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We study the superradiance of optical phonons during the two- to three-dimensional (2D-3D) crossover of
the light-matter interaction in multilayers of atomic crystals. We show the emergence of a superradiant regime
with a mode having a linewidth first increasing linearly with the number N of monolayers, and then decreasing
as N−3 to zero because of the formation of stationary phonon polaritons. The linewidth culminates to values
of the order of the longitudinal-transverse splitting. We estimate the extremum of the radiative efficiency for
various 2D materials in the superradiant regime. We predict radiative efficiencies larger than 50% for optical
phonons emitting between 6 and 165 μm. Superradiance appears as a key resource for mid- and far-infrared
optophononics and advanced thermal management using multilayers of 2D materials as the active medium.
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Superradiance is the collective phenomenon where N iden-
tical elementary systems coherently radiate via a common
light field with a spontaneous emission lifetime inversely
proportional to N [1]. Initially demonstrated in atomic and
molecular gases [2,3], superradiance was later observed in
condensed matter, in the context of the excitonic emission in
a large variety of systems [4–10]. In a recent paper [11], we
discussed the analogy between excitons and optical phonons
in the optical response of two-dimensional (2D) systems. We
pointed out the existence of a finite spontaneous emission
lifetime for 2D optical phonons, with a radiative efficiency
as high as ∼10% in monolayers of hexagonal boron ni-
tride (hBN) [11]. In contrast, in bulk hBN, the 3D optical
phonons are in the strong-coupling regime with the elec-
tromagnetic field, leading to phonon polaritons that do not
decay radiatively. Motivated by the flexibility of lamellar com-
pounds to provide either monolayers or multilayers of atomic
crystals [12], we address here the 2D-3D crossover of the
light-matter interaction for optical phonons in superlattices of
N identical monolayers.

We show the existence of superradiant optical phonons in
multilayers of 2D materials. By taking the example of hBN,
we study the emergence of a superradiant regime with a sym-
metric mode having a linewidth first increasing linearly with
the number of monolayers, and then decreasing as N−3 to zero
because of the formation of the stationary phonon-polariton
states. The linewidth of the superradiant optical phonons cul-
minates to values of the order of the longitudinal-transverse
splitting in bulk hBN. We estimate the extremum of the ra-
diative efficiency for various 2D materials in the superradiant
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regime. We predict radiative efficiencies larger than 50% for
optical phonons with emission wavelengths between 6 and
165 μm.

In the following, we consider a superlattice of N hBN
monolayers, that consists in a section of a bulk hBN crystal.
The interlayer distance b = 0.335 nm is thus one-half of the
c parameter in hBN [13]. Such a superlattice can be prepared
by exfoliating a bulk hBN crystal, as for many layered com-
pounds with weak van der Waals interlayer coupling [12].
According to the description of the hBN vibrational excita-
tions in Ref. [14], there are two E1u phonon modes in hBN,
where the boron (B) atoms vibrate in phase inside the unit
cell (Fig. 1, left), as the nitrogen (N) atoms do, but in oppo-
site directions. These modes are degenerate strictly at q = 0,
and they split for q �= 0 giving rise to the E1u longitudinal
(LO) and E1u transverse (TO) optical phonons. Since the
microscopic B-N dipoles are the same from one basal plane
to another, a macroscopic polarization builds up in the hBN
crystal for the E1u modes [14]. Their energies are the roots of
the real part of the dielectric function, and their 30 meV split-
ting corresponds to the width of the reststrahlen band in bulk
hBN [15]. The Raman-active E2g mode is doubly degenerate
with B atoms vibrating in opposite phase inside the unit cell
(Fig. 1, right), as the N atoms. The electric dipoles in adjacent
planes are of opposite sign and the resulting macroscopic
polarization vanishes [14].

Dealing with the vibrational excitations of a N-layer sec-
tion of a hBN crystal implies that the 2D optical phonons
radiate in phase in N identical monolayers. This is a
unique configuration in superradiance where the N elemen-
tary systems are often incoherently excited so that they
first have to phase lock before a macroscopic coherence
appears and produces a burst of emission [2–10]. Here,
the van der Waals interaction between the atomic layers
guarantees the phase relation between the atomic vibrations
in adjacent basal planes, and hence the coherent radia-
tive interaction of the E1u optical phonons in the hBN
superlattice.
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FIG. 1. Atomic displacements inside the unit cell of hBN for the
E1u and E2g optical phonons at q = 0. The c axis is perpendicular to
the in-plane displacements (arrows). The top B and N atoms are in a
different atomic layer than the bottom ones. δ > 0 characterizes the
electronegativity.

