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We determine analytically the quantum Cramér-Rao bound for the estimation of the separation between two
point sources in arbitrary Gaussian states. Our analytical expression is valid for arbitrary sources brightness, and
determining how different resources, such as mutual coherence (induced by thermal correlations or displacement)
or squeezing, affect the scaling of the ultimate resolution limit with the mean number of emitted photons. In
practical scenarios, we find coherent states of the sources to achieve quantum optimal resolution.
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Introduction. Resolving two point sources, i.e., establish-
ing their separation with diffraction-limited imaging systems,
becomes more difficult the closer the sources are. This in-
tuitive statement lies at the basis of historical resolution
criteria [1,2], which established minimal distances beyond
which diffraction renders it impossible to resolve two sources.
However, in recent decades a great number of superresolution
techniques allowed resolving separations beyond the diffrac-
tion limit by either intervening on the properties of the sources
[3–5] (active imaging) or of the measurements [6–9] (passive
imaging).

The possibility to overcome the diffraction limit inspired
the search for ultimate resolution limits. The natural frame-
work for this investigation is that of quantum metrology
[10–14]. The latter establishes that the quantum limit on the
estimation of the source separation d is given by the quantum
Cramér-Rao bound (�d )2 � F−1

d , with Fd the quantum Fisher
information (QFI) that quantifies the sensitivity of the quan-
tum state of the sources to variations of the separation d . The
quantum estimation approach showed that for two dim inco-
herent point sources the QFI is independent of their separation
[15]. Accordingly, in this case, when optimal measurements
are performed, arbitrary separations can be resolved with the
same sensitivity. Moreover, it was proved theoretically [15,16]
and verified experimentally [17–22] that this ultimate reso-
lution limit can be achieved by spatial mode demultiplexing
followed by intensity measurements. These results have been
extended to incoherent thermal sources [23] and other photon-
number diagonal states [24]. More recently, the role of partial
coherence has been widely discussed [25–34].

Despite this vast body of research works, ultimate resolu-
tion limits are known for a very limited class of quantum states
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of the sources. Furthermore, with the notable exceptions of
the bounds in [23,24], all known results are valid only for low
photon fluxes in the image plane. In this Letter, we overcome
these limitations by presenting an analytical expression for
the QFI for the estimation of the separation between two
point sources in arbitrary Gaussian states. Such states include
fully coherent and incoherent (thermal) states, but also those
(quantum or classically) correlated states that are most widely
accessible in experiments [35–37]. Accordingly, the associ-
ated resolution limits are practically relevant for both passive
and active imaging.

In studying Gaussian states, we have access to different
types of mutual coherence between the sources, and we can
evaluate their impact beyond the low flux limit. In this high-
brightness regime, we are able to continuously interpolate
between fully mutually coherent and thermal sources, and
to show that mutual coherence originating from thermal cor-
relations and displacement are nonequivalent. They lead to
different scaling of the QFI with the mean photon number
emitted by the sources, with displacement always achiev-
ing the best performance. Accordingly, coherent states of
the sources enable a resolution that surpasses that of every
classically correlated thermal state. In fact, we show that
in all practically relevant scenarios coherent states, with an
optimized phase relation, approach the ultimate achievable
resolution, as given in [24].

Imaging Gaussian sources. We consider two point sources
that are transversally separated by a distance d in the object
plane, and are observed through a diffraction-limited imag-
ing system with a real point spread function (PSF) u0(r).
Without loss of generality, we assume that the sources are
aligned along the x axis, and populate the two localized
source modes at ±r0 = (±d/2, 0) with associated quadra-
tures x̂(s) = (q̂(s)

1 , p̂(s)
1 , q̂(s)

2 , p̂(s)
2 ) satisfying the commutation

relations [q̂(s)
j , p̂(s)

k ] = 2iδ jk , and [q̂(s)
j , q̂(s)

k ] = [ p̂(s)
j , p̂(s)

k ] = 0.
We restrict ourselves to Gaussian states ρ of the sources,
which are fully determined by the first two moments of the
quadratures [35–37]: the mean field x̄(s) = tr[x̂(s)ρ], and the
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FIG. 1. Graphical illustration of the propagation model: Quadra-
ture operators (q̂(s)

