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Correlation-enhanced stability of microscopic cyclic heat engines
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For cyclic heat engines operating in a finite cycle period, thermodynamic quantities have intercycle and intra-
cycle correlations. By tuning the driving protocol appropriately, we can get the negative intercycle correlation
to reduce the fluctuation of work through multiple cycles, which leads to the enhanced stability compared to the
single-cycle operation. Taking the Otto engine with an overdamped Brownian particle as a working substance,
we identify a scenario to get such enhanced stability by the intercycle correlation. Furthermore, we demonstrate
that the enhancement can be readily realized in the current experiments for a wide range of protocols. By
tuning the parameters within the experimentally achievable range, the uncertainty of work can be reduced to
below ∼50%.
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Introduction. With advanced technology, various micro-
scopic thermal devices have been fabricated on the submicron
scale [1–10]. Among them, an important breakthrough for
the exploration beyond conventional macroscopic thermo-
dynamics is the experimental realization of the so-called
Brownian heat engine [4–7], which consists of a Brownian
particle subject to a time-dependent optical trap. In contrast
to conventional macroscopic heat engines, fluctuations of
thermodynamic quantities are significant in microscopic heat
engines due to the small number of degrees of freedom in
their working substance [11,12]. In the past three decades,
stochastic thermodynamics has been developed to formulate
laws of thermodynamics for the fluctuating thermodynamic
quantities of small systems, and has had great success in
understanding thermodynamics of small systems [13–16].
Motivated by the experimental realization of microscopic
heat engines and the theoretical advances in thermodynam-
ics of small systems, there is a surge of activity on the
study of microscopic heat engines [17–32]. Recently, fluc-
tuations of the performance of microscopic heat engines and
characterization of their performance beyond the mean values
of thermodynamic quantities have become an active research
topic [33–49].

Nevertheless, many studies of cyclic heat engines so far
consider single-cycle operations and focus on the performance
within a single cycle. In these studies, fluctuations of the
thermodynamic quantities usually include only the intracy-
cle correlation. In the quasistatic limit, since the thermal
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noise erases the correlation among thermodynamic quantities
in different cycles [13,38], it is sufficient to describe the
fluctuations focusing on a single cycle. However, to get the
nonzero power output, we need to operate engines in a finite
cycle period. In this case, the effect of the intercycle correla-
tion becomes non-negligible. Therefore, for engine operations
over multiple cycles, assessing the performance within a sin-
gle cycle is insufficient. Instead, assessments of the engine
performance should address the global process over multiple
cycles to include intercycle correlations.

Recently, fluctuations including intercycle correlations also
started to be discussed. For example, various properties of the
stochastic efficiency have been derived [50–56], and thermo-
dynamic uncertainty relations which give a lower bound of
uncertainties of the current [57–64] have been generalized for
cyclic heat engines in the long-time limit [62–64].

However, the role of the time correlation in fluctuations of
thermodynamic quantities has not been thoroughly explored.
Since engines are supposed to operate over multiple cycles
consecutively with a finite cycle period in practical situations,
there is a great demand for a scheme to prevent the degra-
dation of performance in multiple cycles by the intercycle
correlation effect. In this Letter, by clarifying the effect of time
correlation of work in microscopic heat engines with a finite
cycle period, we identify such a scheme to reduce the fluctu-
ation of work output. Since the fluctuation of work output is
comparable to or even bigger than the average of work output
in current experiments of small heat engines [4,5], reducing
the fluctuation of work output is a crucial issue. Taking an
example of the Otto engine using a Brownian particle as a
working substance, we demonstrate that the reduction of the
fluctuation of work output can be realized in a robust manner
in the current experiments, and this reduction can be more
than 50%.

