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Manipulating synthetic gauge fluxes via multicolor dressing of Rydberg-atom arrays
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Arrays of highly excited Rydberg atoms can be used as powerful quantum simulation platforms. Here, we
introduce an approach that makes it possible to implement fully controllable effective spin interactions in
such systems. We show that optical Rydberg dressing with multicolor laser fields opens up distinct interaction
channels that enable complete site-selective control of the induced interactions and favorable scaling with respect
to decoherence. We apply this method to generate synthetic gauge fields for Rydberg excitations where the
effective magnetic flux can be manipulated at the single-plaquette level by simply varying the phase of the
local dressing field. The system can be mapped to a highly anisotropic Heisenberg model, and the resulting
spin interaction opens the door for explorations of topological phenomena with nonlocal density interactions.
A remarkable consequence of the interaction is the emergence of topologically protected long-range doublons,
which exhibit strongly correlated motion in a chiral and robust manner.
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Quantum simulators make it possible to solve many-body
problems that are otherwise intractable by classical calcula-
tions [1]. An important class of such problems arises from
quantum lattice models in external gauge fields in which
a host of exotic phases have been predicted, ranging from
fractional quantum Hall effects [2–4] to chiral spin liquids
[5–8]. The technological and fundamental significance of such
topological phases of matter has motivated significant efforts
towards implementing strong synthetic gauge fields in differ-
ent physical systems [9–26].

Rydberg atoms, held in optical lattices or arrays of optical
tweezers, are currently among the most promising and ver-
satile simulation platforms for quantum magnetism [27–34].
Realizing an effective magnetic flux for Rydberg excitations
requires a complex-valued exchange interaction between dif-
ferent atomic states. This can be accomplished via a proper
tuning of dipolar exchange interactions between different
Rydberg states [35]. By applying a real magnetic field, the
intrinsic spin-orbit coupling of such interactions [36] can be
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used to generate an effective spin-lattice model with a non-
vanishing Peierls phase that emerges perturbatively to leading
order in the strength of the dipole-dipole interaction. The pos-
sibility to engineer synthetic gauge fields in interacting spin
lattices then holds exciting perspectives for exploring exotic
many-body phases and dynamics [37–41].

Here, we describe an approach to implementing syn-
thetic gauge fields via photon-assisted excitation exchange
in Rydberg-atom arrays. Dressing the atoms by multicolor
laser fields is shown to offer complete optical control of the
generated spin-exchange interactions at the level of individual
sites. The induced Peierls phase is determined by the relative
phase between the applied laser fields with which the effective
gauge flux can be tuned to arbitrary patterns. Together with the
nonlocal density interaction between Rydberg excitations, this
yields a versatile quantum simulation approach for exploring
strongly correlated systems with nontrivial band topologies
and finite-range interactions. We illustrate these perspectives
by discussing the topologically protected chiral motion of
bound pairs [42–44] that emerge from the multicolor Rydberg
dressing of an atomic square lattice [45].

We consider a two-dimensional array of individually
trapped atoms. For a monochromatic Rydberg dressing [46],
the ground-state |gi〉 of the ith atom (located at ri) is coupled
to a Rydberg state |ri〉 by an off-resonant laser field with Rabi
frequency �i = |�i|eiϕi and detuning � = ω0 − ωL, where
ω0 and ωL are the atomic transition frequency and laser fre-
quency, respectively. Let us first consider a two-atom model
[see Fig. 1(a)]. In this case, the singly excited pair states |gir j〉
and |rig j〉 are degenerate and coupled by two Raman pathways
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FIG. 1. (a) An excitation hopping channel between atoms can be
established with monochromatic Rydberg dressing. (b) Lasers with
different colors (frequencies) A and B cannot form a hopping channel
due to the large energy defect |δE | = |�A − �B|. (c) Cancellation
of the Peierls phase leads to a vanishing magnetic flux � = 0 in
monochromatic dressing. (d) A tunable flux � is realized by the mul-
ticolor dressing. Two-colored circles represent simultaneous dressing
of the atoms by both laser fields of the colors indicated.