1,2, p̂(s)
1,2), of the localized source modes are

transformed into their symmetric and antisymmetric superpositions
(q̂(s)

± , p̂(s)
± ). The latter evolve through independent loss channels,

with transmissivities κ± into the image-plane quadrature operators
(q̂±, p̂±).

covariance matrix V (s)
jk = tr[{x̂(s)

j − x̄(s)
j , x̂(s)

k − x̄(s)
k }ρ]/2, with

{·, ·} denoting the anticommutator.
In the far field, the imaging system is characterized

by a transmission coefficient κ � 1, and maps the local-
ized sources modes into the overlapping modes u0(r + r0)
(with associated quadratures q̂1 and p̂1) and u0(r − r0)
(with associated quadratures q̂2 and p̂2). The diffraction-
induced nonorthogonality of the modes u0(r ± r0) induces the
non-commutativity of the associated quadratures: [q̂1, p̂2] =
[q̂2, p̂1] = 2iδ, with δ = ∫

u0(r − r0)u0(r + r0)dr. We there-
fore introduce the orthonormal image modes u±(r) = [u0(r −
r0) ± u0(r + r0)]/

√
2(1 ± δ) with associated quadratures

q̂± = q̂1 ± q̂2√
2(1 ± δ)

, p̂± = p̂1 ± p̂2√
2(1 ± δ)

. (1)

As illustrated in Fig. 1, the image-plane quadratures q̂± are
related to those of the symmetric and antisymmetric su-
perpositions of the localized sources modes q̂(s)

± according
to q̂± = √

κ±q̂(s)
± + √

1 − κ±q̂(v)
± (and analogously for p̂±),

with (q̂(v)
± , p̂(v)

± ) the quadratures associated with two auxiliary
vacuum modes, and κ± = (1 ± δ)κ are parameter-dependent
transmission coefficients of two independent loss channels
[24]. Therefore, Gaussian states of the sources evolve through
the imaging system into Gaussian states of the orthonormal
image modes u±(r). The covariance matrix V and the mean
field x̄ of such image-plane states are connected with those
in the localized source modes according to x̄ = T x̄(s) and
V = TV (s)T � + N , with

T =
⎛
⎝

√
κ+
2 12

√
κ+
2 12√

κ−
2 12 −

√
κ−
2 12

⎞
⎠,

N =
(

(1 − κ+)12 0
0 (1 − κ−)12

)
. (2)

The state of the sources in the image plane depends on the
separation d through the shape of the populated modes u±(r),
and, because of the parameter-dependent transmission coeffi-
cients κ±, through the mean field x̄ and covariance matrix V .
Aided by the Williamson decomposition of the image-plane
covariance matrix, V = S(ν+12 ⊕ ν−12)S�, with symplectic
eigenvalues ν±, and S, a symplectic matrix [36,37], we ac-
count for these different dependencies and compute the QFI
Fd for the estimation of the separation d [38]:

Fd = FV + Fx̄, (3a)

with

FV = 1

2

3∑
l=0

∑
jk=±

⎡
⎣

(
a(l )

jk

)2

ν jνk − (−1)l
+ 2

(
ã(l )

k, j

)2

ν j − (−1)l

⎤
⎦, (3b)

Fx̄ = (∂d x̄)�V −1(∂d x̄) + x̄�D2x̄, (3c)

where a(l )
i j = tr[A(l )

i j S−1(∂dV )S], ã(l )
i j = tr[A(l )

i j S−1(V −
14)D∂ ], and D = η+12 ⊕ η−12 with η2

± = ∫ |∂d u±(r)|2dr,
and A(l )

jk are a basis of the space of 4 × 4 matrices [39].
Let us now comment on the physical origin of the different

terms of the QFI 3: Fx̄ [Eq. (3c)] describes how the sensitivity
is affected by changes of the mean field x̄ in the modes
u±(r). In particular, the first term in Eq. (3c) contains the
derivative ∂d x̄, which accounts for mean field variations due to
parameter-dependent losses, as quantified by the transmission
coefficients κ±. The second term in Eq. (3c) contains the
diagonal matrix D whose elements η± quantify how much the
shape of the modes u±(r) change with the separation d .

