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We show that quantum coherence can enhance the performance of a continuous quantum heat engine in the
Lindblad description. We investigate the steady-state solutions of the particle-exchanging quantum heat engine,
composed of degenerate double quantum dots coupled to two heat baths in parallel, where quantum coherence
may be induced due to interference between relaxation channels. We find that the engine power can be enhanced
by the coherence in the nonlinear response regime, when the symmetry of coupling configurations between dots
and two baths is broken. In the symmetric case, the coherence cannot be maintained in the steady state, except
for the maximum interference degenerate case, where initial-condition-dependent multiple steady states appear
with a dark state.
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Introduction. Quantum thermodynamics is an emerging
field in view of the significant progress of technology which
allows one to scale down heat-energy converting devices to
nanoscale where quantum effects become crucial [1]. Exam-
ples of such quantum heat engines (QHEs) include lasers,
solar cells, and photosynthetic organisms, where, along with
a few-level quantum structure [2–4], a phenomenon of quan-
tum coherence plays an important role [5–10]. In particular,
coherence in system-bath interactions that originates from the
interference may enhance the power [11–13] and efficiency
at maximum power [14] of the laser and solar cell and is
responsible for highly efficient energy transfer in photosyn-
thetic systems [15]. These effects have been confirmed in the
experimental studies of polymer solar cells [16]. The noise-
induced coherence is different from the internal coherence
in the system Hamiltonian [17], which was recently demon-
strated in the nitrogen-vacancy-based microscopic QHE in
diamond [18], and manifests as an improved efficiency in
spectroscopic pump-probe measurements [19].

So far, the majority of quantum coherence effects has
been studied in continuously working bosonic devices
[11,12,14,15,20]. Here, we focus on the fermionic QHE au-
tonomously working without an external source, such as
driving laser, made up of repulsively interacting double
quantum dots with the degenerate energy levels, coupled to
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fermionic baths in parallel, depicted in Fig. 1. In contrast to
previous studies [21–24], we introduce a parameter for the
strength of interference between relaxation channels, which
plays a crucial role. We derive the condition for maintaining
quantum coherence in the steady state and investigate the
engine performance, controlled by the tunneling coefficients
between dots and baths and the interference strength.

We find that the power enhancement of the QHE can be
achieved in the nonlinear response regime [25]. When cou-
pling configurations assigned to each bath are symmetric, a
quantum coherence initially induced by interference between
relaxation channels would eventually disappear in the long-
time (steady-state) limit. The exceptional case emerges for the
degenerate energy level configuration at the maximum inter-
ference strength, when the dynamics is found to be localized,
manifested as a mathematical singularity in the evolution op-
erator evoking the so-called dark state [26], characterized by
multiple steady states with finite quantum coherence depend-
ing on a given initial state. This singularity also emerges in
more general settings with coherent dynamics originated from
the energy-level degeneracy and parallel couplings, including
a single bath case. Note that a spurious quantum coherence
can be observed for a very long time (quasistationary state
regime) near the maximum interference.

When the coupling configuration symmetry is broken in
terms of either tunneling coefficients or interference strengths,
a genuine new steady state emerges with nonvanishing quan-
tum coherence, producing a quantum current between two
baths through dots in addition to the conventional classical
current. This quantum current yields an extra contribution to
the engine power, which can be positive in a specific parame-
ter regime.

Model. We first derive the quantum master equation (QME)
[27] for the density operator ρ̂S(t ) of the fermionic QHE in the
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limit of weak coupling to hot (h) and cold (c) baths, where
a temperature difference Th − Tc > 0 and a potential bias
μc − μh > 0 are applied. For simplicity, we assume a single
energy level for each quantum dot with the degenerate energy
levels E1 = E2 = E and infinitely large repulsion between
particles in dots. The system then can be described using three
two-particle eigenstates: |0〉 denotes empty dots, and |1〉 and
|2〉 stand for the occupation of dots 1 and 2, respectively, by
a single particle. In addition, coherent hopping between dots
is also forbidden and the only source of coherence is due to
coupling to thermal baths.

