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Glassy dynamics of the one-dimensional Mott insulator excited by a strong terahertz pulse
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The elucidation of nonequilibrium states in strongly correlated systems holds the key to emergence of novel
quantum phases. The nonequilibrium-induced insulator-to-metal transition is particularly interesting since it
reflects the fundamental nature of competition between itinerancy and localization of the charge degrees of
freedom. We investigate pulse-excited insulator-to-metal transition of the half-filled one-dimensional extended
Hubbard model. Calculating the time-dependent optical conductivity with the time-dependent density-matrix
renormalization group, we find that strong mono- and half-cycle pulses inducing quantum tunneling strongly
suppress spectral weights contributing to the Drude weight σD, even if we introduce a large number of carriers
�nd. This is in contrast to a metallic behavior of σD ∝ �nd induced by photon absorption and chemical
doping. The strong suppression of σD in quantum tunneling is a result of the emergence of the Hilbert-space
fragmentation, which makes pulse-excited states glassy.
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Introduction. The elucidation of nonequilibrium states
in strongly correlated systems is of great interest since it
promises to open a door to the emergence of novel quan-
tum phases. Nonequilibrium quantum many-body states have
recently been investigated not only in solids with light and
electric fields [1–12] but also in trapped ions [13,14], cold
atoms [15–17], and quantum circuits [18–23]. One of the
most significant challenges in this field is how to preserve
nonequilibrium states, such as the Floquet states [24–26],
from thermalization [27–30], for which the realization of
many-body localization (MBL) [31–33] may hold the key.
Also, the nonequilibrium-induced insulator-to-metal transi-
tion is a fundamental issue associated with competition
between itinerancy and localization of charge degrees of free-
dom. The photoinduced insulator-to-metal transitions [2,3,5–
8] due to photon absorption have been suggested in the one-
dimensional (1D) Mott insulator. Similarly, nonabsorbable
terahertz photons with strong intensity have been suggested to
induce a metallic state [10,11] via quantum tunneling [34–39].

Until now it has been commonly accepted that the break-
down of the Mott insulators via electric pulses leads to
metallic states. However, we raise question about the validity
of this understanding. To answer this question, we examine
the possibility of the emergence of novel quantum phases
such as glass phases with intermediate properties between
itinerancy and MBL.
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In this Letter, we investigate pulse-excited states of
the half-filled 1D extended Hubbard model (1DEHM) us-
ing the time-dependent density-matrix renormalization group
(tDMRG) [40–42]. We propose a Mott transition to glassy
states induced by mono- and half-cycle terahertz pulses. If
we excite the Mott insulating state via photon absorption, we
obtain metallic states with large spectral weights contributing
to the Drude component σD. In contrast, we find that strong
electric fields inducing the Zener breakdown [43] strongly
suppress σD, even if we introduce a large number of car-
riers. We consider that the emergence of the Hilbert-space
fragmentation [44–53] due to high fields leads to glassy dy-
namics [54–59] as seen in fracton systems [60–67].

Model and method. To investigate nonequilibrium proper-
ties of the 1D Mott insulator, we use 1DEHM with a vector
potential A(t ) defined as

H = − th
∑

i,σ

Bi,σ + U
∑

i

ni,↑ni,↓ + V
∑

i

nini+1, (1)

where Bi,σ = eiA(t )c†
i,σ ci+1,σ + H.c., c†

i,σ is the creation oper-
ator of an electron with spin σ (=↑,↓) at site i, and ni =∑

σ ni,σ with ni,σ = c†
i,σ ci,σ . We consider (U,V ) = (10, 3)

taking the nearest-neighbor hopping th to be the unit of energy
(th = 1), which describes the optical conductivity in a 1D Mott
insulator ET-F2TCNQ [68]. Spatially homogeneous electric
field E (t ) = −∂t A(t ) applied along the chain is incorporated
via the Peierls substitution in the hopping terms [69]. Unless
otherwise noted, we consider the half-filled 1DEHM with L =
32 sites. Note that we set the light velocity c, the elementary
charge e, the Dirac constant h̄, and the lattice constant to 1.

