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Supersolid devil’s staircases of spin-orbit-coupled bosons in optical lattices
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We study the emergence of supersolid devil’s staircases of spin-orbit-coupled bosons loaded in optical lattices.
We consider two- and three-dimensional systems of pseudo-spin-1/2 bosons interacting via local spin-dependent
interactions. These interactions together with spin-orbit coupling produce length scales that are commensurate
to the lattice spacing. This commensurability leads to devil’s staircases of supersolids, with fractal Hausdorff
dimensions, which arise from uniform superfluid phases. We show that umklapp processes are essential for
the existence of commensurate supersolids, and that without them the devil’s staircase does not exist. Lastly,
we emphasize the generality of our results, suggest experiments that can unveil these unusual predictions, and
discuss potential applications to the case of 87Rb.
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I. INTRODUCTION

For the solid phase of quantum fluids the question “Can
solids be superfluids?” has been asked many years ago [1,2]
in the context of solid 4He, but has so far yielded a negative
answer [3–5]. The existence of supersolidity is a very impor-
tant issue with ramifications in the areas of condensed matter
physics (4He) [6,7], astrophysics (neutron star cores) [8,9],
and ultracold atoms and molecules (large spin atoms, dipolar
molecules, and spin-orbit-coupled systems) [10–20]. Some
experimental groups have recently reported the existence of
supersolids in ultracold dipolar bosons with internal magnetic
moments [13,14], following earlier experimental indications
of at least metastable supersolidity [10–12]. The supersolid
phases were theoretically suggested as a compromise between
superfluidity and Wigner crystallization [16], and their stabil-
ity was confirmed via the inclusion of three-body interactions
[21]. While recent experiments [10–14] have stimulated a
flurry of theoretical work on supersolid phases of continuum
and trapped (harmonic and boxed) dipolar bosons [22–28],
experimental investigation of supersolidity in optical lattices
is still lacking, albeit the existence of early theoretical work
[29–34].

Synthetic spin-orbit coupling (SOC) [17–20,35–37] is an-
other successful tool to realize a coexistent state of superfluid
and solid features, in Bose gases with two pseudospin compo-
nents. Introducing a pair of Raman lasers gives a momentum
kick to the two pseudospins in the opposite direction, offering
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a one-dimensional (1D) “equal-Rashba-Dresselhaus” (ERD)
SOC [35,36]. This creates a superposition of Bose-Einstein
condensates (BECs) with two different momenta, producing
a density modulation in one direction while keeping the su-
perfluid property [17–19]. This state, called the supersolid
stripe, has recently been observed using Bragg reflection [20].
The realization of more general forms of SOC, including two-
dimensional (2D) [38–41] and three-dimensional (3D) SOCs
[42–44], has been an active research topic, mostly with a view
to quantum simulations of various topological matters.

Here, we propose the realization of a nontrivial cascade of
2D supersolid phases of pseudospin-1/2 bosons loaded in op-
tical lattices, with the use of ERD SOC, which has now been
realized routinely in experiments [35,36]. Our Letter gener-
alizes the case of 1D supersolid stripes studied for weakly
interacting bosons either in continuum space [17–20] or in op-
tical lattices [45]. In contrast, we find that devil’s staircases of
supersolid phases with various 2D crystalline patterns emerge,
when the interaction parameters are sufficiently large. Devil’s
staircases are cascade structures that are commensurate to the
underlying lattice and that possess fractal (Hausdorff) dimen-
sion deviating substantially from 1.

II. EXPERIMENTAL PROPOSAL

We propose two experimental setups that could be used to
create a supersolid devil’s staircase of spin-1/2 bosons with
SOC in optical lattices. The simplest case is the creation of
either a 2D square or a 3D cubic optical lattice with the
application of two counterpropagating Raman beams [35] par-
allel to the optical lattice xy plane, but making angle θ with
respect to the x axis. The second experimental setup involves
the utilization of radio-frequency chips [37] or monolithic
microwave integrated circuits (MMICs) [46], where the axis
of the spin-dependent momentum transfer can be changed
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from the x direction, through a relative rotation of the device
with respect to the optical lattice.

