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We demonstrate a generic mechanism to realize topological flat minibands by confining massive Dirac
fermions in a periodic moiré potential, which can be achieved in a heterobilayer of transition metal dichalco-
genides. We show that the topological phase can be protected by the symmetry of moiré potential and survive
to arbitrarily large Dirac band gap. We take the MoTe2/WSe2 heterobilayer as an example and find that the
topological phase can be driven by a vertical electric field. By projecting the Coulomb interaction onto the
topological fat minibands, we identify a correlated Chern insulator at half filling and a quantum valley-spin Hall
insulator at full filling which explains the topological states observed in the MoTe2/WSe2 in the experiment. Our
work clarifies the importance of Dirac structure for the topological minibands and unveils a general strategy to
design topological moiré materials.
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Introduction.—Electrons confined by periodic potential in
a crystal can behave very differently from a free particle.
Perhaps the most prominent example is graphene in which
the timereversal, inversion, and threefold rotation symmetries
together stabilize a pair of Dirac cones at Brillouin zone
corners [1]. The massless Dirac fermion (DF) can acquire
a mass when the timereversal or inversion symmetry is bro-
ken, like in transition metal dichalcogenide (TMD) [2,3]. The
nontrivial topological properties associated with the exotic
quasiparticles enable novel quantum effects such as the Klein
tunneling [4], valley Hall effect [5,6], and valley-selective
circular dichroism [3,7,8] in these 2D materials which are con-
sidered candidates for the next-generation microelectronics.

When overlapping these 2D materials, the moiré superlat-
tices (MSL) formed by misalignment open a new possibility
to confine DF in a periodic moiré potential generated by
interlayer hybridization and lattice corrugation. Recently, the
topological flat minibands identified in twisted multilayer
graphene [9–27], ABC-stacked-trilayer graphene/hBN het-
erostructure [28–30], and TMD homobilayer [31] have evoked
great interest because the interplay between electronic corre-
lation and nontrivial topology can stabilize exotic quantum
states including unconventional superconductivity [32–62]
and fractional Chern insulator [63–67].

TMD heterobilayers are another important class of MSL
and are being considered as platforms to simulate the Hub-
bard model. Their single-particle physics is modeled by holes
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with parabolic dispersion subject to a moiré potential that
yields topologically trivial moiré minibands [68,69]. In this
approach, the massive Dirac structure of TMD is neglected by
perturbatively dropping the conduction (remote) band, which
is far away from the Fermi energy (of the order of 1eV).
This theoretical framework can describe the experimentally
observed Mott insulator and Wigner crystal in the WSe2/WS2

heterobilayer [70–75].
Strikingly, recent experiments report the correlated Chern

insulator (CCI) at half filling (ν = 1 hole per moiré unit
cell) and quantum valley-spin Hall insulator (QVSHI) at
full filling (ν = 2 holes per moiré unit cell) in an AB-
stacked MoTe2/WSe2 heterobilayer under a vertical electric
field [76]. The experimental observations suggest valley-
contrasting Chern bands in the TMD heterobilayer that cannot
be explained by the existing model [68,69]. This motivates
us to investigate a general problem that whether massive DF
confined in a moiré potential can give rise to topological
minibands.

In this Letter, we study the behavior of massive DF in a
moiré potential. Surprisingly, we show that, no matter how
large the Dirac band gap is, topological flat minibands can
emerge when the moiré potential has certain symmetries. Our
study indicates that the Dirac nature of electrons plays a
crucial role in determining the topology of moiré minibands.
In particular, we find that the Berry curvature induced by
Dirac remote bands stabilizes an intrinsic topological phase,
which is absent if remote bands are ignored. By applying
our model to the MoTe2/WSe2 heterobilayer, we demonstrate
that the Coulomb interaction can stabilize a CCI at ν = 1 and
a QVSHI at ν = 2 in a vertical electric field, which agrees
with the recent experiment [76]. Furthermore, the potential
realizations of our model on the surface of an axion insulator
and in a monolayer TMD under spatially periodic modulation
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are also proposed. Therefore, our work unveils a general route
towards topological flat minibands in moiré systems.