The interaction between system and bath a(= h, c) is given
by Ĥa

SB = ∑
d,k ga

dkb̂a†
k |0〉〈d| + H.c., where b̂a†

k is the operator
creating a single particle with momentum k in bath a, and ga

dk

is the tunneling coefficient between dot d (= 1, 2) and bath
a. After tracing out bath degrees of freedom with the Born-
Markov and the rotating wave approximations (RWA) [27,28],
we obtain the QME which reads [29]

∂t ρ̂S =−i[ĤS, ρ̂S]+
∑

a

4∑
α,β=1

�a
αβ

(
L̂αρ̂SL̂†

β − 1

2
{L̂†

β L̂α, ρ̂S}
)

,

(1)

where the system Hamiltonian is ĤS = E (|1〉〈1| + |2〉〈2|) and
the Lindblad operators are L̂1 = |1〉〈0|, L̂2 = |2〉〈0|, L̂3 = L̂†

1,
and L̂4 = L̂†

2. Note that we neglected the Lamb shift term (see
the Supplemental Material [30]). The dissipation matrix �a is
given by

�a =

⎛
⎜⎜⎜⎜⎝

wa
1+ φa

√
wa

1+wa
2+ 0 0

φa∗√wa
1+wa

2+ wa
2+ 0 0

0 0 wa
1− φa∗√wa

1−wa
2−

0 0 φa
√

wa
1−wa

2− wa
2−

⎞
⎟⎟⎟⎟⎠, (2)

where wa
d± represents the transfer rate of a particle between

dot d and bath a; the subscript + (−) denotes the inflow
(outflow) with respect to the dot. These rates are given by
wa

d+ = 2π |ga
d |2Na and wa

d− = 2π |ga
d |2Na, where ga

d = ga
d (E ),

Na = Na(E ) is the Fermi-Dirac distribution in bath a and
Na = 1 − Na (see the derivation in Sec. S1 of the Supplemen-
tal Material (SM) [30]).

The off-diagonal terms in Eq. (2) represent interference
between particle transfer associated with different dots. The
interference effect is manifested as the nonzero off-diagonal
terms of ρ̂S, e.g., 〈1|ρ̂S|2〉 �= 0. The coherence may not vanish
even in the long-time limit due to the degeneracy; otherwise,
it could be washed away under the RWA. In realistic exper-
iments, however, the energy levels fluctuate in time due to
fluctuations of gate voltages, which is not included in the sys-
tem Hamiltonian. One expects that energy fluctuations around
the degeneracy will result in partial coherence or dephasing
[31], which can be phenomenologically added to our QHE
model. Considering an observation of the exponentially de-
caying coherent current in a quantum-dot experiment [32],
we introduce a phenomenological parameter φa represent-
ing a dephasing effect due to fluctuating energy levels in
Eq. (2), assigned to each bath and which can be estimated
experimentally (see Sec. S1 C of the SM [30]); |φa| = 1
stands for permitting the full interference of relaxations with
bath a, while φa = 0 corresponds to no quantum effect of
system-bath interactions. In earlier bosonic QHE models, φa

is governed by the angle between dipole moments corre-
sponding to two dots which ensures that |φa| � 1 [11]. For
convenience, φa is treated as a real number. Note that the
second term in Eq. (1) is a standard form of the quantum
dynamical semigroup [27], which guarantees the positive and
trace-preserving dynamics since �a in Eq. (2) is the positive-
semidefinite matrix for |φa| � 1.

To solve the QME, it is convenient to
map the density operator to a vector: P =

(ρ00, ρ11, ρ22, ρ12, ρ21, ρ01, ρ02, ρ10, ρ20) T, where ρi j =
〈i|ρ̂S| j〉. The last four components vanish in the long-time
limit because there is no dynamics producing the coherence
between the empty and occupied states so that only dephasing
is allowed, as seen in Sec. S2 of the SM [30]. Thus, we write
the corresponding Liouville equation as

