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Reservoir computing with diverse timescales for prediction of multiscale dynamics
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Machine learning approaches have recently been leveraged as a substitute or an aid for physical/mathematical
modeling approaches to dynamical systems. To develop an efficient machine learning method dedicated to
modeling and prediction of multiscale dynamics, we propose a reservoir computing (RC) model with di-
verse timescales by using a recurrent network of heterogeneous leaky integrator (LI) neurons. We evaluate
computational performance of the proposed model in two time series prediction tasks related to four chaotic
fast-slow dynamical systems. In a one-step-ahead prediction task where input data are provided only from
the fast subsystem, we show that the proposed model yields better performance than the standard RC model
with identical LI neurons. Our analysis reveals that the timescale required for producing each component of
target multiscale dynamics is appropriately and flexibly selected from the reservoir dynamics by model training.
In a long-term prediction task, we demonstrate that a closed-loop version of the proposed model can achieve
longer-term predictions compared to the counterpart with identical LI neurons depending on the hyperparameter
setting.
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Introduction. Hierarchical structures composed of
macroscale and microscale components are ubiquitous in
physical, biological, medical, and engineering systems [1–4].
Complex interactions between such diverse components
often bring about multiscale behavior with different spatial
and temporal scales. To understand such complex systems,
multiscale modeling has been one of the major challenges
in science and technology [5]. An effective approach is to
combine established physical models at different scales by
considering their interactions. However, even a physical
model focusing on one scale is often not available when the
rules (e.g., physical laws) governing the target system are
not fully known. In such a case, another potential approach
is to employ a machine learning model fully or partly [6,7].
It is a challenging issue to integrate machine learning and
multiscale modeling for dealing with large datasets from
different sources and different levels of resolution [8]. To
this end, it is significant to develop robust predictive machine
learning models specialized for multiscale dynamics.

We focus on a machine learning framework called reser-
voir computing (RC), which has been mainly applied to
temporal pattern recognition such as system identification,
time series prediction, time series classification, and anomaly
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detection [6,9–13]. The echo state network (ESN) [9,10],
which is a major RC model, uses a recurrent neural network
(RNN) to nonlinearly transform an input times series into a
high-dimensional dynamic state and reads out desired charac-
teristics from the dynamic state. The RNN with fixed random
connection weights serves as a reservoir to generate an echo
of the past inputs. Compared to other RNNs where all the con-
nection weights are trained with gradient-based learning rules
[14], the ESN can be trained with much lower computational
cost by optimizing only the readout parameters with a simple
learning method [15].

The timescale of reservoir dynamics in the original ESN
[9] is almost determined by that of input time series. How-
ever, the timescale of a desired output time series is often
largely different from that of the input one depending on a
learning task. Therefore, the ESN with leaky integrator neu-
rons (LI-ESN) has been widely used as a standard model to
accommodate the model output to temporal characteristics
of the target dynamics [16]. The LI-ESN has a leak rate pa-
rameter controlling the update speed of the neuronal states in
the reservoir. For multi-timescale dynamics, it is an option to
use the hierarchical ESN combining multiple reservoirs with
different timescales [17,18], where the leak rate is common to
all the neurons in each reservoir but can be different from one
reservoir to another. In the above models, the leak rate in each
reservoir is set at an optimal value through a grid search or a
gradient-based optimization.

In contrast to the above approach, here we propose an
ESN with diverse timescales (DTS-ESN), where the leak rates
of the LI neurons are distributed. Our aim is to generate
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FIG. 1. (a) A schematic of the DTS-ESN. An input time series
u(t ) given to the input layer is transformed into a reservoir state x(t ),
and then processed in the readout to produce an output time series
y(t ). Only W out is trainable. The dashed arrows indicate optional
connections. The reservoir neuron i has leak rate αi ∈ [αmin, αmax].
(b) Task 1 where the whole fast-slow dynamics is predicted only
from the fast dynamics using an open-loop model. (c) Task 2 where
the whole fast-slow dynamics is predicted with a closed-loop model.

reservoir dynamics with a rich variety of timescales so as
to accommodate a wide range of desired time series with
different timescales. The main advantage of the DTS-ESN is
flexible adjustability to multiscale dynamics. Moreover, the
idea behind the proposed model opens up a new possibility
to leverage heterogeneous network components for network-
type physical reservoirs in implementation of RC hardware
[19] as well as for other variants of ESNs and RC models
[20–23]. Our idea is also motivated by the role of heterogene-
ity of biological neurons in information flow and processing
[24].