III. HAMILTONIAN

To investigate the system mentioned above, we consider
the Hamiltonian for a 2D square lattice with lattice vectors
a1 = (a, 0) and a2 = (0, a):

Ĥ =
∑
〈i, j〉

(b̂
†
i Ti j b̂ j + H.c.) +

∑
i

b̂
†
i Mb̂i

+
∑

is

Uss

2
n̂is(n̂is − 1) + U↑↓

∑
i

n̂i↑n̂i↓, (1)

where b̂i = (b̂i↑ b̂i↓)T denotes the annihilation operators of
bosons with internal state (pseudospin) s =↑,↓ at site i,
and n̂is = b̂†

isb̂is counts the local number of s bosons. The
2 × 2 matrices are Ti j = −t exp[−iσzkT · (ri − r j )] and M =
−μ1 + h̄�

2 σx + h̄δ
2 σz with σ being the Pauli matrices.

We consider the ERD SOC [35,36] with momentum trans-
fer pT = h̄kT = h̄kT (cos θex + sin θey) along the direction
tilted from the lattice x axis by angle θ in the xy plane. Here,
ex (ey) denotes the unit vector in the x (y) direction of the
lattice. The Hamiltonian also includes the Rabi coupling �

and detuning δ, as well as the standard Bose-Hubbard pa-
rameters: nearest-neighbor hopping t , chemical potential μ,
and intraspin (s = s′) and interspin (s �= s′) onsite repulsions
Uss′ > 0 with U 2

↑↓ < U↑↑U↓↓ to prevent phase separation. We
focus on the 2D case, but the 3D case is analogous, in par-
ticular, if one uses the same tilt angle θ in the xy plane. We
explore the model of Eq. (1) in the regime dominated by t in
comparison to Uss′ .

IV. MULTIPLE CONDENSATES

Diagonalizing the Hamiltonian Eq. (1) with Uss′ = 0, we
obtain the excitation spectra of noninteracting particles:

Ek± = εk↑ + εk↓
2

− μ ±
√(εk↑ − εk↓

2

)2

+
(

h̄�

2

)2

(2)

with εks = −2t[cos(kxa + τskT a cos θ ) + cos(kya +
τskT a sin θ )] + τsh̄δ/2 (τ↑ = 1 and τ↓ = −1). We are
interested in the situation where h̄|�|/t and h̄|δ|/t are
sufficiently small to create two minima in the lower branch
Ek− within the first Brillouin zone (BZ). For instance, this
is achieved for h̄|�|/t < 4

∑
j=1,2 | sin kT · a j tan kT · a j |,

when δ = 0. In this case, when the temperature is sufficiently
low, the particles form BECs with wave vectors at the two
minima of Ek−, say, k1 and k2. However, in the presence of
interactions Uss′ , the momenta where condensation occurs are
modified to k̃1 and k̃2. These momenta can be parametrized
as k̃1 = −q̄ + δq and k̃2 = q̄ + δq. The deviation δq reflects
the parity asymmetry caused by nonzero detuning δ and/or
by broken Z2-symmetry interactions U↑↑ �= U↓↓.

When BECs are formed at k̃1 and k̃2, the interference of the
two produces higher harmonics with wave vectors differing by
an integer multiple of 2q̄. This indicates that the expectation

value of 〈b̂is〉 acquires a spatial modulation of the form

〈b̂is〉 = �is = √
ρ

∑
n

ψnse
iqn·ri (3)

with qn = (2n − 1)q̄ + δq (n ∈ Z). Here, ρ = ∑
is |�is|2/M

is the particle filling per site, where M is the number of
lattice sites. The Fourier amplitudes ψns represent BEC order
parameters at each momentum qn and are normalized such
that

∑
ns |ψns|2 = 1.

The subscript n labels the harmonic components (HCs); for
example, n = 0, 1 correspond to the two fundamental matter
waves with wave vectors ∓q̄ + δq, and n = −1, 2 are the
second harmonics with ∓3q̄ + δq, and so on.