We describe the optophononic properties of our super-
lattice in the framework of a semiclassical model based on
a transfer matrix approach, in analogy to 2D excitons in a
superlattice of quantum wells [16]. Other frameworks have
been developed for the treatment of the exciton-polariton
crossover [17–19]. Since the microscopic dipoles are in phase
in adjacent layers for the E1u modes (Fig. 1, left), the transfer
matrix of the superlattice is (MP)N , where M and P describe
the monolayer and the interlayer spacer, respectively (see
Appendix A), N = e/b with e the thickness of the multilayer
hBN slab, and b = 0.335 nm is the spacer thickness.

Taking a radiative linewidth γr = 0.2 meV and a total
linewidth � = 2 meV according to Ref. [11], and a spacer
dielectric constant ε∞ = 4.95 from Ref. [20], and without
any fitting parameter, the limit N � 1 leads to a reflectivity
spectrum with a stop band, the so-called reststrahlen band, of
width much larger than the 30 meV in bulk hBN [15]. This
inconsistency is due to the fact that, in this first model, the
interaction between the hBN monolayers only stems from the
radiative coupling. Whereas this assumption is relevant for
excitons localized in quantum wells [16], it is no longer valid
for phonons because of the interlayer coupling by the van der
Waals interaction. We thus introduce a renormalization factor
f for the refractive index of the background medium where
the superlattice of hBN monolayers is embedded. In our mod-
ified transfer matrix model, the renormalized refractive index
writes f

√
ε∞. In order to maintain the optical thickness

√
ε∞e

invariant for the multilayer hBN slab, one has in turn to con-
sider an effective number of monolayers Ñ . Taking Ñ = N/ f
leads to the correct optical thickness f

√
ε∞Ñb = √

ε∞e. In
the following, the optophononic properties of multilayer hBN
of thickness e are derived from the transfer matrix (MP)Ñ ,
with the renormalization factor f as the only adjustable
parameter.

We compare our calculations to the thickness-dependent
reflectivity spectra available in the Supplemental Material of
Ref. [21]. The renormalization factor f is adjusted to reach the
longitudinal-transverse splitting �LT in hBN, i.e., the energy
splitting between the LO and TO phonons (dashed and dotted
lines in Fig. 2, respectively), which determines the width of
the reflectivity reststrahlen band. Taking f = 8.8 leads to the

FIG. 2. Buildup of the reflectivity reststrahlen band as a function
of the hBN thickness. (a) Experimental data for hBN thicknesses
e = 60 (red), 105 (orange), 210 (green), 1020 (blue), and 6400 nm
(violet), adapted from the Supplemental Material of Ref. [21].
(b) Semiclassical calculations with a transfer matrix approach for a
superlattice of Ñ hBN monolayers (Ñ = e/b f with f = 8.8).

well-documented value �LT = 30 meV in hBN [15]. It also
fairly reproduces the reflectivity spectrum of the thickest hBN
slab (e = 6400 nm, violet line in Fig. 2). Our model not only
accounts for the smooth transition from a Lorentzian profile
at low hBN thickness to the textbook reststrahlen band in the
bulk limit, but also for the gradual increase of the reflectivity
maximum as a function of the hBN thickness (Fig. 2). This
contrasts with a classical model based on a local dielectric
function ε(ω), for which the reflectivity maximum is already
higher than 90% for the thinnest hBN slab (e = 60 nm, see
Appendix B). The remaining discrepancy between experiment
and theory at low hBN thickness in Fig. 2 is attributed to
the possible existence of different multilayer segments, the
total thickness of which is measured by atomic force mi-
croscopy [21], but only the top one is probed by reflectivity.
The smooth buildup of the reflectivity reststrahlen band results
from the emergence of superradiance for optical phonons in
the hBN superlattice. Our semiclassical model allows detailed
insight into the superradiant optical phonons at low Ñ number,
as discussed below.

