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Experimental demonstration of a quantum engine driven by entanglement and local measurements
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Understanding entanglement and quantum measurements from a thermodynamics point of view is a funda-
mental and challenging task. Recently, a two-qubit engine was put forward as an appropriate platform to tackle
these challenges. Here we achieve an experimental simulation and provide the direct experimental proof of these
findings using single photons and linear optics. Encoding the qubits by polarization and transverse spatial modes
of single photons, entanglement is created through the interaction between them. We show that, upon local
measurement, classical mutual information can be extracted in order to fuel a quantum measurement engine.
By measuring the energy changes, we identify that the energy gain comes from the measurement channel and
corresponds to the cost of erasing the quantum correlations between qubits. The scheme is further generalized
to an N-qubit chain for energy upconversion. Our experimental results provide a thorough understanding of this
quantum engine with entanglement and local measurements as a new kind of fuel, as well as a general platform
for exploration of quantum engines.

DOI: 10.1103/PhysRevResearch.4.L032042

I. INTRODUCTION

A usual task of an engine is to extract mechanical work
from a hot bath in a cyclically repeated way [1–3]. Although
the goal is the same, the source of stochasticity can be
different when the working substance of the engine is quan-
tum. Analysis of the quantum engine was first introduced by
Scovil and Schulz-Dubois [4], where three-level masers were
used as the working substances for heat engines. Since then,
many efforts have been devoted to studying quantum effects
in thermodynamic [5,6] and quantum analogs of the classi-
cal engines [7–12]. Enthusiastic interest in quantum engines
is growing with possibilities of overcoming the traditional
classical efficiency limit [12,13], better understanding of ther-
malization in the quantum realm [14,15], and controlling
nonequilibrium dynamics of microscopic systems [16–18].

To understand the impact quantum thermodynamic effects
can have, the role of quantum measurements especially at-
tracts attention. Both selective measurements [19–23] (or the
read measurements with projecting the measured systems
to the selected eigenstate) and nonselective measurements
[24–26] (or unread measurements, the averaging of a selective
one over all the possible outcomes) have been used as a kind
of fuel in so-called measurement-driven engines. However, in
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these previous studies [27–30], classical measuring devices
have been used and the fuel is identified with the energetic
counterpart of the measurement postulate. Recently, a quan-
tum engine powered by entanglement and local measurements
was designed by Bresque et al. [31], in which quantum mea-
surements collapse the engine in some specific states that
may change the energy of the engine. Thus, similar to a bath,
measurements behave as a source of entropy and energy.

In this work, we experimentally simulate a quantum mea-
surement powered engine made of two qubits encoded by
two different degrees of freedom of single photons, which
become entangled through coherence exchange of a quan-
tum excitation realized by an interferometric network. We
implement the local measurement, which is modeled as the
entanglement between a qubit and a meter, and then identify
the fuel as the energetic cost to erase quantum correlation. By
applying the feedback according to the information extracted
by the measurement, the results show that the work efficiency
increases with the information extracted from the measure-
ment. All these processes, including evolution of interaction
between two qubits, local measurements, and feedback, are
realized with single photons and linear optics. Furthermore,
we extend the scheme to an N-qubit engine experimentally.
Our experimental results provide a deeper understanding of
entanglement and local measurements as fuels in quantum
engines.

II. EXPERIMENTAL DEMONSTRATION

We experimentally realize a quantum engine consisting of
two qubits A and B with transition frequencies ωA and ωB

(ωA < ωB, δ = ωB − ωA), respectively, which are governed by
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FIG. 1. (a) Illustration of a two-qubit engine cycle: (i) entangling evolution, (ii) measurement, (iii) feedback, and (iv) erasure. (b) Experi-
mental setup. A photon pair is generated by the spontaneous parametric downconversion in the periodically polled potassium titanyl phosphate
crystal (PPKTP), with one serving as the trigger and the other injected into the interferometric network as a heralded single photon. The initial
state of the two qubits is prepared in |RH〉. Subsequently, a unitary operation U (t ) is realized by an interferometric network consisting of beam
displacers (BDs), half-wave plates (HWPs), and quarter-wave plates (QWPs). To realize the local measurement on B, another BD is applied to
extend the spatial modes, which are used to encode the meter qubit. The feedback is realized by two BDs and the HWPs placed in different
spatial modes due to the outcomes of the measurement on B. Projective measurements and state tomography are used to measure the energy
and entropy of the engine, respectively. Photons are detected by coincidence using silicon avalanche photodiodes (APDs).