with intermediate states |gig j〉 and |rir j〉 [47,48]. Importantly,
the contribution from both pathways is not symmetric because
the doubly excited state |rir j〉 is shifted by the van der Waals
(vdW) interaction Vi j between Rydberg atoms. In the limit
of large detunings, |�i( j)| � |�|, |� + Vi j |, this asymmetry
leads to an effective hopping of the Rydberg excitation from
site j to site i with a strength |Ji j | = |�i�

∗
jVi j/4�(� + Vi j )|.

Taking into account the phase of each dressing field, this hop-
ping amplitude Ji j = |Ji j |eiφi j becomes complex with a Peierls
phase φi j = ϕi − ϕ j given by the sum of the phases ϕi and
−ϕ j of both involved laser fields. However, it is impossible
to induce a nonvanishing effective magnetic flux � because
the same driving field creates and annihilates an excitation on
each site, leading to a vanishing net flux as the excitation cir-
culates around a closed loop. This is illustrated in Fig. 1(c) for
three atoms whose total flux � = (ϕ2 − ϕ1) + (ϕ3 − ϕ2) +
(ϕ1 − ϕ3) = 0 vanishes identically.

As we will show below, a finite magnetic flux can, however,
be realized by applying multiple dressing fields with different
frequencies (colors). The underlying mechanism exploits the
frequency sensitivity of the stimulated excitation exchange,
which is only resonant if the two involved atoms share a
set of dressing fields with identical colors. As illustrated in
Fig. 1(d) for a three-atom plaquette, this makes it possible to
independently control the phase of the exchange interaction
between each atom pair with only three different colors A, B,
C of the dressing fields applied, i.e., driving each atom with
two different colors opens up a distinct interaction channel
for each atom pair. The phase of each laser field can be tuned
individually, such that we obtain a finite and tunable flux � =
(ϕ2B − ϕ1B) + (ϕ3C − ϕ2C ) + (ϕ1A − ϕ3A). Here, we have
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FIG. 2. Time evolution of excitation transport for monochro-
matic dressing in (a) and for multicolor dressing in (b)–(d) with
increasing frequency separations δ� = �B − �A = �C − �B be-
tween colors at induced hopping strength |J| ≈ 0.2�.

labeled the dressing fields of different colors by 	 ∈
{A, B, · · · } and denote their phases at a given site i by ϕi	.

We can gain more intuition by considering two atoms that
are each dressed by fields with distinct detunings �A and �B

[see Fig. 1(b)]. This implies a finite energy defect δE = �A −
�B for the excitation transfer between the states |gir j〉 and
|rig j〉. The stimulated emission and reabsorption of photons
is, thus, off-resonant by |δE | and will suppress the excitation
hopping if |δE | � |Ji j |. Under this condition we can introduce
distinct interaction channels that only emerge when a pair
of atoms is dressed by laser field with the same color 	[i j]

[49], e.g., 	[23] = {B,C} ∩ {C, A} = C for the configuration
considered in Fig. 1(d). To verify that the cross talk between
different colors can indeed be suppressed, we calculate the
dynamics governed by the exact Hamiltonian,

Ĥfull (t ) =
∑

i

Ĥi(t ) +
∑
i< j

Vi j |ri〉〈ri| ⊗ |r j〉〈r j | (1)

for two dressed atoms. Here,

Ĥi(t ) =
∑
	

(
�i	

2
ei�	t |ri〉〈gi| + H.c.

