high Reynolds
numbers.

The question is whether the zigzag nature of Fig. 2 carries
over to inertial-range scaling exponents as well. Figure 3(a)
plots ζn/n as a function of order n. For low orders the same
saw-toothed behavior of Fig. 2 exists in the corresponding
scaling exponents. It says that the longitudinal scaling expo-
nents ζn violate the concavity property with respect to the
moment order, locally at low orders. However, this feature
diminishes for large n, so there is ultimately no ambiguity
with respect to the scaling exponents when the moment order
is large.

Since the high-order moments (both even and odd) mainly
stem from the negative part δru−, as already shown in
Figs. 1(a)–1(d), it follows from Eq. (3) that

〈(δru)n〉 ≈ (−1)n〈(δru−)n〉 (5)

for large n.
Not only do the contributions of δru− approximate the

undecomposed quantity δru at high orders but their respective
exponents ζn and ζ−

n also match, to an excellent degree, for
orders n � 8 as shown in Fig. 3(b). Since ζn are expected to
be Rλ-independent at sufficiently large Rλ, ζ−

n for large n (say
n � 8) also share this same property. Importantly, since ζ−

n
are concave in n it follows that the longitudinal exponents
ζn are also concave functions in n for n > 8, say, to a good
approximation. We note in passing that, although the contribu-
tion of the positive increment δru+ diminishes with increasing
order [see Fig. 1(d)], the exponents ζ+

n are slightly larger than
ζ−

n , thus closer to the self-similar value of n/3 (although they
remain distinctly smaller [20]).

e. Velocity signals. The pronounced negative asymmetry
at large orders, clearly seen as huge negative excursions
in longitudinal increments, must be detectable also in the
velocity signal. It is clearly seen in the instantaneous (but
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FIG. 3. (a) Scaling exponents ζn/n and ξn/n for ordinary and
absolute structure functions, as a function of order n, for the longitu-
dinal case. As before, the error bars, too small to stand out, represent
the standard deviation of local slopes in inertial-range power laws.
(b) Ratio of the scaling exponents ζn of the longitudinal structure
function and ζ−

n , which is the corresponding exponent of its negative
part, for varying moment order, n. Horizontal line at unity is given
for reference. Error bars represent the standard deviation of the ratio
of local slopes of the respective inertial range power laws.

representative) velocity trace in Fig. 4 that negative cliffs
contributing to negative increments are connected to positive
cliffs that contribute to positive increments by ramp-like struc-
tures. An expanded view of one of the negative cliffs in inset
(a) of Fig. 4 shows that these dominant structures resemble the
Khokhlov saw-tooth solution of the one-dimensional Burgers
equation [25]. In comparison, a magnification of positive cliffs
[see inset (b)] shows that the positive cliffs are less sharp and
tend to differ in structure from negative cliffs. The correspond-
ing trace of velocity increment, shown in inset (c), verifies
that the ramps are, as expected, characterized by depleted
velocity differences while the cliffs (especially the negative
ones) correspond to large gradients.

f. Conclusions. We have demonstrated here that the
anti-alignment property of velocity increments with their
separation vectors favors larger negative velocity jumps
δru−/u′ � 1 than positive jumps. Such an alignment scheme
imposes a preferential structure on the velocity field with
large negative cliffs and gentler positive cliffs interspersed
with ramp-like structures. This means that for large orders
or, equivalently for large velocity increments |δru|/u′ � 1,
the negative increment field δru− approximates the entire
velocity difference field to a reasonable approximation. As
already noted, these small-scale negative velocity jumps re-
semble the situation for Burgers turbulence with shocks [26].
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FIG. 4. A typical instantaneous trace of the x-component veloc-
ity along the x direction normalized by the root-mean-square velocity
as a function of x/L0, where L0 is the box length (with 8192 grid
points to a side), and Rλ = 1300. The trace is dominated by steep
negative cliffs (which contribute to δru−) and gentler positive cliffs
(which contribute to δru+) connected by ramp-like structures. Inset
(a) expands the region x/L0 ∈ (0.2, 0.3) (marked by the rectangle)
in terms of x/η to reveal the negative-cliff structure while inset
(b) expands x/L0 ∈ (0.70, 0.72) (marked by the rectangle) in terms
of x/η to highlight the positive-cliff structure. Negative cliffs are
consistently much deeper than the positive ones. Inset (c) shows the
normalized velocity difference δru = u(x + r) − u(x) for r/η = 175
as a function of x/L0. Horizontal dashed lines at zero is given for
reference.

Similar structures are also seen in passive scalar fields ad-
vected by turbulence [27,28], and in transverse velocity
increments [18,29]. The approximation of the velocity differ-
ence field by the negative increment field at large orders also
has important theoretical consequences [30,31].

A (somewhat speculative) point of this paper is that the net
energy transfer across scales is the slight imbalance between
two oppositely directed large fluxes. The persistence of large-
amplitude fluxes across the entire inertial range, as shown in
Fig. 1(h), suggests a connection to spatially coherent activity,
likely the ubiquitously observed vortex structures [32]. If so,
large amplitudes of energy transfer are predominantly due to
the stretching of such structures (not a new concept) rather
than sequential grinding down of eddies, as has been depicted
often.

A final comment seems to be in order on the implication of
this paper to transverse velocity increments, which are known
to be symmetric. It is possible that the difference of scal-
ing exponents between longitudinal and transverse exponents,
highlighted several times in the literature [18,33,34], may be
attributed to the difference between the negative increment
δru− and the (symmetric) transverse increment δrv. This point
needs to be explored further.
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