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Ground-state properties are central to our understanding of quantum many-body systems. At first glance, it
seems natural and essential to obtain the ground state before analyzing its properties; however, its exponentially
large Hilbert space has made such studies costly, if not prohibitive, on sufficiently large system sizes. Here,
we propose an alternative strategy based upon the expectation values of an ensemble of operators and the
elusive yet vital quantum constraints between them where the search for ground-state properties simply equates
to classical constrained minimization. These quantum constraints are generally obtainable via sampling and
then machine learning on a large number of systematically consistent quantum many-body states. We showcase
our perspective on one-dimensional fermion chains and spin chains for applicability, effectiveness, caveats, and
unique advantages especially for strongly correlated systems, thermodynamic-limit systems, property designs,
etc.
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Introduction. The collective behaviors of quantum many-
body systems are central to various cutting-edge fields in
condensed-matter physics and beyond. Despite the nominal
simplicity of certain quantum Hamiltonians, e.g., the Hubbard
model [1–3], the noncommuting quantum operators squander
any advantageous basis, and the exponentially large Hilbert
space renders the solutions and characterizations of ground
states costly, limiting the system size and geometry in nu-
merical techniques, e.g., exact diagonalization and density
matrix renormalization group (DMRG) [4,5]. While quantum
Monte Carlo methods introduce efficient samplings, they are
limited to sign-problem-free cases [6–8]. Also, the ground-
state solution usually starts from scratch upon slight model
modifications, making the systematic study of a complex
phase diagram, not uncommon in condensed-matter physics
[9], even more expensive.

Rather than the abstract quantum many-body ground state,
we are usually interested in its properties, such as the
ground-state energy and spontaneous-symmetry-breaking or-
der parameters- (linear combinations of) expectation values
of target observables. Considering that the minimum en-
ergy criteria also concern expectation values, one would be
prompt to establish a study based solely on expectation val-
ues and cut out the ground state. However, the quantum
operators follow nontrivial commutation relations and, as a
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result, enforce nontrivial quantum constraints upon their ex-
pectation values—a role played by the ground state as the
mediator. Expectation values violating these quantum con-
straints do not have an underlying quantum state and may
not reflect the true nature of the quantum many-body sys-
tem. Therefore, such quantum constraints are complicated yet
essential for proper expectation-value-based considerations.
An example of such quantum constraints is the conformal
bootstrap for conformal field theories [10], beyond which,
however, the bootstrap reduces to mere bounds and no
longer offers a controlled analysis of ground-state properties
[11,12].

On the other hand, recent developments in machine learn-
ing [13,14] have revolutionized data analysis such as image
recognition, spam, fraud detection, and autonomous driving
[15]. Artificial neural networks (ANNs) can grasp the key
yet complex and hidden rules in big datasets and generalize
accurately for future scenarios [13–15]. Recently, machine
learning has witnessed many explorations at the quantum
many-body physics frontier, including quantum state tomog-
raphy [16,17], quantum phase recognition [18–25], neural
network states [26,27], experiment interpretations [28–30],
etc.

In this Letter, we propose studying the ground-state prop-
erties of quantum many-body systems within a classical
expectation-value framework with quantum constraints over
an ensemble of important operators. Then, the ground-state
properties amount to constrained minimization. We can gener-
ally encode such quantum constraints as ANNs via supervised
machine learning on example quantum states. Without loss of
generality, we showcase the unique advantages of our strategy
on one-dimensional (1D) fermion and spin-1/2 models: (1)
Compared with the expensive procedure of solving quantum
many-body states, evaluations of expectation values are effi-
cient and easily parallelizable among multiple operators and
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quantum states. (2) Our main effort is to extract and apply
the quantum constraints through a large classical dataset of
expectation values where machine learning techniques excel
compatibly and proficiently. (3) Given a sufficiently diverse
and representative training set, the obtained quantum con-
straints work for all Hamiltonians with different parameters
where we iterate the classical constrained minimization with
respect to the expectation values of different Hamiltonians.
(4) We embed systematic properties, such as system size, ge-
ometry, and dimensions into the sample quantum many-body
states and are rarely limited by them. (5) The quantum con-
straints also exhibit the competition and symbiosis between
the observables, offering recipes for engineering models for
desired ground-state properties, even emergent phases.

Algorithm. Our approach consists of steps as follows:
(1) Start with a large and representative ensemble of quan-

tum many-body states {|�〉α} systematically consistent with
the potential ground state, namely, obeying the expected sym-
metries and the area law.