a Hamiltonian [31],

HT = HL + HC. (1)

Here HL = ∑
i=A,B h̄ωiξ

†
i ξi (ξi = |0〉i〈1|) and HC =

h̄g(ξ †
AξB + ξ

†
BξA)/2 are the free and interaction Hamiltonians,

respectively, and g is the coupling strength. For convenience,
we choose h̄ = 1 in the following. In our experiment, qubit
A is encoded in the left and right transverse spatial modes
of single photons generated via spontaneous parametric
downconversion, i.e., |0〉 ⇔ |L〉 and |1〉 ⇔ |R〉, whereas B
is encoded in their horizontal and vertical polarizations, i.e.,
|0〉 ⇔ |H〉 and |1〉 ⇔ |V 〉.

As illustrated in Fig. 1(a), there are four strokes for an
engine cycle: (i) entangling evolution, (ii) measurement, (iii)
feedback, and (iv) erasure. The first three are realized by the
setup in Fig. 1(b).

In the first stroke, qubit A is initially prepared in an ex-
cited state and B in a ground state, i.e., |ψ (0)〉AB = |10〉 =
|RH〉. The initial state is generated by single photons passing
through a polarizing beam splitter (PBS) and a beam dis-
placer (BD). The initial energy of the working substance is
ET(0) = EL(0) + EC(0) = Tr[|ψ (0)〉〈ψ (0)|HT] = ωA, where
EL(0) = ωA and EC(0) = 0 are the local and binding ener-
gies, respectively. As the engine is thermally isolated, the
evolution with the total interaction time τ can be described
by a unitary operator U (τ ) = e− i

h̄ HTτ , which can be decom-
posed as U (τ ) = LS(τ )R (see Appendix A for details). The
controlled operators L and R can be realized by inserting
half-wave plates (HWPs) in the corresponding spatial modes
serving as the control qubit, while {|H〉, |V 〉} is the target
qubit. For S(τ ), the polarization of photons serves as the
control qubit and the spatial mode is the target qubit. Then,
S(τ ) can be implemented by a cascaded interferometric net-
work consisting of BDs, HWPs, and quarter-wave plates
(QWPs) with certain setting angles H1 = (2θ − �τ − π )/4,
H2 = (π − ωAτ − ωBτ )/4, and Q1 = (2θ − π )/4 [32]. Here
� =

√
g2 + δ2 is the Rabi frequency characterizing the peri-

odic excitation exchange with period 2π/� and tan θ = g/δ.
Thus, for entangling evolution, the detuning δ, the coupling

strength g, and the total interaction time τ can be varied by
tuning the angles of wave plates (H1, H2, Q1) accordingly.
After this stroke, the qubits get entangled. Energy evolution
is characterized by achieving projective measurements with a
BD and wave plates.

In the second stroke, the engine is instantly coupled to
a classical measuring device, which performs a projective
measurement on qubit B at time τ instantaneously. We sim-
ulate this process by involving a third qubit as the meter to
store the measured outcome. Another two longitudinal spatial
modes of photons are introduced to encode the meter qubit,
i.e, |0〉 ⇔ |U 〉 and |1〉 ⇔ |D〉. The initial state of the meter
is |U 〉. The measurement is captured by a controlled uni-
tary operator UM = 1A ⊗ (|H〉B〈H | ⊗ 1M + |V 〉B〈V | ⊗ XM ),
which flips the state of the meter if qubit B is in the excited
state |V 〉, and does nothing otherwise. Here 1i (i = A or M)
is the identity operator and XM = |U 〉M〈D| + |D〉M〈U | is the
flipping operator. The unitary operator UM on the polariza-
tions and longitudinal spatial modes of photons is realized by
HWPs and a BD whose optical axis is perpendicular to that of
the one used in the first stroke.

By setting τ = π/� and tracing out the meter, the state of
the effective two-qubit system becomes a mixed state ρAB =
cos2 θ |RH〉〈RH | + sin2 θ |LV 〉〈LV |. Quantum correlations be-
tween the two qubits are then erased, implying that the
binding energy EC would tend to zero. The mean energy
Emeas = −EC(τ = π

�
) = δ sin2 θ gained from the measure-

ment thus corresponds to the cost to erase the quantum
correlations. The local measurement also increases the von
Neumann entropy of the engine Smeas = −Tr[ρAB log2 ρAB] =
− cos2 θ log2(cos2 θ ) − sin2 θ log2(sin2 θ ).