We assume that pulses have time dependence de-
termined by A(t ) = Apump(t ) + Aprobe(t ) with Aprobe(t ) =
Apr

0 e−(t−tpr
0 )2/[2(tpr

d )2] cos[�pr(t − tpr
0 )] for probe pulses. Unless
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FIG. 1. �nd of the L = 32 half-filled 1DEHM for (U,V ) = (10, 3) excited by electric pulses. Red points are �nd as a function of E 2
0 for

(a) � = 8 with a black line for eye guide, (b) � = 6, (c) � = 3, and (d) � = 0. (e) Red points are �nd as a function of E0 for � = 0. The
black line shows a fitted curve proportional to E0 exp(−πEth/E0).

otherwise noted, we use Apump(t ) = A0e−(t−t0 )2/(2t2
d ) cos[�(t −

t0)] for pump pulses. We set Apr
0 = 0.001, �pr = 10, tpr

d =
0.02, and tpr

0 = t0 + τ , where τ indicates the delay time be-
tween pump and probe pulses. We obtain time-dependent
wave functions by the tDMRG implemented by the Legen-
dre polynomical [70,71] employing open boundary conditions
and keep χ = 3000 density-matrix eigenstates. We obtain
both singular and regular parts of the optical conduc-
tivity in nonequilibrium σ (ω, τ ) = jprobe(ω,τ )

i(ω+iγ )LAprobe(ω) [72–74],
where Aprobe(ω) and jprobe(ω, τ ) are the Fourier transform of
Aprobe(t ) and current induced by a probe pulse, respectively
(see Sec. S1 in the Supplemental Material [75]). γ indicates a
broadening factor.

Doublon density. First of all, we demonstrate how pumping
energy makes a difference in carrier production. Figure 1
shows how much electric pulses with (td, t0) = (2, 10) change
doublon density �nd = 1

L [〈I〉t − 〈I〉0] in 1DEHM, where I =∑
j n j,↑n j,↓, 〈O〉t is the average of an expectation value of

an operator O from t = 21 to 22 just before a probe pulse is
applied, and 〈O〉0 is an expectation value of O for a ground
state. We focus on �nd < 0.1, which can be achieved with
experiments. �nd oscillates even after pulse decay, but their
amplitudes are smaller than the radius of red points in Fig. 1.
Since Re[σ (ω, τ < 0)] has an excitonic level at ω = ω1 and
a continuum begins at ω = ωc [68,84–87], where (ω1, ωc) =
(6, 6.5) for (U,V ) = (10, 3), a pump pulse with � = 8 excite
electrons in a continuum leading to �nd ∝ E2

0 [see Fig. 1(a)]
as discussed in Ref. [39] with the amplitude of electric fields
E0. Taking � = ω1, we can efficiently excite doublons and
holons even for small E0 [see Fig. 1(b)]. For subgap ex-
citations, i.e., � < ω1, electrons are excited by a nonlinear
process, which is classified into multiphoton absorption and
quantum tunneling. The crossover between them is called
the Keldysh crossover [88]. Figures 1(c) and 1(d) show �nd

generated by two-photon absorption and quantum tunneling,
respectively. For � = 0 mono-cycle pulses, we find that �nd

follows a threshold behavior �nd ∝ E0 exp(−πEth/E0) [39]
as indicated by the black line in Fig. 1(e). Using this rela-
tion, we can estimate the doublon-holon correlation length
ξ � ω1/(2Eth) ∼ 1.5.

Glassy dynamics. We show in Fig. 2 the results of 1DEHM
excited by a quantum tunneling with strong � = 0 pulses
whose energy is in terahertz band. We show Re[σ (ω, τ )]
excited by mono-cycle pulses with (�, td) = (0, 2) for