Using Eq. (3), we minimize the variational energy per
particle

E0

Mρ
=

∑
n

(ψ∗
n↑ ψ∗

n↓)

(
εqn↑ − μ h̄�/2

h̄�/2 εqn↓ − μ

)(
ψn↑
ψn↓

)

+
′∑

n1+n2=n3+n4

∑
ss′

Uss′ρ

2
ψ∗

n1sψ
∗
n2s′ψn3s′ψn4s, (4)

with respect to the order parameters ψns and the wave vectors
q̄ and δq under the condition

∑
ns |ψns|2 = 1. The sum in

the interaction term is over all possible subsets of the HCs
that satisfy momentum conservation implying the restriction
n1 + n2 = n3 + n4. When 2q̄ is commensurate to the lattice
spacing, we also need to consider umklapp scattering pro-
cesses with momentum conservation modulo the reciprocal
lattice vectors G1 = (2π/a, 0) and G2 = (0, 2π/a), as we
shall explain later. We have verified that a numerical mini-
mization of the real-space Gross-Pitaevskii energy functional
[47] for �is in its most general form yields the same re-
sults as those under the ansatz Eq. (3) in all the examples
investigated.

In Fig. 1(b), we show the ground-state distribution of the
order parameter amplitude |ψns|, in the first BZ, for parame-
ters given in the caption. Remarkably, we find that the (q̄x, q̄y)
components of q̄, in units of π/a, may be rational numbers
even when the SOC momentum components (kT x, kTy), in
units of π/a, are irrational numbers, while the components
of δq can have any real value. For the parameters of Fig. 1(b),
where δ = 0 and U↑↑ = U↓↓, then δq = 0, and the fundamen-
tal BEC wave vectors are ±q̄ = ±(1/2, 1/4)π/a.

When q̄x and q̄y are commensurate with π/a, the number
of the HCs is finite. For example, in Fig. 1(b), the wave vectors
of second-harmonic components are given as q−1,2 = ±3q̄ =
±(3/2, 3/4)π/a, which are equivalent to ±(−1/2, 3/4)π/a
in the first BZ. In this case, third and higher harmonics are re-
duced to either the fundamental or the second harmonic wave
vectors due to momentum-space periodicity, and thus it is
sufficient to consider up to the second components. For a gen-
eral commensurate wave vector q̄ = (ξ1/η1, ξ2/η2)π/a, with
relatively prime integers ξ and η, the number of independent
HCs is given by NHC = LCM[η1, η2], where LCM means
least common multiple. The interference of BECs with NHCs

components produces the spatial modulation with the wave
vectors Q = ±2q̄ = ±[(ξ1/η1)G1 + (ξ2/η2)G2], showing a
modulation period �x = η1a and �y = η2a in the density
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FIG. 1. (a) Excitation spectra of noninteracting particles Ek±
measured from μ and (b) the distributions of the BEC components
for h̄� = 3t , kT = 0.57π/a, θ = 0.15π , δ = 0, U↑↑ = U↓↓ = U =
10t/ρ, and U↑↓ = 0.9U . The blue and orange bars in (b) represent
the BEC amplitude |ψn,s| for s =↑ and s =↓, respectively. (c) Lattice
superstructure of the particle density

∑
s |�is|2, resulting from the

multiple BECs of (b), in the real space. The density modulation is
≈ ±7.1% of the average filling factor ρ  1 for the lattice sites with
the lighter and darker colors, respectively.

profile
∑

s |�is|2, as seen in Fig. 1(c), where η1 = 2 and
η2 = 4.

V. COMMENSURABILITY AND UMKLAPP SCATTERING

Next, we show that the difference vector 2q̄ between the
two fundamental matter waves q0,1 = ±q̄ + δq must always
be of the form ξ1

η1
G1 + ξ2

η2
G2 in the ground state, as seen from

the conditions satisfied by the phases φns of the order param-
eters ψns = |ψns|eiφns for the minimization of the ground-state
energy in Eq. (4). First, from the spin-flip terms in Eq. (4), the
relative phase between ψn↑ and ψn↓ with the same n is deter-
mined by the sign of � to be φn↑ − φn↓ = π (φn↑ − φn↓ = 0)
when � > 0 (� < 0). Second, given the previous condition,
the interaction terms involving both intraspin Uss and interspin
Uss′ (with s �= s′) interactions produce the factor

Ass′ cos
[
φn1s + φn2s − φn3s − φn4s

]
, (5)

with positive interaction coefficients (Ass′ > 0). Here, we
choose the global phase to be φ0↑ = −φ1↑ = −φ̄/2, without
loss of generality. The second harmonic components n =
2 and −1 arise from the scattering processes of the type
(n1, n2; n3, n4) = (2, 0; 1, 1) and (−1, 1; 0, 0), respectively.
Thus, their phases must be φ2↑ = 3φ̄/2 + π and φ−1↑ =
−3φ̄/2 + π to minimize the interaction energy in Eq. (5).
Analogously, the momentum conservation n1 + n2 = n3 + n4

and the minimization of the interaction energy lead to the
conclusion that the up-spin phases of the HCs satisfy