The reflectivity spectrum is displayed in Fig. 3(a) for 1 �
Ñ < 20. In the case Ñ = 1, the reflectivity contrast C1 is given
by the 2D limit (γr/�)2, as initially pointed out for excitons
in semiconductor quantum wells [22]. With γr = 0.2 meV
and � = 2 meV [11], C1 = 10−2, consistently with the violet
reflectivity spectrum in Fig. 3(a). The reflectivity contrast
has thus an upper bound given by the square of the radia-
tive efficiency η2, where η = γr/(γr + γnr ) with γr + γnr � �

because of pure dephasing processes. The increase of the
reflectivity contrast CÑ with the effective number of mono-
layers in Fig. 3(a) is a direct signature for higher radiative
efficiencies in thicker hBN superlattices. Since the nonradia-
tive linewidth γnr is determined by anharmonic processes that
hardly depend on the hBN thickness [11,23], this indicates
that the radiative linewidth increases with Ñ . This effect is also
observable in Fig. 3(a) from the broadening of the Lorentzian
reflectivity line as a function of Ñ .

For a given multilayer stack of Ñ monolayers, there are in
fact Ñ modes of the coupled photon-phonon system. Only one

L032040-2



SUPERRADIANCE OF OPTICAL PHONONS IN … PHYSICAL REVIEW RESEARCH 4, L032040 (2022)

FIG. 3. (a) Reflectivity spectrum of a hBN multilayer stack at low Ñ (1 � Ñ < 20) for γr/� = 0.1. Inset: Zoom around E0 of the reflectivity
spectrum at Ñ = 5 for γr/� = 1. (b) Imaginary and (c) real parts of the poles of the transmission of the hBN multilayer stack as a function
of Ñ for γr/� = 1. Tristars correspond to the transmission poles beyond our numerical precision, with a size proportional to their degeneracy.
The dashed line in (b) is the linear function Ñγr . For all calculations, γr = 0.2 meV.

of these Ñ modes is observed in Fig. 3(a). This comes from the
low value of the γr/� ratio (γr/� = 0.1), blurring the other
Ñ − 1 ultranarrow resonances related to almost dark modes
of the coupled photon-phonon system. In order to resolve
these subradiant modes, one needs to perform the reflectiv-
ity calculations for γr/� = 1. An example is given in the
inset of Fig. 3(a) for Ñ = 5, where the reflectivity spectrum
is considerably zoomed in a spectral window of few μeV
(∼few 10−2 cm−1) around the phonon energy E0. The ex-
pected four resonances are resolved, and they are all redshifted
with sub-μeV linewidths. Such ultranarrow lines result from
the negligible interaction with the transverse electromagnetic
field freely propagating outside the multilayer stack. These
subradiant modes are the precursors of the phonon-polariton
states developing for Ñ � 1, with a lower polaritonic branch
characterized by a large density of states just below the bare
phonon energy E0.

The complex energies of the Ñ coupled photon-phonon
modes can be calculated from the poles of the transmission
of the whole multilayer stack [16]. Figures 3(b) and 3(c)
display the imaginary and real parts of the complex energies,
respectively, for 1 � Ñ � 8. When the poles are beyond our
numerical precision, the values are plotted as tristars with a
size proportional to their degeneracy. When Ñ increases, one
follows the apparition of more and more subradiant modes
with a negative energy shift [Fig. 3(c)], and a width much
smaller than γr [Fig. 3(b)]. In contrast, one mode has a width
increasing as Ñγr [dashed line in Fig. 3(b)], i.e., the genuine
fingerprint of superradiance for optical phonons. We point out
that phonon superradiance was previously discussed, but for
other types of cooperative effects involving phonons [24,25].
Although the shift is much smaller than γr for small Ñ ,
it scales quadratically with Ñ [Fig. 3(c)], and it eventually
surpasses the linewidth for larger values of Ñ , as detailed
below (Fig. 4). Nevertheless, in thin hBN superlattices, the
reflectivity contrast CÑ is determined by the superradiant
mode, so that a fair approximation of CÑ at low Ñ is given

by the expression CÑ ∼ ( Ñγr

Ñγr+(�−γr )
)2 ∼ ( Ñη

(Ñ−1)η+1
)2. For η =

0.1, one gets C9 ∼ 0.25 and C19 ∼ 0.45, consistently with
Fig. 3(a).