various E0 in Figs. 2(a)–2(c). |E (ω)| = | ∫ dteiωt E (t )| with
E0 = 1.5 shown in Fig. 2(d) indicates that the photon energy
is too small to excite the Mott gap. We obtain �nd = 0.01,
0.07, and 0.1 for Figs. 2(a)–2(c), respectively. The spectral
weights above the Mott gap transfer to lower energies, but we
find that the Drude weight σD, which we define as spectral
weight below ω = 0.15 (see Secs. S2 and S3 in the Sup-
plemental Material [75]), is not proportional to �nd but is
strongly suppressed even if we take large �nd as shown in
Figs. 2(b) and 2(c). Note that the Drude weight appears at
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FIG. 2. Re[σ (ω, τ )] excited by � = 0 mono- [half-]cycle pulses
for td = 2 [td = 4] with (a) E0 = 1.5, (b) E0 = 1.8, and (c) E0 = 2.1
[(e) E0 = 1.7, (f) E0 = 1.9, and (g) E0 = 2.0]. Black, red, and blue-
dashed lines are for τ < 0, τ = 12, and 14, respectively. (d) [(h)]
|E (ω)| of a mono- [half-]cycle pulse with E0 = 1.5 [E0 = 1.7]. The
inset indicates −E (t ). [(a)–(c)] and [(e)–(g)] are obtained with the
half-filled L = 32 1DEHM for (U,V ) = (10, 3) taking γ = 0.4.
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FIG. 3. (a) σ D as the function of �nd and �ne
d. γ = 0.4 is taken.

(b) −�T/L as the function of �nd and −�T e/L as the function of
�ne

d. All plots are obtained for the L = 32 1DEHM.

ω 	= 0 due to a finite-size effect and its peak approaches
ω = 0 as L increases [70,89,90]. For L = 32, we can mask this
finite-size effect by taking γ = 0.4. For half-cycle pulses, we
obtain Re[σ (ω, τ )] as shown in Figs. 2(e)–2(g). |E (ω)| given
by E (t ) = E0e−(t−t0 )2/(2t2

d ) cos[�(t − t0)] for (�, td) = (0, 4)
is shown in Fig. 2(h). We obtain �nd = 0.02, 0.07, and 0.08
for Figs. 2(e)–2(g), respectively. Even if we find finite σD as
shown in Fig. 2(e) with small �nd, further increase in �nd

does not enhance σD as shown in Figs. 2(f) and 2(g), but rather
suppresses it.

The strong suppression of σD suggests that strong fields
localize nonequilibrium states. When a thermal state with
σD 	= 0 approaches an MBL state with σD = 0, σD is sup-
pressed and the center of gravity of low-energy spectral
weights shifts to higher energy [91–93], which is similar to
the structure seen in Figs. 2(b), 2(c), 2(f), and 2(g) when
E0 is large. The suppression of the Drude weight is clearly
shown in Fig. 3(a) if we compare σ D (see below) induced
by � = 0 pulses (see magenta and light blue points) with
those by photon absorption with � = 3 (see brown points)
and � = 6 (see gray points) pulses as well as electron doping
(see black points). Here, we introduce an time-averaged Drude
weight σ D = 1

2

∑
τ=12,14

∫ 2η

ω=0 dωReσ (ω, τ ) in Fig. 3(a) with
2η = 0.15. Note that carrier density by electron doping are
represented as �ne

d = 1
2

1
L [〈I〉doped − 〈I〉half], where 〈O〉doped

and 〈O〉half are expectation values of O for electron-doped
and half-filled 1DEHM, respectively. The factor 1/2 is
introduced to compare the carrier density of electron-doped
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FIG. 4. Re[σ (ω, τ )] excited by � = 3 [� = 6] pulses with
(a) E0 = 0.9, (b) E0 = 1.5, and (c) E0 = 1.8 [(d) E0 = 0.12, (e) E0 =
0.24, and (f) E0 = 0.36]. Black, red, and blue-dashed lines are for
τ < 0, τ = 12, and 14, respectively. All plots are obtained by taking
γ = 0.4 for the half-filled L = 32 1DEHM with (U,V ) = (10, 3).

systems with that of pulse-excited systems where the same
number of holons and doublons are excited. We find that σD

of electron-doped 1DEHM (see Sec. S2 in the Supplemental
Material [75]) has large values leading to σD ∝ �nd. Upon
electron doping, electrons are free to move and their kinetic
energy decreases as indicated by black points in Fig. 3(b).
The change of the kinetic energy for electron doped 1DEHM
is defined as �T e = −th