∂t P = L P, (3)

where L is a 5 × 5 matrix with the reduced vector P =
(ρ00, ρ11, ρ22, ρ12, ρ21) T. Introducing Wd = ∑

a wa
d+, W d =∑

a wa
d−, 	 = ∑

a φa
√

wa
1+wa

2+, and 	 = ∑
a φa

√
wa

1−wa
2−,

the L matrix then reads

L=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−W1 − W2 W 1 W 2 	 	

W1 −W 1 0 −	/2 −	/2

W2 0 −W 2 −	/2 −	/2

	 −	/2 −	/2 −W 1+W 2
2 0

	 −	/2 −	/2 0 −W 1+W 2
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(4)
Steady-state solutions. From the steady-state condition,

LP(∞) = 0, we find the relations as

ρ11(∞) = W1W 2 − 	(W2 + W 2 − W1)ρ12(∞)

W1W 2 + W 1W2 + W 1W 2
,

ρ22(∞) = W 1W2 − 	(W1 + W 1 − W2)ρ12(∞)

W1W 2 + W 1W2 + W 1W 2
, (5)

with the population conservation (ρ00 + ρ11 + ρ22 = 1) and

ρ12(∞) = ρ21(∞) = 2	 − (2	 + 	)[ρ11(∞) + ρ22(∞)]

W 1 + W 2
.

(6)
Note that the classical solution is recovered from Eq. (5),
when the coherence term vanishes [ρ12(∞) = 0]. This clas-
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sical incoherent condition is determined by Eq. (6) as

2	W 1W 2 − 	(W1W 2 + W 1W2) = 0, (7)

which is obviously satisfied for the trivial case with 	 = 	 =
0 (or, equivalently, φa = 0). Note that the equilibrium case
(Th = Tc and μh = μc) also satisfies this incoherent condition
due to Wd/W d = 	/	 with Nh = Nc.

In general, Eqs. (5) and (6) leads to a 2 × 2 matrix equa-
tion for ρ11 and ρ22 as

Lss

(
ρ11(∞)

ρ22(∞)

)
=

(
W1 − (2		)/(W 1 + W 2)

W2 − (2		)/(W 1 + W 2)

)
, (8)

with

Lss =
⎛
⎝W1 + W 1 − 	(2	+	)

W 1+W 2
W1 − 	(2	+	)

W 1+W 2

W2 − 	(2	+	)
W 1+W 2

W2 + W 2 − 	(2	+	)
W 1+W 2

⎞
⎠.

(9)
Unless the determinant |Lss| vanishes, the steady-state solu-
tion is uniquely defined, which is given explicitly in Eq. (S29)
of the SM [30].

We next consider a special r-symmetric configuration
[22], where the couplings are symmetric for both baths, i.e.,
gh

2/gh
1 = gc

2/gc
1 ≡ r, leading to wa

2±/wa
1± = r2. We take r > 0

for simplicity. Assuming an additional symmetry for the co-
herence parameter as φh = φc ≡ φ, one can show Wd/W d =
	/	 even in nonequilibrium (Nh �= Nc), satisfying the in-
coherence condition in Eq. (7). However, at the maximum
interference (|φ| = 1), the matrix Lss becomes singular with
|Lss| = 0 and multiple steady-state solutions emerge, which
will be discussed later. With the broken symmetry (φh �= φc),
the quantum coherence survives with a nonclassical solution
[ρ12(∞) �= 0]. In a more general case with gh

2/gh
1 �= gc

2/gc
1,

the classical solution is still possible by adjusting φh and
φc appropriately to satisfy the incoherent condition, but Lss

cannot be singular.
Steady-state currents. A particle current Ja

d representing the
time increment of the particle density of dot d due to bath a
can be obtained from Eq. (1) as

Ja
d = wa

d+ ρ00 − wa
d− ρdd − φa

√
wa

1−wa
2−

(ρ12 + ρ21

2

)
. (10)

In the steady state, Ja
d should be balanced by two reservoirs

such that Jh
d (∞) = −Jc

d (∞) ≡ Jd (∞) and the total current
is given by J = ∑

d Jd (∞). Transferring an electron from
bath h to bath c, the electron gains the energy governed by
the difference between the chemical potentials μc − μh, and
thus the QHE power yields P = (μc − μh)J . As the heat flux
from bath h is given by Q̇h = (E − μh)J , the QHE efficiency
does not vary with the particle current as η = P/Q̇h = (μc −
μh )/(E − μh).