(2) For each |�〉α , evaluate the expectation values of a set
of operators {Ô j} and contribute a physical data point 〈Ô〉α =
(〈Ô1〉α, 〈Ô2〉α, . . .) in the 〈Ô〉 space. Operators with lower or-
ders and spatial extents receive priority due to larger relevance
and compatibility with local Hamiltonians. For comparison,
unphysical data is obtained by considering deviations from
the physical data [31].

(3) Via supervised machine learning on the training set
{〈Ô〉α}, train ANNs f (〈Ô〉) to distinguish physical (unphysi-
cal) values of 〈Ô〉 that is allowed (disallowed) by the quantum
constraints.

(4) For the Hamiltonian Ĥ = ∑
j a jÔ j , search the con-

strained minimum of the energy E = ∑
j a j〈Ô j〉 with the

quantum constraints f (〈Ô〉). The coordinates 〈Ô〉0 of the re-
sulting minimum offer the expectation values that characterize
the ground state.

The first three steps yield the quantum constraints f (〈Ô〉)
that mark the physical manifold in the classical 〈Ô〉 space.
We expect a relatively smooth and continuous manifold as
the adiabatic theorem ensures that the quantum many-body
ground states and the corresponding 〈Ô〉 evolve continuously
in the absence of first-order phase transitions. Importantly, the
area law and symmetries vastly reduce the pool of quantum
many-body states from the original Hilbert space, and ma-
chine learning can summarize and generalize from a limited
number of training samples [13,14], making it feasible to
extract the quantum constraints through a polynomial amount
of sample states. Since evaluating expectation values is simple
and efficient, the key is to obtain a diverse training set repre-
sentative of the candidate parts of the Hilbert space, e.g., by
teaming up multiple quantum many-body ansatzes.

Only the final step that applies the quantum constraints to
the model Hamiltonians is repeated throughout a parameter
space. Although the classical constrained optimizations are
not guaranteed to be fully straightforward, compared with
the exponential expense of brute-force quantum algorithms,
the overall cost can be much less, especially given the avail-
able optimization algorithms and physical intuitions. For
example, the solution 〈Ô〉0 for one set of model parameters
helps to initialize searches for its neighbors as 〈Ô〉0 changes
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FIG. 1. The black contour shows the physical expectation values
[Re(C1),C0] consistent with the quantum constraint in Eq. (2) for
Im(C1) = 0. Those expectation values not on the contour are unphys-
ical, i.e., no quantum many-body state can realize them. Given differ-
ent Hamiltonians, e.g., t = 1, μ = −4 (blue) and t ′ = 1, μ′ = −1
(red), their energy expectation values correspond to projections along
different directions. The coordinates of the physical point with the
lowest energy characterize the ground-state properties.

continuously in the absence of transitions. For efficiency, we
can start with models with exact solutions or controlled ap-
proximations [32] and move progressively into other parts of
the parameter space, tracking 〈Ô〉0 successively in the process
[31].

An important question is the choice of observables for
which we suggest two criteria: (1) Is the observable likely
to appear in target Hamiltonians? (2) Does the observable
represent a physical quantity we are interested in? These favor
local low-order operators, and the more, the better, although
with added costs. Also, these criteria are soft: irrespective of
chosen observables, quantum constraints address the physical
realizability of their expectation values in a yes/no fash-
ion; they do lose capacity without certain observables, e.g.,
tell corresponding degeneracy, but encounter no algorithmic
breakdown.

A heuristic example. First, let us consider a 1D Fermi sea
between kL = k0 − kF and kR = k0 + kF where we have a
simple analytical expression for the quantum constraints. Its
expectation values of two-point correlators are as follows:

C0 = 〈c†
xcx〉 = kF /π,

Cr = 〈c†
x+rcx〉 = sin(kF r)eik0r/πr, r �= 0, (1)

irrespective of x due to the translation symmetry. Expectation
values of higher-order operators depend fully on Cr’s through
Wick’s theorem. In particular, the following quantum con-
straint holds between the most dominant real-valued C0 and
complex-valued C1,

±π |C1| = sin(πC0), (2)

as illustrated in Fig. 1, which holds as long as there is one
Fermi sea and no spontaneous translation symmetry breaking.
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We note that the physical manifold (black contour) is smooth
except for the two end points at C0 = 0, 1, corresponding to
Van Hove singularities.