Setup. We study a small cyclic heat engine whose working
substance is in contact with a heat bath with the control-
lable temperature T (t ) (we set the Boltzmann constant kB = 1
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throughout the Letter). The working substance is described by
the Hamiltonian H (�, t ) with an external control parameter
λ(t ), where � is the microstate of the working substance in
the phase space. The engine is driven by time-periodically
modulating T and λ with period τ , i.e., T (t ) = T (t + τ ) and
λ(t ) = λ(t + τ ). Under such a protocol, we assume the engine
is already driven into a periodic state with the probability
distribution function (PDF) satisfying p(�, t ) = p(�, t + τ )
after running many cycles [20]. Therefore, we can represent
time t by the phase as θ = 2πt/τ , and assign the initial phase
θ0 for the starting point of the cycle.

The work W (n)
θ0

extracted through n cycles with the initial
phase θ0 is a random variable given by

W (n)
θ0

= −
∫ nτ+θ0τ/2π

θ0τ/2π

∂H (�, t )

∂λ(t )
λ̇(t )dt, (1)

where the integral follows the Stratonovich rule [13]. The
ensemble average 〈W (n)

θ0
〉 of work is independent of θ0, and sat-

isfies 〈W (n)
θ0

〉 = n〈W (1)〉, where 〈· · · 〉 = ∫
D[�(t )]p[�(t )] · · ·

is the path integral over all the possible trajectories �(t ).
The variance of work with initial time t0 = θ0τ/(2π ) is

given by

Var
[
W (n)

θ0

] =
∫ nτ+t0

t0

dt
∫ nτ+t0

t0

dt ′ C(t, t ′), (2)

where the covariance function of power Ẇ ≡ −∂λH (�, t )λ̇(t )
is defined as C(t, t ′) ≡ 〈Ẇ (t )Ẇ (t ′)〉 − 〈Ẇ (t )〉〈Ẇ (t ′)〉. The
variance Var[W (n)

θ0
] of work can be given by the sum of the

contribution from each cycle, n Var[W (1)
θ0

], and the remaining

contribution denoted by C (n)
θ0

:

Var
[
W (n)

θ0

] = n Var
[
W (1)

θ0

] + C (n)
θ0

. (3)

Here, the first term can be identified as the intracycle correla-
tion within each single cycle and the second term C (n)

θ0
can

be regarded as the intercycle correlation between different
cycles. Since the system is not in a steady state, Var[W (n)

θ0
]

changes with θ0. However, the θ0 dependence is negligible for
n → ∞ because the correlation decays exponentially in time.

In this Letter, we use the single-cycle uncertainty �
(1)
θ0

≡
Var[W (1)

θ0
]/〈W (1)

θ0
〉2 to describe the fluctuation of work within

each single cycle. According to the law of large numbers,
the uncertainty of work extracted through a large number n
of cycles vanishes as ∼1/n. Therefore, we use the scaled
uncertainty �∞ for infinite cycles defined as

�∞ = lim
n→∞ �

(n)
θ0

≡ lim
n→∞ n

Var
[
W (n)

θ0

]
〈
W (n)

θ0

〉2 . (4)

Note that the θ0 dependence of �
(n)
θ0

vanishes in the limit of

n → ∞ because Var[W (n)
θ0

] does so and 〈W (n)
θ0

〉 is independent

of θ0. The multicycle uncertainty �
(n)
θ0

(n � 2) defined in

Eq. (4) is the quantity to be compared with �
(1)
θ0

. For a large
cycle period, where the intercycle correlation is negligible,
C (n)

θ0
	 0, W (n)

θ0
is diffusive with Var[W (n)

θ0
] = n Var[W (1)

θ0
], and

we get �∞ = �
(1)
θ0

. On the other hand, for a small cycle period
comparable to the relaxation time of the working substance,
the intercycle correlation is significant. Our goal is to find an

appropriate protocol which yields �∞ < �
(1)
θ0

(i.e., C ∞
θ0

< 0)
for arbitrary θ0.