Note that the fueling step only involves the charac-
teristics of the qubits, which does not fully describe the
measurement process as it also creates classical correlations
between the qubits and the meter. The classical correlation is
quantified by the classical mutual information I (AB : M ) =
H (ρAB) + H (ρM ) − H (ρABM ), where H (ρ) = ∑

i −pi log2 pi

is the Shannon entropy and pi is the probability of the state ρ

being found in |i〉. For an ideal measurement, I (AB : M ) =
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FIG. 2. (a) Evolution of the local energy EL (red solid line), binding energy EC (blue solid line), and total energy ET (gray dashed line) as a
function of τ with fixed ωA = 1 and δ = g = 0.8. (b) The mean energy Emeas and (c) entropy Smeas input by the measurement process and their
ratio Emeas/Smeas as a function of the detuning δ with various coupling strength g and fixed ωA = 1. The black dashed lines indicate the limit
g � δ. (e) Emeas, (f) Smeas, and (g) Emeas/Smeas as a function of g with various δ and fixed ωA = 1. The black dot-dashed lines indicate the limit
δ � g. Experimental data are represented by color symbols. Error bars are due to the statistical uncertainty in photon-number counting.

Smeas is satisfied. For an imperfect measurement with an
error probability P of the meter being found in |D〉 (|U 〉)
and the qubit B in |H〉 (|V 〉), the extracted classical mutual
information is less, i.e., I (AB : M ) < Smeas. By varying the
angles of the HWP in front of the BD, H3 = arcsin

√
P/2, we

can realize measurements with various error probabilities P ∈
[0, 0.5]. For P = 0, the ideal measurement is implemented.
For P = 0.5, the imperfect measurement cannot yield any
information.

In the stroke of feedback, the information stored in the
meter is now processed to convert the fuel into work. If the
excitation is measured in B, a bit flip operation is performed
on both A and B. If the excitation is measured in A, nothing is
done. We achieve this stroke by a controlled unitary operation
of UF = 1AB ⊗ |U 〉M〈U | + XAB ⊗ |D〉M〈D|, where 1AB (XAB)
is the identity (flipping) operator. Therefore, the work extrac-
tion process is simulated and then the qubits are reset to their
initial states. The controlled operation UF can be realized via
two BDs and two HWPs at 45◦ placed in different longitudinal
spatial modes due to the outcomes of the measurement on B.

If all information is consumed, i.e., W = Emeas, the conver-
sion is optimal. After this stroke, the qubits’ entropy vanishes
and the classical mutual information is consumed completely,
whereas an incomplete consumption of information yields a
conversion ratio η = W/Emeas < 1. To quantify the energy
and entropy of the engine, projective measurements and state
tomography are realized with a BD and wave plates [33]. The
probability pi in the classical mutual information I (AB : M )
is measured by projecting the state to the computational basis
of both the qubits and the meter. The extracted work can be
quantified by the changes of the energy before and after the
stroke of feedback.

Finally, the correlation between the meter and the engine is
erased and the working substances combined with the meter
are initialized for the next cycle of the engine [34].

III. EXPERIMENTAL RESULTS

The evolution of the local and binding energies in a period
of the interaction with fixed ωA = 1 and δ = g = 0.8 is shown
in Fig. 2(a). The periodic exchange of the single excitation
between two qubits gives rise to oscillations (opposite os-
cillations) of the local energy (binding energy). The sum of
the energies remains constant and equals the energy of the
initial state theoretically. Our experimental results agree well
with the theoretical predictions [31]. The small experimen-
tal discrepancies from theory are caused by several factors,
including fluctuations in photon numbers, the inaccuracy of
wave plates, and dephasing due to the misalignment of the
BDs.

The mean energy Emeas and entropy Smeas input by the
measurement process and their ratio Emeas/Smeas as a function
of the detuning δ with various g and fixed ωA = 1 are shown
in Figs. 2(b)–2(d), whereas those as a function of g with
various δ and fixed ωA = 1 are shown in Figs. 2(e)–2(g). The
entropy Smeas is maximized for δ = g. The mean energy Emeas

increases with g and approaches the maximized values for
g � δ. For δ � g, Emeas is always zero, which implies that
local measurements and entanglement cannot be used as fuels
in this situation. For either of the limits g � δ and δ � g,
Smeas is always zero. The ratio of Emeas/Smeas characterizes
the efficiency of information-to-work conversion. Compared
to the engine fueled by a thermal bath [35,36], in which such
efficiency is bounded by the bath temperature, the efficiency in
Fig. 2(g) is not bounded and increases as g. In the limit g � δ,
a finite amount of work can be extracted with vanishing a
small amount of entropy.