Now, let us consider a tight-binding Hamiltonian with
nearest-neighbor hopping t ∈ R [33] and Fermi energy μ,

Ĥ =
∑

x

−t (c†
x+1cx + c†

xcx+1) + μc†
xcx,

E = [−2t Re(C1) + μC0]N, (3)

where N is the system size and we set t = 1 as our unit of
energy hereinafter. As the constraint in Eq. (2) only concerns
|C1|, we set Im(C1) = 0 to allow maximal range for Re(C1). A
schematic for the solutions of optimal values of [Re(C1),C0]
is in Fig. 1. More rigorously, we define πC0 = y ∈ (0, π ),
and Re(C1)/C0 = f (y) = sin(y)/y ∈ (0, 1) is a single-valued
function following the quantum constraint. To minimize E ∝
[μ − 2t f (y)]y, the subsequent solutions,

2t f (y) − μ + 2t f ′(y)y = 0 ⇒ 2t cos(y) = μ,

C0 = y/π = arccos(μ/2t )/π,

Re(C1) = y f (y)/π = sin(y)/π

= sgn(t )
√

1 − μ2/4t2/π, (4)

which are consistent with the exact results obtained in the
momentum space H = ∑

k[−2t cos(k) + μ]c†
kck for generic

values of t and μ.
For ground-state properties of Hamiltonians with upto

nth-nearest-neighbor hopping, we need to employ quantum
constraint C0 = f (C1/C0,C2/C0, . . .) on the expectation val-
ues Ci, i = 0, 1, 2, . . . , n f s, which can be represented by
ANNs and trained via supervised machine learning on quan-
tum states with multiple Fermi seas [31]. For general quantum
many-body systems, we may not formulate the quantum con-
straints as a function between the expectation values. It is
more convenient to establish a “penalty” function f (〈Ô〉) that
measures the extent of 〈Ô〉’s violations to the quantum con-
straints [31], which is also advantageous for allowing more
freedom in choices of Ô. We will examine such formalism
next.

Benchmark examples. We consider 1D fermion insulators
with a bipartite unit cell, whose Bloch states take a general
form u(k) = [cos(θk/2), sin(θk/2) exp(iϕk )]T with the first
(second) component denoting the A (B) sublattice. The expec-
tation values of two-point correlators are as follows:

CAA(BB)
0 = 0.5 ± g0/2,

CAA(BB)
r = ±gr/2, r ∈ Z+,

CAB
r′ = g̃r′/2, r′ ∈ Z + 1/2, (5)

the rest obtainable via complex conjugation. gr =∫ 2π

0
dk
2π

eikr cos(θk ), g̃r′ = ∫ 2π

0
dk
2π

ei(kr′+ϕk ) sin(θk ), over which
we establish the following quantum constraints,∑

r

grg∗
r+s +

∑
r′

g̃r′ · g̃∗
r′+s = δs. (6)

gr and g̃r′ , related to correlations in insulators, are fast decay-
ing functions of r and r′, allowing us to truncate at a finite
distance � = 20 unless noted otherwise. We can, thus, define

a positive-definite penalty function,

f (gr, g̃r′ ) =
�/2∑
s=0

[∑
r

grg∗
r+s +

∑
r′

g̃r′ · g̃∗
r′+s − δs

]2

, (7)

which yields ∼0 if and only if {gr, g̃r′ } are consistent with
the quantum constraints. We note that the derivation of an
expression as Eq. (7) is unavailable in generic quantum sce-
narios. Here for noninteracting fermions, it offers benchmarks
to our strategy via machine learning quantum constraints in
the following paragraphs.

Starting from random u(k), we obtain 1.92×106 samples
of {gr, g̃r′ } consistent with the quantum constraints and no
penalty. We also include in the dataset 7.68×106 contrast-
ing samples with small random deviations to {gr, g̃r′ } and
corresponding penalties [31]. Besides, we utilize the gauge
equivalence to reduce the degrees of freedom [31]. Then,
we apply supervised machine learning [13,14] to train ANNs
on the quantum constraints of {gr, g̃r′ } in the neighborhood
of small or no violations [31]. In practice, we use the aver-
age output of multiple independent ANNs f ∗(gr, g̃r′ ) as the
approximate penalty and their max output as an acceptance
threshold to avoid unphysical regions.