Model.—The continuum model describing a massive DF in
a moiré potential reads

Hτ = hk,τ + V (r), hk,τ = vF (τkxσx + kyσy) + mσz, (1)

where vF is the Fermi velocity, m is the Dirac mass, and
σx,y,z are the Pauli matrices acting on pseudospin. τ = ±1
determines the chirality of the massive DF and is dubbed
valley index in TMD [3]. The Dirac Hamiltonian hk,τ yields
a massive Dirac cone E±,k = ±

√
v2

F k2 + m2 with a direct
band gap � = 2m. Here we consider the moiré poten-
tial V (r) = 2V0

∑3
j=1 cos(G j · r + φ) in TMD heterobilayers

[68,69], where G j = 4π√
3aM

(cos 2π j
3 , sin 2π j

3 ) and aM is the
MSL constant. Hτ is invariant under the threefold rota-
tion since C3hk,τC−1

3 = hR3k,τ and V (R3r) = V (r) where C3 =
diag(e− 2πτ i

3 , 1) [77] and R3 are the threefold rotation operator
and matrix.

As far as the energy spectrum is concerned, the massive
DF described by hk,τ can be approximated by a free fermion
with effective mass m∗ = �/2v2

F through the second order
perturbation theory when the Dirac band gap � � vF |k| and
V0. Then Eq. (1) is reduced to

H0 = − k2

2m∗ + V (r), (2)

which is widely adopted to describe the moiré minibands in
TMD heterobilayers [68,69]. However, as will be shown ex-
plicitly below, the topology of minibands can be very different
for Eqs. (1) and (2) because H0 has time-reversal symmetry
(TRS) while Hτ does not. The TRS in Hτ is broken by the
massive DF; i.e., T hk,τT −1 = h−k,−τ where the TRS operator
T = K equals the complex conjugate operator K. Therefore,
the topological moiré minibands can emerge from Eq. (1) but
not Eq. (2).

Topological phases.—Due to the C3 symmetry of Hτ , the
Chern number Cτ of the moiré miniband can be determined
by its C3 eigenvalues ητ (k) at the C3-invariant points [78]

e
2π i

3 Cτ = ητ (γ )ητ (κ )ητ (−κ ), (3)

where γ represents the moiré Brillouin zone (MBZ) center
and ±κ are the MBZ corners. Here we focus on the top va-
lence band. It is easy to show ητ (γ ) = 1, while ητ (±κ ) can be
evaluated to the leading order by the degenerate perturbation
theory in which the coupling among three degenerate Bloch
states at ±κ1,2,3 are considered, as shown in Fig. 1(a). In the
basis of the Bloch states of the valence band without a moiré
potential, i.e., {|u±κ1,τ 〉 , |u±κ2,τ 〉 , |u±κ3,τ 〉} with hk,τ |uk,τ 〉 =
−

√
v2

F k2 + m2 |uk,τ 〉, the matrix representation of the moiré
potential operator is

V±κ,+ = V ∗
∓κ,− =

⎛
⎝ 0 w(±φ) w(±φ)∗

w(±φ)∗ 0 w(±φ)
w(±φ) w(±φ)∗ 0

⎞
⎠, (4)

whose matrix element w(±φ) = 〈u±κ1,+|V |u±κ2,+〉 =
V0ei(±φ− π

3 )( 1
2 + i

√
3

2
√

1+s
) depends on the dimensionless pa-

rameter s = 64π2v2
F /9�2a2

M . Interestingly, s is proportional
to the intrinsic Berry curvature �I (k) ≈ 2v2