The work extraction ratio η as a function of the detuning
δ and the classical mutual information I (AB : M ) with fixed
ωA = 1 and g = 0.8 is shown in Fig. 3(a), which clearly in-
dicates that the larger work value of information corresponds
to the larger conversion ratio. Figures 3(b) and 3(c) feature
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FIG. 3. (a) Theoretical predictions of the work extraction ratio η (color scale) as a function of the detuning δ and the classical mutual
information I (AB : M ). The parameters ωA = 1 and g = 0.8 are fixed. The gray area corresponds to η � 0, where energy cannot be extracted
during feedback. Experimental results of (b) η and (c) I (AB : M ) as a function of δ with various error probabilities P. Theoretical predictions
are shown in colored curves and experimental data are represented by color symbols. Error bars are due to the statistical uncertainty in
photon-number counting.

the work extraction ratio and the classical mutual information
as a function of δ with various error probabilities P, which
indicates that the larger the error probability P, the lower the
ratio η and the smaller the classical mutual information. For an
imperfect cycle with P > 0, the ratio decreases with increas-
ing δ. Interestingly, for δ < g, the work can be extracted even
if P = 0.5 and the classical mutual information I (AB : M )
equals zero.

IV. GENERALIZATION TO N QUBITS

As depicted in Fig. 4(a), the fueling mechanism can be
extended to an N-qubit chain with increasing frequencies
[31]. The frequency of qubit i is ωi = ωA + (i − 1)δ/(N −
1), where i = 1, . . . , N ; ω1 = ωA; and ωN = ωB, that is, the
detuning between every two adjacent qubits by δ/(N − 1).
Driven by entanglement and local measurements, the low
energy of the first qubit A can be upconverted to an arbitrar-
ily high energy at the last qubit B. At time t = 0, the first
qubit A is in the excited state and the coupling between A
and the second qubit is turned on with the Rabi frequency
�N =

√
g2 + δ2/(N − 1)2 and the coupling coefficient g. At

time t = π/�N , a local measurement is performed on the
second qubit. If the excitation is found, the same process is ap-
plied in the second and third qubits. Repeating the same tasks

FIG. 4. (a) Entanglement and local measurements based energy
upconversion by extending the fueling mechanism to a chain of N
qubits. (b) Measured successful probability Psucc of energy upcon-
version as a function of g with various chain length N , fixed ωA = 1,
and δ = 0.8. Theoretical predictions are shown in colored curves and
experimental data are represented by color symbols. Error bars are
due to the statistical uncertainty in photon-number counting.

constantly, qubit B will be detected in the excited state with
probability Psucc = sin2(N−1) θN , where tan θN = (N − 1)g/δ.

Energy upconversion can be simulated by translating the
measurements on different qubits in the chain to those on
two qubits at different times [37], in which the entangling
evolution of each adjacent two qubits can be realized by
two BDs and wave plates (see Appendix B for details). The
local measurement on the qubit can be realized by ruling out
photons with one of the spatial modes |R〉 and passing photons
in |L〉 through for further evolution. After N − 1 times inter-
action and measurement, the successful probability of energy
upconversion is the probability of the final state being found
in |LV 〉.

Figure 4(b) shows the measured successful probability
Psucc of energy upconversion as a function of g with fixed
ωA = 1 and δ = 0.8. By setting N = 2, N = 4, and N = 6,
the experimental results suggest that Psucc increases with both
the coupling strength g and the length of the chain N . For the
limit g → ∞, N → ∞, the last qubit B is found in the excited
state deterministically.

V. CONCLUSION

We report the experimental simulation of a two-qubit en-
gine fueled by entanglement and local measurements. We
implement a cycle of this engine at the quantum level with sin-
gle photons and provide a typical and successful exploration
of the entanglement engines fueled by quantum measure-
ments. Experimental results explicitly show that the engine
efficiency can approach unity by fully consuming the informa-
tion carried by measurement. Compared to the Szilard engine
[38,39], in our experiment, the work can be extracted without
any information about qubits. We also show that the two-qubit
engine can be extended to multiqubit ones by extending the
spatial modes of single photons. Thus, the experimental work
provides a versatile platform for the systematic experimental
study of quantum engines and will inspire further investi-
gation of entanglement quantum engines in various physical
platforms [40–42]. Our studies shed light on the fueling mech-
anism and will contribute to future engines starting to use
quantum measurements as fuels.
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APPENDIX A: FURTHER INFORMATION FOR
EXPERIMENTAL IMPLEMENTATION