∑
j,σ [〈Bj,σ 〉doped − 〈Bj,σ 〉half]. Upon

electron doping, spectral weights above the Mott gap transfer
to those at ω = 0 due to spin-charge separation [94]. Since
the change of total spectral weights is determined by − 1

2L �T e

according to the optical sum rule [95], the decrease of kinetic
energy contributes to the enhancement of σD. Photon absorp-
tions also lead to metallic states following σ D ∝ �nd. σ D of
1DEHM excited by � = 3 and 6 pulses are obtained from
Re[σ (ω, τ )], which exhibits large spectral weights at ω = 0 as
shown in Fig. 4. � = 3 pulses with E0 = 0.9 [Fig. 4(a)], E0 =
1.5 [Fig. 4(b)], and E0 = 1.8 [Fig. 4(c)] lead to �nd = 0.007,
0.03, and 0.07, respectively. � = 6 pulses with E0 = 0.12
[Fig. 4(d)], E0 = 0.24 [Fig. 4(e)], and E0 = 0.36 [Fig. 4(f)]
lead to �nd = 0.009, 0.03, and 0.05, respectively. Note that
σ D is affected by the emergence of spectral weights at ω ∼ 0.5
(see Sec. S3 in the Supplemental Material [75]).

In contrast to the electron-doped and photon-absorbed
systems, there is no metallization when excitations are in-
duced by a photon nonabsorbable � = 0 pulse causing
quantum tunneling. The change of kinetic energy �T =
−th

∑
j,σ [〈Bj,σ 〉t − 〈Bj,σ 〉0] induced by � = 0 pulses exhibits

a significant difference from other cases: −�T < 0 monoton-
ically decreases with increasing �nd as shown by magenta
and light blue points in Fig. 3(b). We consider that a large
increase in �T is associated with a restricted mobility due
to the presence of strong fields, which leads to the strong
suppression of σ D.
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The time evolution of an entanglement entropy SE =
−∑

i pi ln pi with the eigenvalue pi of a reduced density
matrix obtained by contracting half of the whole system
shows different behavior when 1DEHM is excited by quantum
tunneling and by photon absorption (see Sec. S4 in the Supple-
mental Material [75]). For photon absorption, SE shows rapid
linear growth and saturates at the end of pulse irradiation.
On the other hand, for quantum tunneling, SE shows slow
logarithmic growth and continues to grow slowly even after
the end of pulse irradiation. The slow growth of SE [96–101]
is considered to be one of the manifestations of the localized
nature of excited states by a high-field terahertz pulse.

Floquet effective Hamiltonians. We see how � = 0 pulses
localize nonequilibrium states in the 1D Mott insulator. For
simplicity, we consider the dc limit of the Hamiltonian (1)
with V = 0 taking A(t ) = �t . Using the Schrieffer-Wolff
transformation [24,102], we obtain an effective model for
resonant driving U = p� 
 th, taking nonzero integers p.
Due to the collective nature of the Zener breakdown, tunneling
occurs not only between nearest-neighbor sites but also across
several sites associated with � � U [34–39]. The ξ ∼ 1.5
indicates that the dominant contribution to the breakdown is
quantum tunneling within a few sites, which can be described
as the effect of resonant electric fields with � = U/p for
p � 3. The leading-order effective Hamiltonians for p = 1, 2,
and 3 are

H(0)
p=1 = −th

∑

j,σ

(h†
j+1 j,σ + h j+1 j,σ ),

H(1)
p=2 = t2

h

�

[
(T1 + T †

1 ) − 2(T2 + T †
2 ) + Ha

D − TXY
]

+ t2
h

3�

(
Hb

D − T b
3 − TXY

)
,

H(1)
p=3 = t2

h

2�

(
Ha

D − TXY
) + t2

h

4�

(
Hb

D − T b
3 − TXY

)
,

respectively (see Sec. S5 in the Supplemental Material [75]),
where

h†
ji,σ = n j,−σ (1 − ni,−σ )c†

j,σ ci,σ ,

T1 =
∑

j,σ

n j+2,−σ (1 − n j,−σ )(1 − 2n j+1,−σ )c†
j+2,σ c j,σ ,

T2 =
∑

j,σ

n j+2,σ (1 − n j,−σ )c†
j+2,−σ c j+1,−σ c†

j+1,σ c j,σ ,

Ha
D =

∑

j,σ

n j+1,−σ [−n j,σ + 2n j+1,σ (1 − n j,−σ )],

Hb
D =

∑

j,σ

n j,σ [−n j+1,−σ + 2n j,−σ (1 − n j+1,−σ )],

T b
3 =

∑

j,σ

n j,σ (1 − n j+2,−σ )