)
(2)

describes the time-dependent single-particle Hamiltonian of
the ith atom, and Vi j = C6/|ri − r j |6 denotes the vdW inter-
action between Rydberg excitations. As shown in Fig. 2(a),
the excitation transport is nearly perfect for monochromatic
dressing. The inclusion of two additional fields with different
colors B and C, does not perturb this transport as long as
the corresponding energy offset |�	 − �	′ | is much larger
than the respective hopping strength [Figs. 2(b)–2(d)]. With
feasible experimental parameters [50], this condition can be
well fulfilled, realizing a flux of � = π/2 for the three-atom
case considered in Fig. 1(d). This is verified by Fig. 3(a)
where we find a characteristic chiral motion of the Rydberg
excitation around the plaquette based on exact simulation of
the dynamics. The simulation is in good agreement with an
effective model that neglects any cross talk between different
colors.

We can formulate the corresponding effective Hamiltonian
by a perturbative analysis using Floquet theory [17,51–58].
Introducing bosonic creation operators b̂†

i = |ri〉〈gi| with the
hard-core constraint b̂†

i b̂†
i = 0, we obtain a single-excitation
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FIG. 3. (a) Single-excitation chiral motion in a three-atom pla-
quette at � = π/2 with the chirality indicated by the gray box.
(b) Dressing schemes to implement a Harper-Hofstadter lattice
with an arbitrary flux pattern shown in (c). (d) Center-of-mass
trajectories for an excitation in the left (x � 0) and right (x �
0) regions at �1 = �4 = π/3, �2 = �3 = π/2. The detunings
are (�A,�B, �C, �D ) = 2π (120, 140, 160, 180) MHz in (a) and
(d) with Rabi frequencies (�A, �B, �C ) = 2π (10, 10.9, 11.7) MHz
in (a) and (�A, �B, �C, �D ) = 2π (10, 11.5, 13.1, 14.6) MHz in
(d) [50].

effective Hamiltonian,

Ĥ (1)
eff =

∑
i

μib̂
†
i b̂i +

∑
i< j,	[i j]

(eiφi j	[i j] |Ji j	[i j] |b̂†
i b̂ j + H.c.),

(3)
where φi j	[i j] = ϕi	[i j] − ϕ j	[i j] denotes the Peierls phase,

|Ji j	[i j] | =
∣∣∣∣

�i	[i j]�∗
j	[i j]Vi j

4�	[i j] (�	[i j] + Vi j )

∣∣∣∣ (4)

is the hopping strength of the excitation, and μi is the on-site
chemical potential. All these parameters can be tuned individ-
ually by adjusting the dressing fields at each site [49]. Impor-
tantly, the effective magnetic flux can be tuned by controlling
the phase distribution of the applied dressing fields and does
not depend on the laser intensities, lattice configurations, or
Rydberg interactions. This makes it possible to generate an
arbitrary magnetic flux pattern while implementing the effec-
tive Hamiltonian to an arbitrary accuracy by independently
suppressing state leakages and crosstalk errors. Furthermore,
the U(1) symmetry of the effective Hamiltonian Eq. (3) pro-
tects the system against various decoherence processes, e.g.,
global laser phase noise induced dephasing is eliminated in
the resulting decoherence-free subspace [49,59,60], and the
damping caused by decay of the Rydberg states can be miti-
gated by postselection as described in the Supplemental Ma-
terial [49]. In the Supplemental Material [49], we show that
the challenging single-site control of the laser intensity and
phase distribution can be achieved by a compact optical mod-
ule, whose complexity does not grow with system size. We
also provide explicit schemes for manipulating gauge fluxes
in different lattice geometries, including a square lattice, a
triangular lattice, and a honeycomb lattice [49]. Altogether,
this offers an accurate and scalable approach to synthesizing
gauge fields with promising coherence properties.