In a similar fashion, FV [Eq. (3b)] describes the sensitivity
due to variations of the covariance matrix V with d . More
specifically, Eq. (3b) contains a sum running over the compo-
nents a jk and ã jk (on the basis A(l )

jk ) of the matrices S−1(∂dV )S
and S−1(V − 14)D, respectively. The former matrix contains
the derivative ∂dV , which describes changes of the covari-
ance matrix due to the parameter-dependent transmissions κ±,
while the latter matrix contains D, which, as discussed above,
takes into account the d dependence of the modes u±(r).

Let us stress that Eq. (3) can be applied to arbitrary Gaus-
sian states of the sources, possibly having different mean
photon numbers, i.e., different intensities. In the following,
we explicitly evaluate several examples to illustrate the impact
of the different contributions of the QFI (3) on our ability to
resolve two point sources.

Mutual coherence. In optics, two light sources are said
to be (partially) mutually coherent if they present a definite
phase relationship that allows them to interfere [40,41]. This
capacity to interfere can be quantified, in quantum mechan-
ical terms, through the complex degree of mutual coherence
(DMC)

γ eiφ = 〈ŝ†
1ŝ2〉√

〈ŝ†
1ŝ1〉〈ŝ†

2ŝ2〉
, (4)

where ŝ j = (q̂(s)
j + i p̂(s)

j )/2 are annihilation operators for the
localized source modes. The amplitude of the DMC ranges
from γ = 0 for mutually incoherent, i.e., uncorrelated thermal
sources to γ = 1 in the case of perfect mutual coherence. On
the other hand, the phase in Eq. (4) distinguishes different
kinds of interference, with φ = 0 (φ = ±π ) corresponding to
perfectly constructive (destructive) interference. Such mutual
coherence effects will be present, and can partially be con-
trolled in microscopy problems where the sources are emitters
subject to a common exciting radiation.

In this work, we focus on two different states of two
sources, each emitting on average N0 photons, and featur-
ing (partial) mutual coherence. First, we consider correlated
thermal states ρc, which are zero mean Gaussian states, with
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FIG. 2. Quantum Fisher information Fd for two partially mutu-
ally coherent sources (γ = 0.7), with coherence originating from
thermal correlations (dashed lines) or displacement (solid lines) as
a function of their transverse separation d . Top and bottom panels
correspond to κN0 = 1 and κN0 = 100, respectively. Different colors
represent different phases of the degree of mutual coherence (φ = 0
in green, φ = π/e in blue, φ = π in red). Black and purple curves
correspond to the mutual incoherent case (γ = 0), and to coherent
sources with an optimized mutual phase (φ = 0, π ) depending on d ,
respectively.

covariance matrix

V (s) =
(

(2N0 + 1)12 2N0γ R(φ)
−2N0γ R(φ) (2N0 + 1)12

)
(5)

with R(φ) a rotation matrix. Second, we consider the two
sources to be in identical uncorrelated thermal states equally
displaced along two directions separated by an angle φ in
phase space. These displaced thermal states ρd have a di-
agonal covariance matrix V (s) = [2N0(1 − γ ) + 1]14, and a
mean field x̄(s) = 2

√
γ N0(1, 0, cos φ, sin φ) [42]. Both ρc and

ρd have a DMC γ eiφ . However, for ρc, γ corresponds to the
strength of the thermal correlations, while φ is their rela-
tive phase. On the other hand, for ρd , γ is the displacement
amplitude (in unit of the mean photon number), and φ is
the relative phase between the two displacements. The QFI
(3), for correlated and displaced thermal states, is presented
in Fig. 2 [43], for an imaging system with Gaussian PSF
u0(r) =

√
2/(πw2) exp(−|r|2/w2).

On the one hand, ρc and ρd produce similar dependen-
cies of the QFI on the source separation: Fd → 2N0κ/w2 for
distances larger than the PSF width (d 	 w), and Fd→0 =
2κN0(1 − γ cos φ)/w2. Accordingly, for small separations,
when compared to the fully incoherent case (γ = 0, black

curves in Fig. 2) partial coherence enhances the QFI in the
case of destructive interference (|φ| > π/2), and reduces it
for constructive interference (|φ| < π/2).