To test out these quantum constraints, we study the mean-
field solutions of a 1D interacting fermion Hamiltonian at
half-filling,

Ĥ =
∑

x

−t (c†
x+1cx + c†

xcx+1) + V c†
x+1cx+1c†

xcx. (8)

The underlying assumptions of f (gr, g̃r′ ) and f ∗(gr, g̃r′ )
are that the ground state takes a noninteracting fermion
framework, hence, the Hartree-Fock approximation, and
an emergent bipartite order parameter may spontaneously
break the translation symmetry. Likewise, while our strategy
straightforwardly applies to any quantum many-body ansatz,
e.g., matrix product states [34–36], neural network states
[26,27], quantum Monte Carlo methods, ab initio wave func-
tions, even multiple ansatzes at the same time, the resulting
quantum constraints will inherit the underlying assumptions
and skip lower-energy scenarios beyond such assumptions, if
any.

Under these circumstances, the energy expectation value is
as follows:

E = 〈Ĥ〉 = {−t[Re(g̃1/2) + Re(g̃−1/2)]

+ 0.25V (2 − 2g2
0 − |g1|2 − |g−1|2)}N/2. (9)

We look for the constrained minimum {gr, g̃r′ } by minimizing
either L = Ē + η f or L = Ē + η f ∗, where Ē = E/(N/2). η

controls the weight of the quantum constraints, and the opti-
mized results approach the physical limit asymptotically when
η → ∞. In practice, we should balance η between too large
to allow an efficient search acceptance rate and too small to
prevent the search from exiting regions represented by the
samples. The extrapolation of η may offer a more systematic
analysis, and an example is shown in the Supplemental Mate-
rial [31].

Also, we use the expectation values of {gr, g̃r′ } at V to
initialize the search at V + δV , and so on so forth. In practice,
we start from V = 2 with an interval of δV = −0.01 [37]. The
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FIG. 2. Top: The ground-state energies and (the inset) their rela-
tive difference of the quantum many-body system in Eq. (8) from the
Hartree-Fock approximation as well as the constrained minimization
of L = Ē + η f and L = Ē + η f ∗, respectively, η = 1000. Note that
the energies obtained with our strategy may end up slightly below
the theoretical values since we have slacked the quantum constraints
for improved efficiency. Bottom: The ANN outputs f ∗(gr, g̃r′ ) for
the constrained minimum as well as the benchmark f (gr, g̃r′ ) for the
same {gr, g̃r′ } show consistency with the quantum constraints (very
small penalty values) throughout the V range as we gradually lower
from V = 2.

benchmark results are summarized in Fig. 2 and Ref. [31], and
their consistency indicates that given sufficient dataset and
training, machine learning can offer a trustworthy path toward
quantum constraints. It is worth noting that such soft quantum
constraints offer a distinctive and complementary perspec-
tive to conventional variational approaches: While the latter
bounds the ground states from above, given a search space
generally smaller than necessary, our method may approach
the ground state from below, where near-physical regions join
our consideration yielding a search space larger than permit-
ted.

The quantum-constraint perspective also allows us to de-
sign quantum many-body systems like never before. Say we
wish to apply certain criteria to expectation values: Some-
times it is as simple as the inclusion of the corresponding
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FIG. 3. The maximum of [Re(g1)]εRe(g̃1/2 + g̃−1/2 ) for 1D
fermion insulators on bipartite lattices shows good consistency be-
tween constrained optimization via the quantum constraints and
searches among the variational Hamiltonian Hvar in Eq. (10). Individ-
ual expectation values for realizing the maximum, e.g., g1 and g̃1/2,
also check out for each ε. For the quantum-constraints approaches,
we gradually increase ε from ε = 0.5 while keeping track of {gr, g̃r′ }.
Inset: the ANN f ∗(gr, g̃r′ ) and the benchmark f (gr, g̃r′ ) suggest the
obtained {gr, g̃r′ } indeed obey the quantum constraints, η = 1000.

observables into the Hamiltonian, yet sometimes the criteria
do not possess simple interpretations or require a nontrivial
origin, such as spontaneous symmetry breaking. For instance,
to maximize [Re(g1)]εRe(g̃1/2 + g̃−1/2), ε ∈ [0.5, 2] for 1D
fermion insulators on bipartite lattices, we commonly need to
consider a variational Hamiltonian, such as

Hvar =
∑

x

−t (c†
x+1cx + H.c.) + (−1)x�(c†

x+2cx + H.c.),

(10)
which balances operators favoring Re(g̃1/2 + g̃−1/2) and
Re(g1), respectively, and � is a variational parameter for
optimization. More generally, larger variational spaces with
additional operators are preferred for thorough searches, and
the ground-state solutions may bring additional complica-
tions. On the other hand, with the quantum constraints, we
can circumvent such difficulties and resort to a constrained
maximization. We compare our results in Fig. 3. Furthermore,
we can establish the underlying Hamiltonians and quantum
states via the strategy in Ref. [38].