Relation between the single-cycle and multicycle uncer-
tainties. To discuss the relationship between the uncertain-
ties within a single cycle �

(1)
θ0

and infinite cycles �∞,
we consider an overdamped Brownian particle trapped in
a one-dimensional harmonic oscillator potential with the
Hamiltonian

H (x, t ) = 1
2λ(t ) x(t )2. (5)

Here, λ(t ) is the stiffness of the potential which serves as a
mechanical control parameter and x(t ) is the position of the
Brownian particle. This system is described by the Ornstein-
Uhlenbeck process [65]. The correlation function φ(t, t ′) ≡
〈x(t )x(t ′)〉 with φ(t, t ′) = φ(t ′, t ) is derived from the solution
of the Itô stochastic differential equation for this process, see
Supplemental Material [66]. The resulting correlation func-
tion φ(t, t ′) for t < t ′ is given by

φ(t, t ′) = φ(t, t ) exp

[
−μ

∫ t ′

t
dsλ(s)

]
, (6)

where μ is the mobility. In addition, since φ(t, t ) is periodic
in time, we have

φ(t + τ, t ′ + τ ) = φ(t, t ′). (7)

The covariance function of power becomes C(t, t ′) =
1
2 λ̇(t )λ̇(t ′)φ(t, t ′)2 [66]. From Eqs. (6) and (7), we get
the following properties of the covariance function: C(t +
τ, t ′ + τ ) = C(t, t ′) and C(t, t ′ + τ ) = aC(t, t ′), where a ≡
exp[−2μ

∫ τ

0 dtλ(t )] < 1. Therefore, C(t, t ′) decays exponen-
tially in time when |t − t ′| 
 τ , and the correlation time of
work is given by τcorr = 2μ

∫ τ

0 dtλ(t )/τ .
From the above properties of C(t, t ′), we can write the

intercycle correlation C (2)
θ0

within the two successive cycles

as C (2)
θ0

= [a + γ (θ0)]Var[W (1)
θ0

], where

γ (θ0) ≡ 2
∫ 2τ+t0

τ+t0

dt ′
∫ τ+t0

t ′−τ

dt
C(t, t ′)

Var
[
W (1)

θ0

] . (8)

In the same way, we can write C (n)
θ0

in terms of a, γ (θ0), and

Var[W (1)
θ0

] [66]. Then, the uncertainty for n cycles reads [66]

n�
(n)
θ0

=
[

(n − sn)
1 + γ (θ0)

1 − a
+ sn

]
�

(1)
θ0

, (9)

where sn ≡ (1 − an)/(1 − a) � 1. For infinite cycles, we get

�
(1)
θ0

�∞ = 1 − a

1 + γ (θ0)
. (10)

For finite n cycles, the uncertainty derived from Eqs. (9) and
(10) reads

�
(n)
θ0

=
(

1 − sn

n

)
�∞ + sn

n
�

(1)
θ0

. (11)

If the intercycle correlation C (2)
θ0

is negative, i.e., a +
γ (θ0) < 0, we get �

(1)
θ0

> �
(n)
θ0

> �∞ from Eqs. (10) and (11)
[67]. This means that the negative covariance of work between
two successive cycles, C (2)

θ0
< 0, indicates the reduction of

uncertainty of work in multiple cycles. It is vice versa for
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FIG. 1. Brownian Otto cycle with a finite cycle period on the
λ-Teff plane. Strokes 1 and 2 are isentropic expansion and compres-
sion, respectively. 1+ (1−) is the node after (before) the isentropic
expansion and 2+ (2−) is the node after (before) the isentropic
compression. Since the durations of isochoric strokes are finite, the
effective temperature at nodes 1− and 2− are different from Th and
Tc, respectively.

the positive intercycle correlation. It is noted that the essential
point of the above discussion is the exponential decay in time
of the correlation functions. Even if the effect of inertia is
non-negligible beyond the overdamped limit, the correlation
functions can still be exponential in time with a smaller corre-
lation time in the overdamped regime [66]. In addition, in the
strongly underdamped regime, the correlation functions can
be well approximated by an exponentially decaying function
with a large correlation time τcorr 	 γ −1 obtained by averag-
ing over the rapid oscillation [66]. Therefore, for both cases,
the above results can still apply, but with a different value of
τcorr.