F /�2 of massive

FIG. 1. (a) Schematic MBZ in a TMD heterobilayer. The MBZ
center is shifted to be coincident with the +K valley of the active
layer. The green lines denote the coupling among three degenerate
Bloch states at MBZ corners. (b) Eigenvalues of Eq. (4) as a function
of arg(w). (c) Topological phase diagram of the continuum model
Eq. (1) in terms of φ and s. (d) Topological phase diagram of the
MoTe2/WSe2 heterobilayer in terms of φ and θ . The yellow (blue)
regions are the topological (trivial) phase with valley Chern numbers
C± = ∓1 (C± = 0). The red dashed lines in (d) are the topological
phase boundaries predicted by Eq. (5).

DF (which is valid for � � at |k| in the MBZ) times the MBZ
area AM = 8π2/

√
3a2

M .
The eigenvalues of Eq. (4) are E0 = 2Re(w) and E±1 =

−Re(w) ± √
3Im(w), and the corresponding eigenstates have

the C3 eigenvalues C3 |Ej〉 = ei 2π j
3 |Ej〉. In Fig. 1(b), the three

eigenvalues are shown as a function of arg(w) and the top
valence band at ±κ changes among E0 and E±1 through the
band crossing at arg(w) = (2n + 1)π/3 with n ∈ Z where the
topological transition can occur. In this way, we can identify
ητ (±κ ) and hence the valley Chern number Cτ according to
Eq. (3). Moreover, the TRS guarantees η+(±κ ) = η−(∓κ )∗
and C+ = −C−. A global phase diagram in terms of φ and s
is constructed in Fig. 1(c). The topological phases with C± =
∓1 emerge at φ = (2n + 1)π/3 and then expand in a wider
range of φ as s increases from zero. This indicates that the
intrinsic Berry curvature of massive DF measured by s plays a
crucial role in determining the topology of moiré minibands.
The topological phase boundaries can be obtained analytically
by demanding arg[w(±φ)] = (2n + 1)π/3 that yields

s = 3 cot2

(
φ − 2nπ

3

)
− 1, (5)

with φ ∈ [(2n − 1)π/3, (2n + 1)π/3].
Significantly, the topological phases at φ = (2n + 1)π/3

persist to arbitrarily large Dirac band gap since s → 0 when
� → ∞, as shown in Fig. 1(c). To understand the peculiar be-
havior, it is noticed that the moiré potential minima for holes
form a honeycomb lattice with inversion symmetry P only at
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FIG. 2. (a) Valence bands of the MoTe2/WSe2 heterobilayer with θ = 1◦, φ = 59◦, and V0 = 8 meV. The blue solid and red dashed bands
are from the continuum models in Eqs. (1) and (2), respectively. (b) and (c) Berry curvatures of the top blue and red bands in (a). The black
dashed hexagon encloses the MBZ.

these φs. Then free fermions coupled to the moiré potential,
as described by Eq. (2), give rise to a pair of Dirac cones at
MBZ corners that is stabilized by the PT and C3 symmetries,
same as that in graphene. When the free fermion is replaced
by massive DF in Eq. (1), the PT symmetry is broken as
PT hk,τ (PT )−1 = hk,−τ that gaps out the Dirac cones and
leads to topological minibands. This mechanism to generate
topological minibands is protected by the symmetry of moiré
potential and is independent on the detailed model parameters.
The derivation of φ from (2n + 1)π/3 breaks the P symmetry
and induces a staggered potential on the honeycomb lattice
that can drive the topological transition as in the Haldane
model [79]. When φ = 2nπ/3, the moiré potential also has
P symmetry but its minima for holes form a triangular lattice
that leads to a trivial top valence band [80].