Let us now discuss the behavior of multiple excitations,
which feature strong vdW interactions between them. If the

initial distance between excitations is sufficiently large such
that their interactions Vi j are smaller than the detunings [49],
the simple Hamiltonian,

Ĥeff = Ĥ (1)
eff +

∑
i< j

Vi j b̂
†
i b̂†

j b̂ j b̂i (5)

describes the many-body dynamics of the system. Such a
Hamiltonian is equivalent to a highly anisotropic Heisenberg
model as the density interaction Vi j is two orders of magnitude
larger than the hopping strength |Ji j |. The nonlocal density
interaction Vi j also facilitates the study of many-body dynam-
ics beyond the hard-core constraints. To verify the effective
model and its distinct features, we first consider to implement
a Harper-Hofstadter ladder. With dressing fields of four dif-
ferent colors introduced in Fig. 3(b), an arbitrary flux pattern
can be realized [Fig. 3(c)]. For a symmetric pattern �1 = �4,
�2 = �3, we calculate the trajectories for two colliding exci-
tations initially localized at the corners. The exact simulation
based on Eq. (1) shows significant repulsion between the exci-
tations [Fig. 3(d)], in agreement with the calculation based on
Eq. (5). We also note that the trajectories for two excitations
are no longer symmetric when nonlocal interaction Vi j comes
into play [61,62]. Such an interesting feature does not appear
in systems with only hard-core constraints [Eq. (3)].

The ability to implement such effective models permits ex-
ploration of topological phenomena in the presence of strong
and finite-range interactions. As an example [Fig. 4(a)], we
consider two-excitation dynamics in an anisotropic Harper-
Hofstadter lattice [63] where the nearest-neighbor hopping
take on different strengths Jx and Jy along the x and y direc-
tions, respectively. The model can be realized with the similar
scheme shown in Fig. 3(b). When the flux � is uniform and
rational (�/2π = p/q), the single-particle spectra split into
q gapped topological bands linked by gapless edge modes.
Remarkably, the finite-range density interaction can further
lead to the emergence of chiral edge-mode bound states with
large bond lengths as we will show below.

Let us consider first the case of two tightly bound excita-
tions, separated by two lattice sites along the y direction as
illustrated in Fig. 4(a). When the differences D1 = V2 − V1,
D2 = V2 − V4, and D3 = V2 − V3 between density interactions
V2 and V1, V3, V4 [Fig. 4(a)] are much larger than the tun-
neling strength, we can perturbatively construct an effective
Harper-Hofstadter lattice for the center-of-mass dynamics of
the bound pair [Fig. 4(b)], which moves across the lattice with
modified hopping strengths J ′

x = 2J2
x /D2 and J ′

y = J2
y /D1 +

J2
y /D3. Most importantly, the effective magnetic flux �′ = 2�

of the doublon increases to twice the single-particle flux.
An interesting case emerges for � = 2π/3 such that �′ =
4π/3 (mod 2π ) = −�. In this case we expect to observe the
coexistence of single-excitation chiral edge state and topologi-
cally protected edge-mode bound state with opposite chirality.

When the above interaction difference is finite, the situ-
ation becomes complicated and an exact diagonalization is
required [64,65]. Since the effective Hamiltonian is verified
in Fig. 3(d), we will perform the calculation based on Eq. (5).
For an infinitely extended lattice along the y direction with
a finite number of sites along the x direction, the two-body
eigenstate with a y-direction center-of-mass quasimomentum
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FIG. 4. (a) Anisotropic Harper-Hofstadter model with lattice constants dx and dy along x and y directions. A feasible implementation with
dx = 5.1, dy = 4.8 μm, Rabi frequencies ∼2π × 10 MHz, and a 87Rb-atom Rydberg state |70S1/2〉 yields typical parameters Jx = 0.5 MHz,
Jx/Jy = 0.6, and (V1,V2,V3,V4)/Jx = (1045, 16, 1.4, 7.7). (b) Effective lattice for the center-of-mass motion of the bound pair shown in (a).
(c) Two-body spectra of the system with nine sites along the x direction where different types (I)–(III) of bound pairs are distinguished by
their orientations. (d) Density distribution for the first excitation [P(x1) = ∑

x,y |ψK (x1, x, y)|2] and the second excitation (|ψK (x1 = xm, x, y)|2,
scaled by shades of red) with xm = argmax[P(x1)] the most occupied site of the first excitation (blue empty circle).