It is possible to observe the enhanced stability due to the
negative intercycle correlation when τ � τcorr. To show this
effect, below we consider a simple Brownian Otto engine,
where the analytical result can be obtained. However, a similar
result is also obtained for the Carnot cycle [66].

Results for the Brownian Otto cycle. Next, taking the
Brownian Otto engine as an example, we demonstrate that
the negative intercycle correlation can be realized in a wide
range of parameters in the driving protocol. We still consider
an overdamped Brownian particle in a harmonic oscillator
potential described by the Ornstein-Uhlenbeck process. In this
model, since the PDF p(x, t ) of any periodic state is Gaussian,
we can define the effective temperature Teff of the Brownian
particle given by Teff = λ〈x2〉 [18]. The Brownian Otto engine
consists of two isochoric and two isentropic strokes as shown
in Fig. 1 [68]. During the hot (cold) isochoric strokes, the
temperature T of the bath and the parameter λ are fixed at
Th and λh (Tc and λc), respectively, for the duration τh (τc)
with λc < λh. During the isentropic strokes, T and λ are
quenched simultaneously in a way such that the Shannon
entropy S ≡ −〈ln p〉 is unchanged [18]. We assume that the

isentropic strokes are instantaneous, so that the cycle period is
given by τ = τh + τc.

For each mth cycle, we assign an odd integer i = 2m − 1
for the isentropic expansion stroke and an even integer i = 2m
for the isentropic compression stroke (see the strokes labeled
“1” and “2” in Fig. 1 for m = 1). Since work is done only
in the isentropic strokes, the fluctuation of work can take two
values depending on whether θ0 is in the hot or cold isochoric
strokes. Therefore, the analysis can be divided into two cases
according to the initial phase: The cycle starts before the
isentropic expansion or compression. Then, we get the vari-
ance of work for the two cases, Var[W (1)

exp ] = ∑
i, j=1,2 Ci j and

Var[W (1)
com] = ∑

i, j=2,3 Ci j , respectively. Here, the subscript θ0

in W (1)
θ0

is replaced by “exp” and “com” for clarity, and
Ci j = 1

2 (λh − λc)2(−1)i− jφ2
i j . In this example, the correlation

function φi j ≡ φ(ti, t j ) is analytically solvable [66].
From the analytical solution of φi j , one can find that the

uncertainties �(1)
exp, �(1)

com, and �∞ depend on three parame-
ters [66]: eh ≡ exp(−2μλhτh), ec ≡ exp(−2μλcτc), and φr ≡
φ11/φ22. Here, eh and ec are measures of the incompleteness
of the equilibration in the hot and cold isochoric strokes,
respectively, and φr describes the spread of the width of the
PDF of the Brownian particle during the hot isochoric strokes.
Since we are interested in the heat engine, the mean value of
work should be positive, 〈W (1)〉 = (λh − λc)(φ11 − φ22)/2 >

0, and thus φr > 1. In addition to the condition φr > 1, the
region of φr is upper bounded as φr < 1/ec because the pa-
rameters eh, ec, and φr are constrained by [66]

(1 − eh)(1 − φrec)

(1 − ec)(φr − eh)
= R, (12)

where R ≡ Tcλh/(Thλc) describes the reversibility with

η = 1 − λc

λh
= 1 − 1

R

Tc

Th
< ηC . (13)

Since 0 < ec < 1, 0 < eh < 1 < φr , and 0 < R < 1, we get
φr < 1/ec from Eq. (12).

Figure 2(a) is a region map showing which of the un-
certainties �(1)

exp, �(1)
com, and �∞ is smaller than the others.

Regions II and III are of our interest, where the uncertainty
�∞ is smaller than those for a single cycle irrespective of
the starting point of the cycle. Figure 2(a) shows that, if
the equilibration in the cold isochoric strokes is sufficient
with ec < 1/φ2

r , we can get the reduction of the uncertainty
for multiple cycles. It is noted that, to obtain this reduction,
only the degree of equilibration in the cold isochoric strokes
matters, but not that in the hot isochoric strokes.