× (c j,−σ c†
j+1,−σ c†

j+1,σ c j+2,σ + H.c.),

TXY =
∑

j,σ

[(1 − n j,−σ )(1 − n j,σ ) + n j+1,−σ n j+1,σ ]

× c†
j,−σ c j+1,−σ c†

j+1,σ c j,σ .

The effective Hamiltonians suggest that the Flo-
quet metastable states have conservations due to
[P + I,H(0)

p=1] = [P + 2I,H(1)
p=2]=[P,H(1)

p=3]=[I,H(1)
p=3] = 0,

where P = ∑
k knk is the dipole moment. Since the resonance

condition induces real excitations, the effect of a strong
electric field remains in excited states even after a pulse
disappears. Such conservation may break ergodicity and lead
to exotic many-body dynamics. Indeed, it has numerically
demonstrated that H(0)

p=1 can induce ergodicity-breaking
many-body eigenstates [49] like quantum many-body
scarring [103–115]. Also, dynamics governed by H(1)

p=2 is
known to be nonergodic [44]. Kinetic constraints imposed by
such conservation lead to the emergent fragmentation of the
Hilbert space, generating exponentially many disconnected
subspaces [44–53] even within a single symmetry sector.
Dipole-moment-conserved system is a representative system
with such restriction as seen in fractons [60–67], which
localize charge excitations topologically. T b

3 included in H(1)
p=2

and H(1)
p=3 conserving both P and I is an example of showing

doublon-assisted dipole-moment conserving processes, which
does not produce Drude weight/superfluid density [116].

A strong � = 0 pulse produce two effects in excited states:
one is the injection of carriers promoting itinerancy, and the
other is the restriction of motion promoting localization. As
a result of their competing effects, the localization effect pre-
vails in the U ∼ 10 strong coupling region, and the excited
states follow glassy dynamics [54–59] with weak-ergodicity
breaking. We see the strong suppression of σD for U = 7
and 13 fixing V/U = 0.3 (see Sec. S6 in the Supplemental
Material [75]). However, the suppression of σD for U = 7
is weaker than that for U = 10 and 13. This is because
glassy states are unlikely to emerge in weak-coupling region,
since the above discussion with the effective Hamiltonians
is valid in strong-coupling regime. We note that the glassy
state proposed in this Letter has a different origin from that
induced by randomness near the Mott transition [117–122].
We expect that the glassy dynamics may be detected in ET-
F2TCNQ excited by a terahertz pulse with amplitude about
3.5 MV/cm.

Summary. We have investigated Re[σ (ω, τ )] of pulse-
excited states of the half-filled 1DEHM using tDMRG. We
have proposed that an insulator-to-glass transition is induced
by strong mono- and half-cycle pulses, which leads to the
suppression of σD. This is in contrast to the insulator-to-metal
transition that occurs upon excitation by photon absorption
accompanying σD ∝ �nd. Restricted mobility due to strong
fields induces glassy dynamics as seen in fracton systems.
Not glassy but metallic states have been observed in the
Mott insulator κ-(ET)2Cu[N(CN)2]Br excited by terahertz
pulses in the experiment [11]. One possibility is that the
enhancement of σD has been observed during electric field
irradiation when nonequilibrium metastable states have not
yet been reached (see Sec. S7 in the Supplemental Mate-
rial [75]). Another possibility is that electron correlation is not
so large that the subspaces in the fragmented Hilbert space
are connected. Lastly, we note that qualitative differences
in Re[σ (ω, τ )] between photon absorptions and quantum
tunnelings have recently been observed in a Mott insulator
Ca2RuO4 [123].
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