The particle current can be further separated into the clas-
sical and the quantum parts as

Jd (∞) = Jcl
d + �d ρ12(∞), (11)

where φa = 0 is set for the classical part in Eqs. (5) and (10)
as

Jcl
1 = �N

|L0| (2π )2
∣∣gh

1

∣∣2∣∣gc
1

∣∣2
W 2, Jcl

2 = �N

|L0| (2π )2
∣∣gh

2

∣∣2∣∣gc
2

∣∣2
W 1,

(12)

FIG. 1. A schematic illustration of the QHE, composed of two
heat baths and a two-dot system. The dot energies, E1 and E2 (in
this work, E1 = E2), are higher than the chemical potentials, μh and
μc. wa

d± represents the transfer rate of a particle between dot d and
bath a, and φa

√
wa

1±wa
2± denotes the interference amplitude. Inset: A

circuit analogy of resistors in parallel.

with the external (bath) bias �N ≡ Nh − Nc and |L0| =
W1W 2 + W 1W2 + W 1W 2 [L0 = Lss(φa = 0)], and Jcl

d > 0 en-
suring the positive power requires �N > 0.

The second term represents the quantum current Jq
d ≡

�d ρ12(∞), induced by the coherence, and quantum speed
�d and ρ12(∞) are given in Sec. S3 of the SM [30]. Note
that the quantum current for each dot can be both positive
and negative, depending on the parameter values, as well as
the total quantum current Jq = ∑

d Jq
d (see Fig. S1 of the SM

[30]).
As ρ12(∞) is also proportional to bias �N , the QHE can

be viewed as an analog of an electronic circuit with parallel
resistors R1 and R2 under the external potential bias (see the
inset of Fig. 1). The conductance σd of dot d is defined by
the Ohm’s law of Jd (∞) = σd�N , which is the reciprocal
of resistance as σd = R−1

d . The conductance is also divided
into the classical and quantum parts as σd = σ cl

d + σ
q
d from

Eq. (11). The classical part σ cl
d is always positive, while the

quantum part can be either positive or negative. In Fig. 2, we
plot the relative quantum conductance σ

q
d /σ cl

d in the (φc, φh )

FIG. 2. Relative quantum conductances of (a) dot 1 and (b) dot
2, denoted as σ

q
1 /σ cl

1 and σ
q
2 /σ cl

2 , respectively, in the (φc, φh) plane.
Here, we used Nh = 0.2 and N c = 0.1, and the r-symmetric configu-
ration with |ga

1|2 = 8π/(1 + r2) and |ga
2|2 = 8πr2/(1 + r2) at r = 4.

Along the line of symmetry (purple), ρ12(∞) = 0, while �d = 0
defines the black line. The quantum conductances vanish along both
lines. Note that a back flow [Jd (∞) < 0] occurs near φh = −φc =
±1 in (a), where the negative quantum current overmatches the
positive classical current.
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plane in the r-symmetric configuration. Near but off the
symmetric line of φh = φc, we find the total quantum conduc-
tance σ q = ∑

d σ
q
d > 0, which means that the performance of

the QHE can be enhanced beyond the classical limit in this
parameter regime.

For small �N , we expand the relative quantum conduc-
tance as

σ
q
d /σ cl

d = S0
d + S1

d �N + · · · , (13)

where S0
1 ∼ −(φh − φc)2, S0

2 = S0
1/r2, and S1

d ∼ φh(φh −
φc) for the r-symmetric configuration (see Sec. S3 of the SM
[30] for details). Interestingly, σ

q
d is always nonpositive in

the linear response regime (S0
d � 0), but may become posi-

tive due to S1
d in the nonlinear regime as �N increases for

φh(φh − φc) > 0. Note that S1
d can dominate over S0

d near the
symmetric line (φh = φc). For r > 1, the negative quantum
effect (S0

d ) is relatively stronger for dot 1, which has a weaker
coupling with baths, as also seen in Fig. 2, which might be
applicable to a filtering circuit.