Some previous works considered heterogeneity of system
components in RC systems. A positive effect of hetero-
geneous nonlinear activation functions of reservoir neurons
on prediction performance is reported [25], but its explicit
relation to timescales of reservoir states is unclear. In a time-
delay-based reservoir [26], where the timescales of system
dynamics are mainly governed by the delay time and the
clock cycle, a mismatch between them can enhance compu-
tational performance [27,28]. In a time-delay-based physical
reservoir implemented with an optical fiber-ring cavity, it

FIG. 2. Timescale distributions of reservoir dynamics in the lin-
earized systems of the LI-ESN and the DTS-ESN when Nx = 2000
and d = 0.1. (a) A histogram of timescales [τi in Eq. (5)] in the
LI-ESN with α = 10−0.1. (b) The effect of α on the timescale distri-
bution in the LI-ESN. (c) The same as (a) but in the DTS-ESN with
αmax = 1 and αmin = 10−3. (d) The effect of αmin on the timescale
distribution in the DTS-ESN with αmax = 1.

was revealed that the nonlinearity of the fiber waveguide is
essential for high computational performance rather than the
nonlinearity in the input and readout parts [29]. Compared
to these time-delay-based reservoirs with a few controllable
timescale-related parameters, our model based on a network-
type reservoir can realize various timescale distributions by
setting different heterogeneity of leak rates.

Methods. The DTS-ESN consists of a reservoir with het-
erogeneous LI neurons and a linear readout as illustrated in
Fig. 1(a). The DTS-ESN receives an input time series u(t ) in
the input layer, transforms it into a high-dimensional reservoir
state x(t ), and produces an output time series y(t ) as a linear
combination of the states of the reservoir neurons. With dis-
tributed leak rates of reservoir neurons, the DTS-ESN extends
greatly the range of timescales that can be realized by the
LI-ESN [16].

In this study, the capability of the DTS-ESN is evaluated in
two types of time series prediction tasks related to chaotic fast-
slow dynamical systems. One is a one-step-ahead prediction
task (Task 1) where input data are given only from the fast
subsystem as depicted in Fig. 1(b). An inference of hidden
slow dynamics from observational data of the fast dynamics
is challenging but beneficial in reducing the effort involved
in data measurement. An example in climate science is to
predict slowly changing behavior in the deep ocean such as
the temperature. The behavior is known to give an important
feedback to the fast dynamical behavior of the atmosphere,
land, and near-surface oceans [30], but the observation in the
deep ocean remains as a major challenge [31]. The other is
an autoregressive prediction task (Task 2) where a closed-
loop version of the proposed model is used for a long-term
prediction in a testing phase as illustrated in Fig. 1(c). RC
approaches have shown a strong potential in long-term pre-
dictions of chaotic behavior [6,7]. We examine the effect of
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TABLE I. Chaotic fast-slow dynamical systems models used for prediction tasks. Each model consists of fast and slow subsystems of the
variables specified in the third and fourth columns. The parameter values were set to exhibit chaotic dynamics.

Model Equations Fast Slow Parameter values

(i) Rulkov [32] xt+1 = η/(1 + x2
t ) + yt , yt+1 = yt − μ(xt − σ ) x y η = 4.2, μ = 0.001, σ = −1.0

(ii) Hindmarsh-Rose [33] ẋ = y − x3 + bx2 − z + I, ẏ = 1 − 5x2 − y, x, y z b = 3.05, I = 3, ε = 0.01,
ż = ε(s(x − x0 ) − z) s = 4, x0 = −1.6

(iii) tc-VdP [34] ẋ1 = (y1 + c1x2)/τ1, ẏ1 = (μ1(1 − x2
1 )y1 − x1)/τ1 x1, y1 x2, y2 μ1 = 5, τ1 = 0.1, c1 = 0.001

ẋ2 = (y2 + c2x1)/τ2, ẏ2 = (μ2(1 − x2
2 )y2 − x2)/τ2 μ2 = 5, τ2 = 1, c2 = 1

(iv) tc-Lorenz [35] Ẋ = a(Y − X ), Ẏ = rsX − ZX − Y − εsxy, x, y, z X , Y , Z a = 10, b = 8/3, c = 10
Ż = XY − bZ , ẋ = ca(y − x), rs = 28, r f = 45,

ẏ = c(r f x − zx − y) + ε f Y x, ż = c(xy − bz) εs = 0.01, ε f = 10

distributed timescales of reservoir dynamics on the long-term
prediction ability. The DTS-ESN is formulated as follows:

x(t + �t ) = (I − A)x(t ) + A f (h(t )), (1)

h(t ) = ρW x(t ) + γW inu(t + �t ) + ζW fby(t ), (2)

y(t + �t ) =
{

W out[x(t + �t ); u(t + �t ); 1] (Task 1)
W outx(t + �t ) (Task 2), (3)