While the linewidth of the symmetric mode first in-
creases linearly with Ñ in the regime of superradiance, it
then saturates and decreases as Ñ−3 for Ñ � 1, as shown
in Fig. 4 where the complex energy of only this mode is
displayed (circles and diamonds for the real and imaginary
parts, respectively). When the multilayer stack is thick enough
in comparison to λ0/2

√
ε∞ (shaded area limit in Fig. 4),

propagation effects allow a reversible energy exchange be-
tween photons and phonons, and phonon polaritons build up

FIG. 4. Half width at half maximum (HWHM) and shift of the
symmetric mode of the coupled phonon-photon system during the
2D-3D crossover. Solid lines: Classical calculations using a local
dielectric function for describing light propagation in a multilayer
hBN slab of thickness e. Symbols: Semiclassical calculations using
the generalized transfer matrix approach for a periodic array of
Ñ monolayers with an interlayer spacing b as a function of f Ñb.
�LT = 30 meV is the longitudinal-transverse splitting in bulk hBN.
Shaded area: e � λ0/2

√
ε∞, with λ0 = hc/E0.
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during the crossover to the strong-coupling regime in 3D [11].
Since polaritons are the eigenstates of the coupled photon-
phonon system in 3D, the linewidths of all Ñ modes vanish
when Ñ � 1. Remarkably, the energy shift saturates and
converges to an asymptotic value given by the longitudinal-
transverse splitting �LT (dashed line in Fig. 4).

In order to accurately determine the optimal thickness of
the maximal linewidth and to test the robustness of our ap-
proach with respect to the introduction of the renormalization
factor f , we implement a second method of calculations.
As shown by Andreani in the excitonic case of the 2D-3D
crossover and the buildup of exciton polaritons [16], the
complex energy of the symmetric mode can be alternatively
calculated in a classical framework by finding the complex
root of the equation [16,26],√

ε(ω)

ε∞
tan

(√
ε(ω)

ωe

2c

)
= i, (1)

where ε(ω) = ε∞[1 + �LT/(E0 − h̄ω)] is here the local di-
electric function of the hBN slab in the limit of negligible
damping. The results are displayed as solid lines in Fig. 4.
The calculations are basically identical within the semiclas-
sical and classical frameworks. Both models predict values
of the maximal linewidth and maximal shift differing by less
than 10%, and the asymptotic limit is exactly �LT in the two
cases. We note they also coincide on the thickness giving the
maximal linewidth, i.e., e ∼ 1.1 μm in the classical model
and f Ñb ∼ 0.99 μm in the semiclassical one based on the
transfer matrix approach. This optimal thickness is slightly
below λ0/2

√
ε∞ of the order of 1.6 μm in hBN.

A key point in Fig. 4 is the fact that the half width at
half maximum (HWHM) has an extremum of order �LT. This
effect is not specific to hBN, and it is a generic result that does
not depend on the parameters of the materials, as checked for
different �LT, E0, and ε∞. Therefore the radiative efficiency
ηm at maximal superradiance can be easily estimated for other
materials from

ηm ∼ 2�LT

2�LT + �Raman
, (2)

where the width of the Raman line �Raman is assumed to
provide a fair estimate for the nonradiative linewidth γnr .

In Table I we list a few lamellar compounds by decreasing
�LT. These crystals belong to well-known families that are
actively studied in 2D materials research, such as mono- and
dichalcogenides of transition metals, and 2D halides. The
larger the Born effective charge, the wider the reststrahlen
band, so that an ionic crystal such as ZrS2 has much larger
�LT than MoS2 with a quasicovalent bonding [27]. Boron and
nitrogen being light elements, the reststrahlen band reaches
particularly high values in hBN. We note the absence of a
monotonous dependence of the phonon energy E0 with �LT.
However, the selected 2D materials in Table I span almost
continuously a wide spectral range in the mid- and far-infrared
domains (see the λ column in Table I). The Raman linewidth
barely varies from one material to another, with values of
a few to tens of cm−1, i.e., in the meV range. This origi-
nates from the highly efficient anharmonic decay of optical
phonons on a timescale of typically 1 ps in a large variety

TABLE I. Comparison of various 2D materials: longitudinal-
transverse splitting �LT, Raman linewidth �Raman, estimated radiative
efficiency at maximal superradiance ηm, and emission wavelength
range λ.