Although ρ12(∞) becomes finite off the symmetric line
(φh �= φc), the quantum current may vanish again when �d =
0 in Eq. (11), which is denoted by black lines in Fig. 2. This
can happen by balancing the quantum contributions from the
stochastic part and the interference part, which are represented
by the first two terms and the third term in the right-hand side
of Eq. (10), respectively. The quantum enhancement occurs
only between two lines of �d = 0 and ρ12(∞) = 0. For gen-
eral cases outside of the r-symmetric configuration, these two
lines are simply tilted (see Fig. S1 in the SM [30]), but the
general features of the QHE are essentially unchanged.

Coupling-configuration symmetric case. We focus on the
symmetric case with φh = φc = φ in the r-symmetric config-
uration, where W2 = r2W1, W 2 = r2W 1, 	 = rφW1, and 	 =
rφW 1, yielding Wd/W d = 	/	. Then, the QME in Eq. (1)
can be reduced to the single effective bath case, defined by
a single coherence parameter φ and a rate W1. A single bath
typically enforces the system to reach a classical equilibrium
state in the long-time limit. However, with degenerate energy
levels, the off-diagonal (coherent) terms in the dissipation
matrix � in Eq. (2) cannot be ignored even under the RWA.
Thus, these coherent terms slow down the quantum dynamics
significantly (|φ| < 1), approaching the classical steady state
via a long-lived quasistationary state with nonzero coherence.

We first calculate the eigenvectors vi and the corresponding
eigenvalues λi of the Liouville matrix L. Details are given in
Sec. S4 of the SM [30]. We find the steady-state eigenvector
v T

1 = (ᾱ, α, α, 0, 0) with λ1 = 0, where α = W1/(2W1 + W 1)
and ᾱ = 1 − 2α, which corresponds to the classical fixed
point. Other eigenvalues are negative except for |φ| = 1, and
thus the classical fixed point represents the unique steady
state. At |φ| = 1, however, another eigenvector v4 also has
the zero eigenvalue, allowing multiple fixed points spanned by
v1 and v4. Note that |Lss| = r2(1 − φ2)(2W1 + W 1)W 1 from
Eq. (9), which vanishes at these singular points of |φ| = 1.

Defining a matrix V = (v1, v2, v3, v4, v5), the formal so-
lution for P(t ) reads

P(t ) = V(1, χ2eλ2t , χ3eλ3t , χ4eλ4t , χ5eλ5t ) T, (14)

FIG. 3. Dynamic trajectories starting from (ρ12, ρ11) = (0, 0) for
various φ with r = 1, W1 = 0.25, and W 1 = 0.75, yielding α =
0.2 and α = 0.6. Numerical data are denoted by various symbols
for φ = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1 (from left to right). The time
interval between the same symbols is set to be 0.2 and the gray
arrows denote the direction of the dynamics. The classical fixed
point is at (ρ12, ρ11) = (0, 0.2), while the coherent fixed point is at
(0.125,0.125).

where χi depends on the initial condition P(0). At |φ| = 1,
λ1 = λ4 = 0, the steady state P(∞) depends on P(0). In
Fig. 3, we display typical dynamic trajectories in the (ρ12, ρ11)
space with r = 1, starting from the empty initial condition of
ρi j (0) = 0 except for ρ00(0) = 1. As expected, all trajectories
end up in the single (classical) fixed point in the long-time
limit except for |φ| = 1, where the new coherent fixed point
appears with ρ12(∞) �= 0. Note that the dynamics for φ � 1
detours around the coherent fixed point for a significantly long
time (quasistationary state), approaching the classical fixed
point, which allows for experimental observation even in the
presence of small decoherence.