MoTe2/WSe2 heterobilayer.—To verify the topological
phase, we take the MoTe2/WSe2 heterobilayer as an ex-
ample. MoTe2/WSe2 has the type-I band alignment with a
valence band offset about 200 to300 meV. The valence band
maximum is from MoTe2 whose Fermi velocity is vF =
2.526 eV Å and Dirac band gap is � = 1.017 eV [81]. The
lattice mismatch is δ ∼ 7% that results in a MSL with aM =
a/

√
δ2 + θ2 where θ is a twist angle and a = 3.565 Å is the

lattice constant of MoTe2 [82]. The direct interlayer tunneling
is suppressed by the band offset and by the spin-valley locking
in the AB-stacking pattern that requires flipping the electron
spin. Therefore, the massive DF from MoTe2 coupled to the
moiré potential provided by WSe2 can be described by Eq. (1).
By employing the plane wave expansion of the continuum
model, we obtain the topological phase diagram in terms of φ

and θ in Fig. 1(d). Here the red dashed lines are the topological
phase boundaries predicted by Eq. (5) and are consistent with
the direct numerical calculation of Eq. (1). In Fig. 1(d), only
the topological phase around φ = π/3 is shown and other
topological phases can be obtained by shifting φ by 2nπ/3.

To compare the moiré minibands for Eqs. (1) and (2), we
choose θ = 1◦ and φ = 59◦ in the topological phase and set
V0 = 8 meV. In Fig. 2(a), the blue and red energy bands are
from Eqs. (1) and (2), respectively, and show good agreement
with each other. Here only the valence bands from the +K val-
ley are plotted, and those from the −K valley can be obtained
by TRS. The Berry curvature of the top blue band is shown in

Fig. 2(b) and yields a valley Chern number C+ = −1, while
that of the top red band is antisymmetric in Fig. 2(c) due to
the emergent TRS in Eq. (2). The Wannier orbitals of the
moiré minibands and the trivial phases from different models
are compared in the Supplemental Material [83].

Electric-field-driven topological transition.—According to
the density functional theory (DFT) calculation, the phase of
the moiré potential in AA- and AB-stacked TMD heterobi-
layer is unlikely close to φ ∼ (2n + 1)π/3 [68,69,84]. Here
we show that φ can be tuned by a vertical electric field. It
is noted that the two stacking configurations have different
lattice corrugations that have been identified in both the STM
measurements [85,86] and DFT calculations [84,87]. The
electric field couples to the lattice corrugation and modifies
the moiré potential as

H ′
τ = hk,τ + V (r) + eE⊥z(r)

= hk,τ + 2V ′
0

3∑
j=1

cos

(
G j · r + φ + φ′

2
+ β

)
,

(6)

where E⊥ is the vertical electric field and the topography
of the corrugated layer is approximated by the lowest har-
monics z(r) ≈ z0

∑3
j=1 cos(G j · r + φ′). The role of electric

field can be described by a modified moiré potential with
V ′

0 =
√

V 2
0 + e2E2

⊥z2
0/4 + V0eE⊥z0 cos(φ − φ′) and tan β =

2V0−eE⊥z0
2V0+eE⊥z0

tan( φ−φ′
2 ). As E⊥ ramps up, the phase of the moiré

potential in Eq. (6) changes continuously from φ to φ′ when
eE⊥z0 � V0, which points to an electric-field-driven topolog-
ical phase transition.