We can provide a physical understanding of Fig. 2(a). An
example of the protocol λ(t ) of the Brownian Otto engine
starting before the isentropic expansion (stroke 1) is shown in
Fig. 3. The intercycle correlation C (2)

exp = C13 + C24 + C14 +
C23 is represented by the four lines crossing the boundary
between two cycles (vertical dashed line). From Eq. (6),
the intercycle correlations in C (2)

θ0
satisfy Ci,i+1 = −ecCii for

odd i and Ci,i+1 = −ehCii for even i. The correlation decays
with n as Ci, j+2n = anCi j , where a = eceh < 1. Therefore,
C (2)

exp is proportional to C11a − C22eh ∝ φ2
r − 1/ec. As we have

discussed, the necessary and sufficient condition for the re-
duction of uncertainty is C (2)

θ0
< 0, which gives ec < 1/φ2

r

L032017-3



GUO-HUA XU AND GENTARO WATANABE PHYSICAL REVIEW RESEARCH 4, L032017 (2022)

FIG. 2. Mapping out the regions of reduced fluctuation by the
intercycle correlation. (a) The three regions with different orders of
uncertainties: �(1)

com > �∞ > �(1)
exp in region I, �(1)

com > �(1)
exp > �∞

in region II, �(1)
exp > �(1)

com > �∞ in region III. The uncertainties are
reduced by the intercycle correlation in regions II and III, which are
enclosed by the red dashed line. Here, we set φr = 1.2. (b) �

(n)
θ0

as a
function of n for a typical point [shown by the cross symbol in (a)]
of each region. The blue circles show �(n)

exp and the red triangles show
�(n)

com. Insets of (b) show cycle diagrams on the λ-Teff plane for each
typical point. Here, we set Th = 1, λh = 1, and λc = 0.5 for all three
cycle diagrams.

FIG. 3. Schematic diagram showing the contributions from the
intercycle correlation for the Brownian Otto cycle starting before the
isentropic expansion. Strokes 1 and 3 are isentropic expansion and
strokes 2 and 4 are isentropic compression. The vertical dashed line
represents the boundary between the cycles.

corresponding to regions II and III. In the same way, for
cycles starting before the isentropic compression, the inter-
cycle correlation C (2)

com is given by C (2)
com ∝ 1 − φ2

r /eh, but it is
always smaller than zero. Therefore, we have �∞ < �(1)

com for
arbitrary eh. Summarizing the results for the above two cases,
we get �∞ < �(1)

exp and �(1)
com provided ec < 1/φ2

r . Namely,
the fluctuation of work output is reduced in regions II and III
for an arbitrary starting point. The difference between regions
II and III is in the ordering of �(1)

exp and �(1)
com which depends

on the intracycle correlation.
Finally, we discuss the role of the temperature of the bath

and the experimental feasibility to get the reduction of the
fluctuation by the intercycle correlation. First, we consider
the mean value of the power P. As obtained in Ref. [71], P
depends on six parameters: Th, Tc, λh, λc, τh, and τc [66].
At any point in the region of 0 < ec < 1 and 0 < eh < 1,
the power can be set to any positive value for a given φr

by tuning the remaining free parameters, such as Th, Tc, and
λh. Figures 4(b)–4(e) show the power for different values of
Th/Tc. It can be seen that the point in the ec-eh plane giving
the maximum power can be located in region I or II by tuning
Th/Tc. It is noted that we have R > Tc/Th for the Otto engine
with P > 0 (η > 0) from Eq. (13). Second, we discuss the
role of the temperature ratio Th/Tc in the correlation-enhanced
stability. Figure 4(a) shows a contour plot of R as a function of
ec and eh for a fixed value of φr . As can be seen from Fig. 4(a),
if R is larger than that at ec = 1/φ2

r and eh = 0, it is guaranteed
that we are in either region II or III. From Eq. (12), we find
that this condition is R > 1/(φr + 1), or

Tc

Th
>

λc/λh

φr + 1
. (14)