φn↑ = 2n − 1

2
φ̄ + arccos

[
(−1)

|2n−1|−1
2

]
(6)

with n ∈ Z, while the down-spin phases are φn↓ = φn↑ − π

for � > 0 or φn↓ = φn↑ for � < 0. The last degree of freedom
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FIG. 2. Contour plots of the values of q̄x and q̄y in the kT cos θ

vs kT sin θ plane for (a, b) h̄� = 1.2t and (c, d) h̄� = 3t (δ = 0,
U↑↑ = U↓↓ = U = 8t/ρ, and U↑↓ = 0.9U for both). The gray areas
represent the regions where a single-BEC superfluid is the ground
state.

is the relative phase φ̄ between the two fundamental BECs,
discussed next.

When the difference vector between the two fundamental
matter waves is commensurate to the lattice spacing, that is,
2q̄ = ξ1

η1
G1 + ξ2

η2
G2, umklapp scattering processes with the to-

tal momentum transfer equal to reciprocal lattice vectors n1 +
n2 − n3 − n4 = ±LCM[η1, η2] = ±NHC must be considered
in the second sum of Eq. (4). Using Eqs. (5) and (6), it is easy
to see that the sum of the umklapp scattering terms takes the
form

B cos[�] with � = NHCφ̄, (7)

which is analogous to the Josephson energy between two su-
perconductors: when B is negative (positive) then the energy
takes its minimum −|B| for � = 0 (� = π ) mod 2π . Thus,
the existence of the umklapp scattering can always reduce
the total energy. This also implies that the commensurate
supersolid state breaks ZN symmetry (with N = NHC) with
respect to the choice of φ̄, in addition to the breaking of U (1)
symmetry associated with the global phase fixed earlier.

VI. SUPERSOLID DEVIL’S STAIRCASE

As discussed above, commensurate ground states with ra-
tional values of q̄x and q̄y (in units of π/a) are always favored
against incommensurate ones. This indicates that q̄x and q̄y

develop plateaus at rational values for numerous intervals of
input variables kTx and kTy , thus forming a devil’s staircase
structure with an infinite number of steps. In Fig. 2, we show
the values of q̄x and q̄y as functions of kTx = kT cos θ and
kTy = kT sin θ for two example sets of parameters. We show
only the first quadrant of the first BZ since the function q̄x

(q̄y) is odd in kTx (kTy ) and even in kTy (kTx ).
In Fig. 3, we show examples of q̄x versus kT in the limit

of 1D supersolid stripes to explain the fractal nature. A box-
counting analysis for the plateau width is shown in Fig. 3(b).
The function L(ε) is the difference between the total width of
the staircase and the sum of the plateau widths larger than
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FIG. 3. (a) Supersolid devil’s staircases for q̄x vs kT at SOC angle
θ = 0. The orange, green, and red lines are vertically shifted by 0.1,
0.2, and 0.3 with respect to the blue line to avoid overlap. The black
triangles at the end points indicate the emergence of single-BEC
superfluid phases. (b) Plots of the function L(ε)/ε vs 1/ε charac-
terizing the plateau widths ε of the devil’s staircases. (c) Hausdorff
fractal dimension D as a function of Uρ/t . We set U↑↑ = U↓↓ = U ,
U↑↓ = 0.9U , and δ = 0 for all panels.

ε > 0. The slope of the log-log plot of L(ε)/ε versus 1/ε

in the limit of ε → 0 gives the Hausdorff fractal dimension
D of the system [48]. If D < 1, the incommensurate phases
form a fractal set of measure zero, meaning that we have
a complete devil’s staircase of commensurate (supersolid)
phases. In Fig. 3(c), we show D versus Uρ/t to indicate
the fractality of the staircase. Notice that when interactions
tend to zero (Uρ/t → 0) then the Hausdorff dimension D →
1, and there is no devil’s staircase. This reinforces that in-
teractions are essential for the emergence of the supersolid
devil’s staircase, which in practice is not observable for small
Uρ/t [45].