In the AA-stacked TMD heterobilayer, z(r) is maximal at
RM

M and minimal at RM
X and RX

M [85–87]. In the AB-stacked
TMD heterobilayer, z(r) is maximal (minimal) at RX

X (RM
X ),

while HM
M is in between [84,86]. Here M and X refer to the

metal and chalcogen, while R and H represent the AA- and
AB-stacking. The super- and subscript denote atoms from the
top and bottom layer that are aligned locally [83]. The varia-
tion of z(r) in experiments translates into φ′ ∼ 0 and −π/2 for
the AA- and AB-stacked heterobilayer, as shown in Figs. 3(a)
and 3(b). φ of the moiré potential is usually determined by
fitting the continuum model to the DFT energy bands. It has
been reported that φ ∼ π/12 for AB-stacked MoTe2/WSe2
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FIG. 3. (a) and (b) Topography of the corrugated AA- and AB-stacked TMD heterobilayer. The white parallelogram encloses the moiré
unit cell. (c) and (d) Topological phase diagrams of the AA- and AB-stacked MoTe2/WSe2 heterobilayer in terms of φ and E⊥. The yellow
(blue) regions are the topological (trivial) phase with valley Chern numbers C± = ∓1 (C± = 0). The red dashed lines are the topological phase
boundaries predicted by Eq. (5). The green dashed lines in (d) are for φ = π/12 and E⊥ = 0.69 V/nm. The inset of (d) shows the change of
topological phase at φ = π/12 vs � and the two dash lines are the upper and lower critical electric fields extracted from Ref. [76].

[84] while φ for AA-stacked MoTe2/WSe2 is still unclear.
Nevertheless, most AA-stacked TMD heterobilayers have a φ

of π/6 ∼ π/4 [69,88] and it is natural to expect AA-stacked
MoTe2/WSe2 has φ in the same range. The critical E⊥ for
the topological transition can be obtained from Eq. (5) by
replacing φ with the phase of the modified moiré potential
in Eq. (6). For θ = 0◦, V0 = 4.3 meV, and z0 = 0.024 nm,
the topological phase diagrams in terms of φ and E⊥ are
displayed in Figs. 3(c) and 3(d) for AA- and AB-stacked
MoTe2/WSe2, respectively. The former shows a topological
phase for φ around π/6 ∼ π/4 in negative E⊥, while the latter
exhibits two topological phases for φ ∼ π/12 in both positive
and negative E⊥. Note that the positive (negative) E⊥ reduces
(enlarges) the valence band offset and is applied in the ex-
periment. Therefore, we can focus on E⊥ > 0 and there is no
topological phase for AA-stacked MoTe2/WSe2 as observed
in the experiment [89]. For AB-stacked MoTe2/WSe2, a topo-
logical phase appears for E⊥ within 0.66 ∼ 0.73 V/nm that
agrees well with the experimental result of 0.68 ∼ 0.70 V/nm
[76]. The Dirac gap could be underestimated by DFT calcula-
tions (for example, � = 1.72 eV according to Ref. [90]). Our
theory exhibits a reasonable agreement with the experimental
data for a relevant range of �, as displayed in the inset of
Fig. 3(d).

CCI and QVSHI.—To stabilize a Chern insulator, it is
required to break the TRS, which can be achieved by the
Coulomb interaction. The Coulomb interaction projected onto
the moiré minibands reads

H =
∑
n,k,τ

(En,k,τ − μ)c†
n,k,τ

cn,k,τ + 1

2A

∑
q

ρ(q)Vqρ(−q),

(7)

where cn,k,τ is the annihilation operator of the eigenstate given
by H ′

τ |ψn,k,τ 〉 = En,k,τ |ψn,k,τ 〉, A is the area of the system,
and μ is the chemical potential. Vq = e2 tanh(qd⊥)/2ε0εq is
the screened Coulomb interaction in a dual-gated setup whose
gate distance is d⊥ ∼ 10 nm [76]. Here ε is the dielectric
constant and ε0 is the vacuum permittivity. The density oper-
ator ρ(q) = ∑

n,n′
∑

k,k′
∑

τ �
(τ )
n,n′ (k, k′, q)c†

n,k,τ
cn′,k′,τ where

the form factor �
(τ )
n,n′ (k, k′, q) = 〈ψn,k,τ | eiq·r |ψn′,k′,τ 〉.