The additional zero eigenvalue (λ4 = 0) at the singular
points (|φ| = 1) implies another conservation law in addition
to the probability conservation. Specifically, we find r2ρ̇11 +
ρ̇22 − rρ̇12 − rρ̇21 = 0 for φ = 1 from Eq. (4), or r2ρ11(t ) +
ρ22(t ) − rρ12(t ) − rρ21(t ) = I0 for all time t , where I0 is
a constant determined by the initial condition. We obtain
the steady-state solutions using Eq. (5) and the conserva-
tion law, written as ρ11(∞) = α − [rᾱ − 1−r2

r α] ρ12(∞) and

ρ22(∞) = α − [ ᾱ
r + 1−r2

r α] ρ12(∞), with

ρ12(∞) = ρ21(∞) = r

1 + r2

1

1 − α

(
α − I0

1 + r2

)
, (15)

which depends on the initial state. In Fig. 3, we set r = 1
and I0 = 0, so the coherent fixed point is determined by the
intersection of two lines, ρ11 = ρ12 and ρ11 = α − ᾱρ12. For
I0 �= 0, the coherent fixed point is shifted along the curve
of ρ11 = α − ᾱρ12. The case of φ = −1 yields the same
results except for changing the signs of ρ12 and ρ21 (see
Eq. (S61) of the SM [30]). Note that the coherence can be
finite and initial-state dependent even for �N = 0 (equilib-
rium). This may raise a doubt that the quantum current Jq

d
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might not vanish in equilibrium, which is not the case since
the quantum speed �d is proportional to bias �N (in fact,
�d = φ( 1+r2

r )Jcl
d in Eq. (S62) of the SM [30]). The relative

quantum conductance can be positive even in the linear re-
sponse regime, i.e., S0

d can be positive, depending on the
initial state.

The phenomena of multiple fixed points responsible for
a dark state emergence are observed in both fermionic [22]
and bosonic [26,33] systems. Here, the system state can be
recast in a rotated orthonormal basis as |0〉, |+〉 = (|1〉 +
r|2〉)/Nr , and |−〉 = (r|1〉 − |2〉)/Nr with Nr = √

1 + r2.
Then, the system Hamiltonian is given as ĤS = E (|+〉〈+| +
|−〉〈−|) and the interaction Hamiltonian becomes Ĥa

SB =
Nr

∑
k ga

1kb̂a†
k |0〉〈+| + H.c. at the singular points. Note that

the state |−〉 remains unchanged under the evolution operator,
which corresponds to the dark state at φ = 1, i.e., any initial
population in the dark state remains intact or 〈−|ρ̂S|−〉 =
(r2ρ11 + ρ22 − rρ12 − rρ21)/N2

r should be conserved. We
can easily extend our result to the degenerate multiple dots
with multiple occupancy allowed. As the dark state decouples
with baths, it may be useful to protect quantum information
from decoherence [34].

Note that the Lindblad description of degenerate quantum
dots coupled to a single bath also yields multiple steady states
with coherence at the maximum interference, in contrast with
the common knowledge that a system coupled to a single bath
should reach the incoherent thermal equilibrium, regardless
of its initial state. Thus, the phenomenological parameter φ is
natural to guarantee the thermal steady state for |φ| < 1. Near
the singular points, one may observe a long-living quasista-
tionary state with the information of initial-state-dependent
coherent solutions.

Conclusion. We investigated all possible steady-state so-
lutions for the continuous quantum-dot QHE coupled to
terminals in parallel for various tunneling coefficients and
interference strengths. Here, the interference strength plays a
similar role of the alignment of dipoles [35] in the bosonic
system and acts as a source of decoherence. We found that
unless the interference is completely negated, the steady states
possess the coherence, which generates an extra quantum
current, resulting in the enhanced QHE performance in a
specific region of the parameter space, where the nonposi-
tive linear quantum conductance is overcome by nonlinear
contributions. We remark that a fine tuning of the parameter
values is necessary for a significant enhancement such as the
near symmetric coupling parameters. More enhanced QHE
may require further investigation for the origin of nonlin-
ear quantum conductance. Recently, the single-quantum-dot
(fermion) heat engine was realized experimentally [36]. Since
double-quantum-dot systems coupled to baths in parallel have
been studied experimentally [37–39], the parallel-double-dot
engine is also expected to be synthesized to confirm the en-
hancement of the QHE performance by thermal noises.
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