A pair of photons is created via spontaneous parametric
downconversion, one serving as a trigger and the other as a
heralded single photon. Qubit A is encoded in the left and
right transverse spatial modes of the photon, i.e., |0〉 ⇔ |L〉
and |1〉 ⇔ |R〉, whereas qubit B is encoded in the horizontal
and vertical polarization degrees of the photon, i.e., |0〉 ⇔ |H〉
and |1〉 ⇔ |V 〉. After the single photons pass through a PBS
and a BD, the initial state of the two qubits is then in |RH〉.

For interaction, the unitary operator can be decomposed
as U (τ ) = LS(τ )R, where L, S(t ), and R are the controlled
two-qubit gates [32]. For R and L, the spatial mode of photons
serves as the control qubit and the polarization mode is the
target qubit, i.e.,

R = |L〉〈L| ⊗ (−|H〉〈H | + |V 〉〈V |)
+ |R〉〈R| ⊗ (|H〉〈V | + |V 〉〈H |), (A1)

L = |L〉〈L| ⊗ (|H〉〈V | + |V 〉〈H |)
+ |R〉〈R| ⊗ (|H〉〈H | − |V 〉〈V |). (A2)

As shown in Fig. 2 of the main text, R is realized by inserting
HWPs at 90◦ and 45◦ in the left and right spatial modes,
respectively. Similarly, L is realized by inserting HWPs at
45◦ and 0◦ in the left and right spatial modes. For S(τ ), the
polarization of photons is the control qubit and the spatial
mode is the target one. Thus, it can be further decomposed
as S(τ ) = TM(τ )T , where

T =

⎛
⎜⎝

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞
⎟⎠ (A3)

is realized by using a set of HWPs at 45◦ and 0◦ and two BDs,
and

M(τ ) = |L〉〈L| ⊗ UL(t ) + |R〉〈R| ⊗ UR(τ ) (A4)

is realized by inserting wave plates in the certain spatial mode.
Here UL and UR are unitary operations acting on the polariza-
tion mode, i.e.,

UL =
( −i sin θ sin t�

2 cos t�
2 + i cos θ sin t�

2
cos t�

2 − i cos θ sin t�
2 −i sin θ sin t�

2

)
,

UR =
(

0 −e− it (ωA+ωB )
2

−e
it (ωA+ωB )

2 0

)
. (A5)

This method [32] can be used to decompose any higher di-
mensional unitary operations.

Setting τ = π/�, the state of engine is evolved to
|ψAB(τ = π/�)〉 = i(cos θ |RH〉 − sin θ |LV 〉). At this time, a
local measurement is instantaneously performed on qubit B

and its outcome is encoded in a meter M. In our experi-
ment, another two longitudinal spatial modes of photons are
introduced to encode the meter qubit, i.e, |0〉 ⇔ |U 〉 and
|1〉 ⇔ |D〉. The initial state of the meter is |U 〉. The local
measurement with various error probabilities P ∈ [0, 0.5] on
B is achieved by three HWPs and a BD whose optical axis
is perpendicular to that of the one used in the first stroke.
The angle of the HWP in front of the BD is set to H3 =
arcsin

√
P/2 and two HWPs right behind the BD are set to

45◦. Subsequently, the state of the engine combined with the
meter after the measurement is

|ψABM〉 = i cos θ |RH〉(√1 − P|U 〉 +
√

P|D〉)

− i sin θ |LV 〉(
√

P|U 〉 + √
1 − P|D〉). (A6)

To quantify the total energy during different strokes,
the system is projectively measured in such a way
as to obtain the average of its total energy com-
pose of the local and binding contribution. With
HL = ωB|LV 〉〈LV | + ωA|RH〉〈RH | + (ωA + ωB)|RV 〉〈RV |
and HC = ∑