The interacting Hamiltonian Eq. (7) can be solved self-
consistently by using the standard Hartree-Fock approxima-
tion [83]. To identify the CCI at ν = 1 and QVSHI at ν = 2
in the AB-stacked MoTe2/WSe2, we calculate the Hall con-
ductance GH and the spin Hall conductance GSH as a function
of ε under the electric field E⊥ = 0.69 V/nm at which the
CCI was observed in the experiment [76]. At ν = 1, the Hall
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FIG. 4. (a) Hall conductance and band gap of the AB-stacked
MoTe2/WSe2 heterobilayer at ν = 1 and under E⊥ = 0.69 V/nm
as a function of ε. (b) The corresponding energy bands given by
the Hartree-Fock approximation for ε = 8. The blue and red bands
are from the ±K valleys and the chemical potential is set at zero
energy. Besides replacing the Hall conductance by the spin Hall
conductance, (c) and (d) display the same as those in (a) and (b) at
ν = 2. The moiré minibands are plotted in the common MBZ of
MoTe2/WSe2 represented by the black hexagon in the inset of (c).

conductance drops from e2/h to 0 at ε ∼ 21, as shown
in Fig. 4(a). When ε < 21, the system becomes a valley-
polarized CCI whose energy bands are shown in Fig. 4(b).
Here the blue and red bands are from the ±K valleys, re-
spectively, and the top valence band from the +K valley with
C+ = −1 is empty [91]. The energy gap �g decreases with ε

and vanishes with GH at ε ∼ 21 above which the valley po-
larization disappears and the system becomes a normal metal.
The energy gap for ε = 8 in Fig. 4(b) is �g = 2.71 meV that
agrees well with the experimental data ∼2.5 meV extracted
from the capacitance measurement [76]. At ν = 2, the spin
Hall conductance jumps from 0 to 2e2/h at ε ∼ 6 above which
the system becomes a QVSHI, as shown in Figs. 4(c) and
4(d). In this case, the top valence bands from ±K valleys
with opposite Chern numbers C± = ∓1 are empty. The energy
gap decreases with ε. The valley polarization only appears at
strong interaction for ε < 6, and the top two valence bands
from either +K or −K valley are empty. Because the two
bands from the same valley carry opposite Chern numbers,
the system becomes a valleypolarized trivial insulator.

Discussion and summary.— The minimum requirement to
realize topological minibands in our study is some nonzero
Berry curvature which is due to the intrinsic Dirac struc-
ture of TMD. This is different from the other proposals
that require the inclusion of interlayer tunneling [84,92] or
pseudomagnetic field [93] in the TMD heterobilayer. The
pseudomagnetic field is induced by the strain effect and can
lead to the quantum spin Hall effect in TMD [94]. The
relevance of pseudomagnetic field to the observed CCI in
MoTe2/WSe2 remains unknown. For example, no strain-
induced topological band is identified in the fully-relaxed
large-scale DFT calculation [84]. Therefore, we neglect this
effect here. In particular, we show that the topological phase,
when protected by the symmetry of moiré potential, survives
to arbitrarily large Dirac band gap that cannot be captured by
the existing model Eq. (2). This mechanism is also verified
for a different moiré potential with C4 symmetry that forms a
square MSL [83]. Besides TMD heterobilayers, the massive
DF on the surface of an axion insulator and in the bulk of a
monolayer TMD can also couple to a modulating potential and
give rise to topological mininbands, as explicitly elucidated in
the Supplemental Material [83]. In these systems, the mod-
ulating potential can be generated by the spatially periodic
modulation of magnetic proximity coupling and dielectric
screening [95].

In summary, we spotlight the topological flat minibands
that can emerge from the massive DF confined in a moiré
potential. The topological phase is enabled by the Dirac
structure and can be protected by the symmetry of moiré
potential, which provides a paradigm to study the inter-
play between electric correlation and nontrivial topology.
We take the MoTe2/WSe2 heterobilayer as an example
and show that the CCI and QVSHI can be stabilized by
the Coulomb interaction. Our work provides a mechanism
to the topological states observed in the TMD heterobi-
layer and points a direction to design topological moiré
materials.
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