On the other hand, the QFI for displaced thermal sources
(solid lines in Fig. 2) is always larger than that for correlated
thermal sources (dashed lines in Fig. 2). In particular, for
coherent states of the sources (ρd with γ = 1), we have

Fd = 2κN0((�k)2 − β cos φ), (6)

where we have introduced

(�k)2 =
∫

[∂xu0(r)]2dr, (7a)

β =
∫

∂xu0(r − r0)∂xu0(r + r0)dr, (7b)

where ∂x is the derivative with respect to the first spatial
coordinate. From Eq. (6), we see that the QFI per emitted
photon Fd/N0 does not depend on the mean photon num-
ber N0. Conversely, for perfectly correlated thermal sources
(γ = 1), for intermediate separations of the order of the PSF
width w, the QFI decreases when increasing N0. Accordingly,
for two sources in coherent states, the separation-estimation
sensitivity presents a shot-noise scaling �d ∼ N−1/2

0 , while
for perfectly correlated thermal sources (ρc with γ = 1) the
scaling is less favorable.

In the low photon flux regime (κN0 � 1), the role of partial
coherence has been recently debated [25–34]. The debate
originated from two different models for the state of the
sources in the image plane. The first, proposed by Larson
and Saleh in [25], describes the sources in the image plane
as a single photon state, while the other, introduced by Tsang
and Nair in [26], considers a mixture of a single photon and
a vacuum contribution. This vacuum contribution allows de-
scribing losses induced by the imaging system, which, in the
presence of mutual coherence, lead to a separation-dependent
mean photon number in the image plane. Such an additional
dependence can increase the QFI [26,30,34]. However, this
information is not available if the mean photon number N0

emitted by the sources is unknown, and in this case one recov-
ers the results of the single-photon model, according to which,
especially for small separations, mutual coherence does not
provide any metrological advantage over incoherent sources
[32,44]. The two classes of Gaussian states considered here
both contain a vacuum contribution. In particular, correlated
thermal states are photon-number diagonal and can be con-
sidered a generalization of the Tsang and Nair model [26],
to which they reduce in the low flux regime. On the contrary,
displaced thermal states are not diagonal in the photon number
basis and, even for N0 � 1, do not correspond to any partial
coherence model that has been studied in the low flux regime.

Squeezing and entanglement. We have just seen that coher-
ent states of the source modes provide the optimal resolution
among mutually coherent, classically correlated states. We
now investigate if quantum resources such as squeezing or en-
tanglement can lead to enhanced performances. To this goal,
we consider two zero-mean sources squeezed along two di-
rections separated by an angle θ in phase space. Such sources
have covariance matrix V θ

0 = S2(ξ ) ⊕ R(θ )S2(ξ )R�(θ ), with
S(ξ ) = diag(e−ξ , eξ ) a single-mode squeezing matrix, and
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FIG. 3. Graphical representation of the propagation of two
sources squeezed along the same direction (a) and along opposite
directions (b) to the image plane. (c) Quantum Fisher information
Fd as a function of their transverse separation d , for two sources
squeezed along the same direction (θ = 0, solid lines) or along
opposite directions (θ = π/2, dashed lines) in phase space. Different
colors correspond to different transmission of the imaging system,
κ = 0.01 (blue) and κ = 0.1 (red), and different shades to different
mean photon numbers, N0 = 1 (darker) and N0 = 100 (lighter).

R(θ ) a rotation matrix. The mean photon number N0 emitted
by each source is related to the squeezing parameter ξ ac-
cording to N0 = sinh2 ξ [36,45]. In the following, we focus
on two simple, but exemplary cases: two sources squeezed
along the same direction (θ = 0) and along opposite direc-
tions (θ = π/2).