A sufficient condition to satisfy this inequality is Th/Tc < 2,
which is easy to realize in experiments. In experiments of
microscopic heat engines with Brownian particles [4–6,8,9],
one of the heat bath temperatures (commonly Tc) is usually
set to be the room temperature: Tc ∼ 300 K. In such a case, if
Th is 300 K < Th < 600 K which is indeed the case in typical
experiments [4,5], it is guaranteed that the fluctuation of work
in the Brownian Otto cycle is always reduced for multiple
cycles irrespective of the other parameters. To demonstrate
the large reduction of �∞ by the intercycle correlation, we
plot �∞/�(1)

exp and �∞/�(1)
com as functions of Th/Tc in Fig. 5

for parameter values accessible in current experiments. Since
the work output is zero at Th/Tc = λh/λc and increases with
Th/Tc, the region of Th/Tc shown in Fig. 5 gives positive work
output. It is noted that, compared to the above-mentioned
sufficient condition, Th/Tc < 2, for �∞ < �(1)

exp and �(1)
com, we

can obtain this reduction of �∞ in a much wider temperature
region of Th/Tc � 5.4. Furthermore, the reduction of �∞ over
the single-cycle uncertainties can be very large by appro-
priately tuning the parameters and protocol. At Th/Tc 	 2.3
where the red and blue lines cross, we have the same reduction
rate for an arbitrary starting point. In this case, the uncertainty
�∞ can be reduced to less than 60% of the single-cycle
uncertainties. If we set the starting point of the cycle before the
isentropic compression stroke (i.e., the case of the red line),
�∞ can be reduced to even below 50% of the single-cycle
uncertainty.

L032017-4
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FIG. 4. (a) Product R ≡ Tcλh/(Thλc ) of the compression ratio
and the temperature ratio as a function of ec and eh. (b)–(e) Contour
maps of the power as a function of ec and eh with given values of
Th/Tc, λh, and φr . Power is in units of μλhTh. We set Th/Tc = 1.6 [for
(b)], 2.2 [for (c)], 5 [for (d)], and 10 [for (e)]. The red solid line shows
P = 0. Since we only focus on the heat engine, values of P for the
part with P < 0 are not shown here. In each figure, the vertical black
dashed line shows ec = 1/φ2

r . Here, we set φr = 1.2. The contour
lines show the values next to the color bar.

Conclusion. Our work has clarified the consequences of
time correlation of work over different cycles in cyclic heat
engines. If the cycle period is finite, focusing on one cycle
is insufficient to discuss fluctuations of the performance of

FIG. 5. �∞/�(1)
exp (blue line) and �∞/�(1)

com (red line)
as functions of Th/Tc with Tc = 300 K. Here, we set μ =
0.119 μm pN−1 ms−1 [69,70], λc = 1.6 pN μm−1, λh =
2.4 pN μm−1, τc = 0.7 ms, and τh = 0.3 ms. These parameters
are achievable in the current experiment of Ref. [5]. The ratio
�∞/�(1)

exp is still less than unity even at higher Th beyond Th/Tc = 2.
In addition, the ratios �∞/�(1)

exp and �∞/�(1)
com can reach �50%.

the microscopic heat engines. In particular, taking advantage
of the intercycle correlation, the stability of the work output
for the multicycle operation can be improved over the single-
cycle one. Since such an improvement can be realized in a
wide range of protocols, one can further optimize the other
performance of the engine (such as efficiency, power, and
uncertainty within each cycle). Furthermore, we have demon-
strated that our findings can be readily realized in the current
experiments. By tuning the parameters within the experimen-
tally achievable range, the uncertainty of work output for infi-
nite cycles can be reduced to less than 50% of the uncertainty
for each single cycle. Since the fluctuation of work output can
be even larger than the average of the work output in the cur-
rent experiments [4,5], our result should provide an important
step toward the realization of microscopic heat engines for
practical use. The effect of time correlation in other kinds
of heat engines, such as autonomous heat engines and self-
oscillating heat engines [24], is an interesting future problem.
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