2D material �LT (cm−1) �Raman (cm−1) ηm λ (μm)

hBN 242 [20] 8 [23] 0.98 6.3–7.3
ZrS2 170 [27] 20 [28] 0.95 28–55
CdI2 75 [27] 4 [29] 0.97 75–165
GaSe 40 [30] 8 [31] 0.91 39–47
MoS2 3 [27] 5 [32] 0.5 25.8–26

of crystals [33,34]. Using Eq. (2) we estimate the radiative
efficiency at maximal superradiance ηm. We predict extremely
high values (Table I). While the radiative linewidth γr of
2D optical phonons is always a fraction of γnr resulting in
low radiative efficiencies in monolayers (with the exception
of hBN where η ∼ 10% [11]), superradiance in superlattices
of monolayers allows us to reach ηm of order unity for all
2D materials (Table I). This phenomenology contrasts with
the one of 2D excitons, where the radiative efficiency can
take large values in single quantum wells and atomically thin
crystals, provided the sample quality is high enough. Here, the
cooperative coherent coupling of 2D optical phonons is the
key for achieving high radiative yields, opening the avenue of
optophonics in multilayers of atomic crystals, with fascinating
fundamental properties to explore and applications in infrared
emission and advanced thermal management.

We have addressed the 2D-3D crossover of the light-matter
interaction for optical phonons in superlattices of atomic crys-
tals. We have shown the emergence of superradiance with
a symmetric mode of the photon-phonon system having a
linewidth increasing linearly with the number of monolay-
ers. In the 3D limit of bulk crystals, this linewidth vanishes
because of the formation of the stationary phonon-polariton
states. We have estimated the extremum of the radiative
efficiency at maximal superradiance for various lamellar com-
pounds actively studied in 2D materials research. We predict
radiative efficiencies of order unity for optical phonons emit-
ting in the mid- and far-infrared domains, at wavelengths be-
tween 6 and 165 μm. Superradiance appears as a key resource
for this field of optophononics and advanced thermal manage-
ment using multilayers of 2D materials as the active medium.
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supported by the BONASPES Project No. (ANR-19-CE30-
0007), the NAPOLI Project No. (ANR-18-CE24-0022), the
ZEOLIGHT Project No. (ANR-19-CE08-0016), and the
CHROMIC Project No. (PdL- N°2018-12126).

APPENDIX A: TRANSFER MATRIX APPROACH

The transfer matrix connecting the electric fields on the left
and right sides of a 2D monolayer is [11]

M = 1

t

(
1 −r
r 1 + 2r

)
, (A1)
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FIG. 5. (a) Experimental reflectivity data for hBN thicknesses e = 60 (red), 105 (orange), 210 (green), 1020 (blue), and 6400 nm (violet),
adapted from the Supplemental Material of Ref. [21]. (b) Classical calculations for a hBN slab of thickness e with the local dielectric function
determined in Ref. [20]. (c) Semiclassical calculations with a transfer matrix approach for a superlattice of Ñ hBN monolayers (Ñ = e/b f
with f = 8.8).

with t = 1 + r, where r is the reflectivity amplitude of a 2D
monolayer given by

r = i γr

2

E0 − h̄ω − i �
2

, (A2)

with E0 the phonon energy, γr the radiative linewidth given by
h̄
T1

with T1 the spontaneous emission lifetime, and � the total

linewidth given by 2h̄
T2

with T2 the decoherence time.
Propagation inside a medium of complex refractive in-

dex
√

ε∞ and thickness b is characterized by the diagonal
matrix P,

P =
(

eiφ 0
0 1/eiφ

)
, (A3)

where φ = −√
ε∞ωb/c is the complex dephasing.

APPENDIX B: REFLECTIVITY CALCULATIONS

In this Appendix, we compare the reflectivity spectra cal-
culated with two methods: (1) the semiclassical model of
the generalized transfer matrix approach used in the core of
the text [Fig. 5(c)], and (2) the classical model of the local
linear response for the dielectric function given in Ref. [20]
[Fig. 5(b)].

While the semiclassical model accounts for the gradual
increase of the reflectivity maximum as a function of the hBN
thickness, the classical model leads to a reflectivity maxi-
mum already higher than 90% for the thinnest hBN slab (e =
60 nm). As explained in the main text, the semiclassical model
allows a detailed insight into the emergence of superradiant
optical phonons.
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