For fixed t , Uss′ , �, and δ, it is easier to vary the tilt angle
θ , as changing kT requires a different laser wavelength for
the Raman setup, or a different radio-frequency (microwave)
wavelength in the atom-chip (MMIC) configuration.

Thus, in Fig. 4, we show examples of q̄x and q̄y for
fixed kT and changing θ . In Fig. 4(a), kT = 2.02π/a, but the
vector kT is closer to pointing along the kx direction since
73.5o < θ < 84.5o [see Fig. 4(c)]. In this case, the value of
q̄y is nearly (or exactly) zero, while q̄x take fractional values
with the largest steps being at q̄x = {1/2, 1/3, 1/4, 1/5}π/a.
These are supersolid stripes, where the density

∑
s |�is|2

is uniform along the y direction and modulated along the
x direction with period {2, 3, 4, 5}a. In Fig. 4(b), kT =
0.72π/a, but the vector kT is closer to the diagonal in
the first quadrant of the first BZ [see Fig. 4(d)]. In this
case, we have a cascade of supersolid phases with 2D crys-
talline patterns; the most prominent ones have the largest
ladder steps characterized by the ordered pairs (q̄x, q̄y) =
{(1/3, 2/3); (2/5, 3/5); (1/2, 1/2); (2/3, 1/3); (3/5, 2/5)} in
units of π/a. The box-counting analysis gives the Hausdorff
dimension D = 0.55(3) in this case.

FIG. 4. Supersolid devil’s staircases for q̄x and q̄y vs SOC angle
θ for fixed values of kT . Panel (a) [(b)] has the same parameters as
in Figs. 2(a) and 2(b) [Figs. 2(c) and 2(d)] along the arc with kT =
2.02π/a [kT = 0.72π/a], indicated by the arrow in (c) [(d)]. The
triangles have the same meaning as in Fig. 3(a).

VII. EXPERIMENTAL DETECTION

The simplest experiments to detect supersolid phases and
their staircase structure are momentum-space measurements.
Both the momentum distribution n(k) in time of flight [49] and
the structure factor S(q) obtained from Bragg spectroscopy
[50] can reveal the fundamental and higher-order momentum
components of the order parameter density. In addition, the
real-space periodic modulations of the supersolids can be de-
tected, in principle, using quantum gas microscopes [51–53]
or magnifiers [54].

When atoms have anisotropic interactions U↑↑ �= U↓↓, then
Z2 symmetry is broken. This is the case for two hyper-
fine states of 87Rb atoms, |↑〉 = |F = 1, mF = 0〉 and |↓〉 =
|F = 1, mF = −1〉, where U↓↓ ≈ U↑↓ ≈ 0.995U↑↑ [35,55].
The broken spin symmetry can be compensated by the
detuning δ = δ0 = −ρ(U↑↑ − U↓↓)/2, since the anisotropy
is small (|U↑↑ − U↓↓| � ∑

ss′ Uss′ ) [18]. In this case, the
shift δq of the BEC momenta is negligible and the re-
sults for U↑↑ �= U↓↓ with δ = δ0 are essentially identical
to the results for U↑↑ → U , U↓↓ → U , and δ0 → 0, where
U = (U↑↑ + U↓↓)/2.

VIII. CONCLUSIONS

We have investigated the existence of supersolid devil’s
staircases for spin-orbit-coupled bosons in optical lattices,
proposed experimental setups, and suggested detection tech-
niques for their direct observation. Furthermore, we showed
that the cascade of supersolid phases with various 2D (or 1D)
crystalline patterns occurs due to the stabilization mechanism
by umklapp scattering. We emphasize that our umklapp mech-
anism for forming devil’s staircases with local interactions is

L032023-4



SUPERSOLID DEVIL’S STAIRCASES OF … PHYSICAL REVIEW RESEARCH 4, L032023 (2022)

sharply distinct from that in dipolar gases with long-ranged
interactions [32]. This Letter opens the door for studying
supersolid devil’s staircases in spin-orbit-coupled atoms, and,
more generally, provides a fundamental idea for understand-
ing the commensuration of ordering vectors with possible
applications to Fulde-Ferrell-Larkin-Ovchinnikov supercon-
ductivity [56] and chiral magnets [57].
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