K can be written as

|ψK〉 = 1

2π

∑
r1 
=r2

ψK (x1, x2, r)eiKRb̂†
r1

b̂†
r2
|0〉, (6)

where r = y2 − y1 and R = (y1 + y2)/2 denote the relative
and center-of-mass coordinates along the y direction, b̂†

rν

creates a Rydberg excitation at rν = (xν, yν ), and |0〉 is the
vacuum state with all atoms in |g〉. The associated spectrum of
eigenenergies EK is shown in Fig. 4(c) and reveals a number of
interesting states. The scattering continuum forms the lowest
band with oscillating density of states. Above the scattering
continuum, we identify different patterns of bound states.
Figures 4(c) and 4(d) show the dispersion and density profile
of three types of these states. The type-I bound state corre-
sponds to the one depicted in Fig. 4(a), whose spectrum is split
into three energy bands with Chern numbers C = {−1, 2,−1}
(from the lowest to the highest) predicted by the center-of-
mass motion analysis.

The state, marked as A in Fig. 4(c,I), is located in the upper
band and represents a normal bound state in the bulk of the
system. The other two states, marked as B and C, lie within
the gap between the lowest and the middle bands and are topo-
logically protected bound states that are respectively localized
at the right and left edge of the lattice. Similar states can be
identified for the type-II bound pair [Fig. 4(c,II)], which are
aligned along the x direction, and form bulk-mode (marked as
D) as well as chiral-edge-mode (marked as E) bound states.
The finite range of the Rydberg-state interaction also makes it
possible to form bound pairs separated by a longer distance,
such as the type-III state, indicated in Fig. 4(c,III) and shown
in panel F of Fig. 4(d).

Figure 5(a) shows the transport dynamics of a single-
excitation edge mode and demonstrates counterclockwise
propagation. The depicted motion around a finite lattice with
edge defects indeed shows negligible backward scattering.
The dynamics of the type-I bound state C [Figs. 4(c,I) and

4(d)] is displayed in Fig. 5(b). One clearly finds unidirectional
doublon motion that is robust against local defects, and now
features opposite chirality compared to the single-excitation
transport. Figure 5(d) shows the two-body correlation function
along the outer edge of the lattice [Fig. 5(c)] and demonstrates
that the bound-state structure of the doublon indeed stays fully
intact during its topologically protected transport.
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FIG. 5. (a) and (b) show evolution of the density distribution
〈b̂†

rb̂r〉 for the lowest chiral edge mode of a single-excitation and
a type-I bound pair, respectively. “×” denotes a vacancy defect.
(c) Definition of the site index along the edge. (d) Evolution of the
two-body correlation function 〈b̂†

i b̂†
j b̂ j b̂i〉.
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In conclusion, we have described the application of mul-
ticolor laser dressing to generate synthetic gauge fields for
Rydberg excitations in neutral atom quantum simulators. Our
approach makes it possible to realize arbitrary Peierls phases
without compromising the accuracy of the quantum simula-
tion. In particular, the scheme features individual tunability of
the magnetic flux, which permits the experimental study of
rich physics not yet explored with a nonuniform gauge field,
e.g., exotic metal-insulator transition driven by the random
flux [66–68], and emergence of anyons from a fractal flux
pattern [69]. The inherent long-range interacting feature also
motives future work on topological phenomena in interacting
systems, such as emergent dynamical gauge fields [39,70] and
fractional quantum Hall physics [71].

Note added. We recently became aware of two interesting
schemes for realizing synthetic gauge fields in Rydberg-atom

arrays, respectively, based on laser-assisted dipole-dipole in-
teractions in a rectangular lattice [72] and Rydberg-dressing
induced ground-state interactions in a honeycomb lattice [73].
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