Strongly correlated scenarios. Generality is another essen-
tial merit of our strategy, which applies straightforwardly to
strongly correlated systems and outshines the conventional
methods hanging on the mind-boggling quantum many-body
ground states themselves. Here, we illustrate the quantum
constraints of 1D interacting spin-1/2 chains in the thermo-
dynamic limit. Since the ground states of local Hamiltonians
obey the area law, we can use tensor network states [4,5,39,40]
especially infinite matrix product states [34–36] for infinite
system sizes as our representation of quantum many-body
state samples for machine learning quantum constraints. We
also emphasize that it is straightforward to generalize, and it is
beneficial to include other quantum may-body ansatzes, such
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as projected states via variational Monte Carlo methods; see
the Supplemental Material for examples and results [31].

First, we sample quantum many-body states with ran-
dom, translation symmetric matrices of dimension χ = 8
[41]. Next, we evaluate the expectation values 〈Ô〉 of a se-
ries of low-order spin operators Sλ

r and Sλ
r Sλ′

r+l , λ, λ′ = x, y, z
upon a section of length lmax = 6. Other than 6.75×104 of
these quantum-constraints-abiding samples, we also include
2.025×105 contrasting samples with small deviations and
corresponding penalties [31]. Then, we perform supervised
machine learning on the dataset and train ANNs f ∗(〈Ô〉) to
recognize how well a target 〈Ô〉 aligns with the quantum con-
straints. We note that the trained ANNs, as well as the previous
ANNs f ∗(gr, g̃r′ ) and benchmark f (gr, g̃r′ ) for 1D fermion
insulators, penalize expectation values’ departure from and
thereby enforcing quantum constraints as intended [31].

Subsequently, we use the quantum constraints for ground-
state properties of quantum spin Hamiltonians. For instance,
we apply our strategy with f ∗(〈Ô〉) to the 1D transverse field
(h = 0) and the nonintegrable longitudinal-transverse field
Ising models (h �= 0),

H =
∑

j

−JSz
jS

z
j+1 − gSx

j − hSz
j, (11)

where wet set J = 1 as the unit of energy. The results
on the energy expectation value per site E/N = 〈H〉/N =
−J〈Sz

0Sz
1〉 − g〈Sx

0〉 − h〈Sz
0〉 and beyond in the N → ∞ ther-

modynamic limit are summarized in Fig. 4 and the Sup-
plemental Material [31]. Such quantum constraints are also
directly applicable to the spin-1/2 XXZ chains [31]. To
summarize, we obtain quantitative results on ground-state
properties, such as energies and short-range correlators yet
qualitative trends only on longer-range correlators, making
pinpointing phase transitions relatively tricky. An additional
or different set of observables addressing critical behaviors
may be helpful.

Discussions. We propose to analyze ground-state proper-
ties via machine learning quantum constraints on expecta-
tion values and complement conventional ground-state-based
approaches. Other than the aforementioned advantages, we
have yet to establish a controlled quantitative analysis
of algorithmic uncertainties especially for relatively soft
degrees of freedom, e.g., the order parameter of a sponta-
neous symmetry-breaking phase. Qualitative tendencies are
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FIG. 4. The ground-state energies of the transverse field Ising
model (h = 0) and longitudinal-transverse field Ising model (h =
0.25) in Eq. (11) obtained by theory solutions [42], DMRG, and the
constrained minimization using ANN quantum constraints f ∗(〈Ô〉)
exhibit satisfactory consistency. For the latter, we start from g = 0
and gradually increase g. η = 1000/3 for h = 0 and η = 400 for
h = 2.5, respectively. The inset: Small f ∗(〈Ô〉) suggests that the
obtained results well satisfies the quantum constraints.

observable, and extrapolation of η, the weight of quantum
constraints, offers a partial solution [31]. Also, tensor net-
work states in two dimensions and beyond may become
costly, and other quantum many-body ansatzes may help com-
plement the training data and simultaneously reduce biases
originating from respective ansatz. Finally, while systematic
presumptions, such as the area law and symmetries help
narrow the questions and facilitate the calculations, such
physics intuitions should sometimes be taken with a grain
of salt.
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