The evolution from the object to the image plane (see
Fig. 1) is given by a transformation to the symmetric and an-
tisymmetric source modes, followed by two independent loss
channels. As illustrated in Fig. 3(a), for θ = 0, the mapping
to the symmetric and antisymmetric source modes leaves the
state unchanged, while propagation through the loss channels
adds noise, such that the quantum state in the image modes
becomes a product of two thermal squeezed states. Similar
results are obtained considering a two-mode squeezed vacuum
of the localized source modes, corresponding to two vacuum
states squeezed in opposite directions in the symmetric and
antisymmetric source modes. The latter case was studied in
the Supplemental Material of [24]. On the contrary, for θ =
π/2, see Fig. 3(b), we obtain a two-mode squeezed vacuum
in the symmetric and antisymmetric source modes, which is
entangled, and it remains entangled upon propagation to the

image plane for every nonzero value of the source separation
d > 0.

The behavior of the QFI for these two classes of squeezed
states is presented in Fig. 3(c). For sources squeezed along the
same direction (θ = 0), the high propagation losses (κ � 1
in the far field) render the state substantially semiclassical.
Accordingly, their QFI [solid lines in Fig. 3(c)] is very sim-
ilar to that for uncorrelated thermal sources (black lines in
Fig. 2): It equals Fd = 2N0κ/w except for a region, around
separations of the order of the PSF width w, where it presents
a dip which gets deeper when increasing the mean number
of photons κN0 in the image plane. On the other hand, when
the two sources are squeezed along opposite directions (θ =
π/2), despite the high losses, their state preserves its quantum
character upon propagation through the imaging system, i.e.,
it remains entangled in the orthogonal image modes u±(r). As
a consequence, in this case, the QFI per emitted photon Fd/N0

is independent of the mean photon number N0 [see dashed
lines in Fig. 3(c)]. Thus, entanglement enables a shot-noise
scaling �d ∼ N−1/2

0 of the separation estimation sensitiv-
ity. Contrarily, nonentangled squeezed states provide a less
favorable scaling for intermediate separations. Finally, com-
paring Fig. 3(c) with Fig. 2, we observe that several partially
mutually coherent states allow for larger values of the QFI.
Thus, squeezing in the sources modes does not improve the
separation estimation sensitivity with respect to semiclassical
states.

Approaching the ultimate quantum limit. Coherent sources
(ρd with γ = 1) present the same shot-noise scaling �d ∼
N−1/2

0 of the separation estimation sensitivity as entangled
squeezed states, but with a more favorable prefactor. In fact,
we can show that in all practically relevant scenarios, coherent
states are quantum optimal: Recent works demonstrated that,
for the separation estimation sensitivity, it is impossible to
achieve a sub-shot-noise scaling [24,46], and that for arbitrary
quantum states of the sources the QFI cannot exceed the
global upper bound [24]

F max
d = 2κN0 max { f+, f−}, (8)

with

f± = (�k)2 ∓ β + κ (∂dδ)2

1 − κ (1 ± δ)
. (9)

For imaging in the far field regime (κ � 1), the last term in
[Eq. (9)] is negligible ( f± ≈ (�k)2 ∓ β), and therefore the
global upper bound Eq. (8) is achieved by the QFI Eq. (6)
for coherent sources either in or out of phase (purple curves in
Fig. 2).

Conclusion. We determined the ultimate quantum resolu-
tion limit for two point sources in arbitrary Gaussian states.
Such a limit is provided in the form of an analytical expres-
sion for the QFI quantifying the sensitivity of the quantum
state of the sources to variations of their separation. With
this general expression for the QFI, we explored the role
of different (nonequivalent) types of partial coherence, and
classical and quantum correlations in the two source resolu-
tion problem. Our results show that semiclassical states of
the sources featuring (partial) coherence can often outperform
sources featuring quantum properties such as squeezing. In
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fact, coherent states of the sources can even approach the
ultimate quantum resolution in the practically relevant far field
regime.

Finally, for fully incoherent and mutually coherent sources,
it is known that the ultimate resolution limit can be reached
by photon counting after spatial mode demultiplexing and
employing a simple estimation technique that only require
measurement of the mean values [44,47,48]. In the future, it
will be interesting to verify if this demultiplexing measure-
ment combined with the same simple estimation approach can
saturate the quantum Cramér-Rao bound for general Gaussian
states we computed here.
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