± g/4(|LV 〉 ± |RH〉)(〈LV | ± 〈RH |), we
achieve the projective measurements in the basis of
{|LH〉, |LV 〉, |RH〉, |RV 〉, (|LV 〉+|RH〉)/2, (|LV 〉−|RH〉)/2}
by using a BD, two QWPs, three HWPs, and a PBS. The
mean energy Emeas can thus be obtained by measuring the
total energy difference between before and after the stroke
of measurement, and the extracted work W is obtained
by measuring the total energy difference between before
and after the stroke of feedback. For the increased von
Neumann entropy Smeas = −Tr[ρAB log2 ρAB], it can be
obtained by constructing ρAB via state tomography, where 16
measurements in the bases of {|L〉, |R〉, (|L〉 − i|R〉)/2, (|L〉 +
|R〉)/2} ⊗ {|H〉, |V 〉, (|H〉 − i|V 〉)/2, (|H〉 + |V 〉)/2} are
needed. The 16 measurements can also be realized via a BD,
two QWPs, three HWPs, and a PBS by setting the angles
of the wave plates in different angles. The classical mutual
information I (AB : M ) = H (ρAB) + H (ρM ) − H (ρABM ) with
H (ρ) = ∑

i −pi log2 pi can be obtained by projecting the
state to the computational basis of both the qubits and the
meter.

APPENDIX B: GENERALIZATION TO AN
N-QUBIT CHAIN

The fueling mechanism can be extended to an N-qubit
chain, where the low energy of the first qubit A can be up-
converted to an arbitrary high energy of the last qubit B.
The demonstration is illustrated in Fig. 5(a). At time t = 0,
qubit A is excited, and the other qubits are initialized in the
ground states. Subsequently, the coefficient g between qubit A
and the second qubit is switched on with the Rabi frequency
�N =

√
g2 + δ2/(N − 1)2. At time t = π/�N , the energy of

qubit A is measured. If it is found in the ground state, the
excitation is successfully converted to the second qubit. Note
that the process is equivalent to a measurement on the second
qubit as two qubits are entangled and projective measurement
on either qubit leads the other qubit to be in a maximal mixed
state. The same task is applied between the excited second
qubit and the third qubit. Repeating this process, finally the
last qubit B can be excited with certain probability.
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FIG. 5. Energy upconversion. (a) Circuit to achieve the energy upconversion in an N-qubit chain. (b) Upper panel: the simplified circuit of
(a), which is achieved by translating measurements on different qubits into those on only two qubits at different times. Lower panel: experiment
setup. By initializing the state of photons in |LH〉, the interaction is simply realized by two BDs and wave plates.

Through the qubit-efficient scheme [37], the quantum cir-
cuit in Fig. 5(a) can be further simplified to the one with two
qubits, which are dubbed as the operational and conversional
qubits. This is achieved by translating measurements on dif-
ferent qubits into those on only two qubits at different times.
As shown in the upper panel in Fig. 5(b), we first initialize
the state of the qubits to |10〉, and successively apply the
unitary operator U (t ). A local projective measurement |0〉〈0|
is subsequently performed on the operational qubit. Before
the output state is fed into the next interaction, a swap gate is
applied to reset the state of the qubits to |10〉. The last local
measurement on the operational qubit yields the conversional
qubit being excited with probability Psucc = sin2(N−1) θN .

The operational qubit is encoded in the spatial modes of
the signal photons, i.e., |L〉 = |0〉 and |R〉 = |1〉, while the
conversional qubit is encoded in the polarization states of
the photons, |H〉 = |0〉 and |V 〉 = |1〉. For interaction, the
evolved two-qubit states |ψ (t )〉 = U (t )|RH〉 can be rewritten

as |ψ (t )〉 = U ′(t )|LH〉. Thus, the process of the interaction
can be simulated by applying U ′(t ) on the state of |LH〉.
Similar to U (t ), the unitary operator U ′(t ) can be decom-
posed as U ′(t ) = LTM′(t )R′ with R′ = |L〉〈L| ⊗ (|H〉〈V | +
|V 〉〈H |) + |R〉〈R| ⊗ 1 and M′(t ) = |L〉〈L| ⊗ UL(t ) + |R〉〈R| ⊗
1. As illustrated in the lower panel of Fig. 5(b), the initial
state |LH〉 is prepared by passing the heralded single photons
through a PBS. The controlled transformations R′ and M′(t )
can be realized by inserting wave plates in the left mode of the
photons, while T and L can be implemented by two BDs and
HWPs with certain setting angles.

The local measurement is performed on the operational
qubit by transmitting the photons in the left mode to the next
step. By using a HWP setting at 45◦, the photons are reset
to the state of |LH〉 to feed into the second interaction. Af-
ter N − 1 times interaction and measurement, the successful
probability of energy upconversion is the probability of the
photons being found in the state of |LV 〉.
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