where t is the time, �t is the time step, x(t ) ∈ RNx is
the reservoir state vector, I ∈ RNx×Nx is the identity matrix,
A = diag(α1, . . . , αNx ) is the diagonal matrix of leak rates
αi for i = 1, . . . , Nx, h(t ) is the internal state vector, f is
the element-wise activation function given as f = tanh in
this study, ρW ∈ RNx×Nx is the reservoir weight matrix with
spectral radius ρ, γW in ∈ RNx×Nu is the input weight matrix
with input scaling factor γ , u(t ) ∈ RNu is the input vector,
ζW fb ∈ RNx×Ny is the feedback weight matrix with feedback
scaling factor ζ , y(t ) ∈ RNy is the output vector, and W out is
the output weight matrix. In the readout, we concatenate the
reservoir state, the input, and the bias for Task 1 and use only
the reservoir state for Task 2 as described in Eq. (3). Only W out

is trainable and all the other parameters are fixed in advance
[9,13]. The DTS-ESN is reduced to the LI-ESN [16] if αi = α

for all i.
The fraction of nonzero elements in W was fixed at d =

0.1, which were randomly drawn from a uniform distriubtion
in [−1,1], and W was rescaled so that its spectral radius
equals 1. The entries of W in and W fb were randomly drawn
from a uniform distribution in [−1, 1]. The leak rates were
assumed to follow a reciprocal (or log-uniform) distribution
in [αmin, αmax]. This means that log10 αi was randomly drawn
from a uniform distribution in [log10 αmin, log10 αmax]. The
leak rate αi of neuron i is represented as αi = �t/ci where

TABLE II. The time steps and the durations of transient, training,
and testing periods.

Model �t Ttrans Ttrain Ttest

(i) Rulkov 1 4000 8000 4000
(ii) Hindmarsh-Rose 0.05 200 1200 600
(iii) tc-VdP 0.01 50 150 100
(iv) tc-Lorenz 0.01 30 60 30

ci denotes the time constant in the corresponding continuous-
time model (see the Supplemental Material [36]).

In the training phase, an optimal output weight matrix
Ŵ out is obtained by minimizing the following sum of squared
output errors plus the regularization term:

∑
k

||y(t + k�t ) − d(t + k�t )||22 + β||W out||2F , (4)

where the summation is taken for all discrete time points in the
training period, || · ||2 indicates the L2 norm, || · ||F indicates
the Frobenius norm, d(t ) denotes the target dynamics, and β

represents the regularization factor [13]. In the testing phase,
Ŵ out is used to produce predicted outputs.

FIG. 3. Comparisons of the testing errors (NRMSEs) between
the DTS-ESN with αi ∈ [αmin, 1] (green circles) and the LI-ESN with
αi = α (black crosses). The marks indicate the average errors over
ten simulation runs with different reservoir realizations. The error
bar indicates the variance. The common parameter values are ζ = 0
and β = 10−3. (a) The Rulkov model. Nx = 200 and γ = ρ = 1.
(b) The HR model. Nx = 200 and γ = ρ = 1. (c) The tc-VdP model.
Nx = 200 and γ = ρ = 1. (d) The tc-Lorenz model. Nx = 400 and
γ = ρ = 0.1.
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FIG. 4. The absolute output weights in Ŵ out of trained DTS-ESNs, plotted against the leak rates of the corresponding reservoir neurons.
Each panel corresponds to each subsystem. The parameter values are the same as those for Fig. 3 but with αmin = 10−3. (a) The Rulkov model.
(b) The HR model. (c) The tc-VdP model. (d) The tc-Lorenz model.

Analyses. The timescales of the reservoir dynamics in the
DTS-ESN are mainly determined by the hyperparameters in-
cluding the time step �t , the spectral radius ρ, and the leak
rate matrix A. The timescales of reservoir dynamics in the
linearized system of Eq. (1), denoted by τi for i = 1, . . . , Nx,
are linked to the set of eigenvalues λi of its Jacobian matrix as
follows (see the Supplemental Material [36]):

τi = − �t

ln |λi| . (5)

Figure 2 demonstrates that the timescale distribution in the
linearized system is different between the LI-ESN and the
DTS-ESN. Figure 2(a) shows a timescale distribution for the
LI-ESN with α = 10−0.1. When α is decreased to produce
slower dynamics, the mean of the timescale distribution in-
creases while the distribution range in the logarithmic scale
is almost unaffected as shown in Fig. 2(b) [18]. Figure 2(c)
shows a broader timescale distribution of the DTS-ESN with
[αmin, αmax] = [10−3, 1]. As shown in Fig. 2(d), the distribu-
tion range monotonically increases with a decrease in αmin

(see the Supplemental Material [36]). The timescale analysis
based on the linearized systems indicates that the DTS-
ESN with a sufficiently small αmin has much more diverse
timescales than the LI-ESN.

Results. We evaluated the computational performance of
the DTS-ESN in prediction tasks involved with four chaotic
fast-slow dynamical systems models listed in Table I: (i) the
Rulkov model which is a 2D map replicating chaotic bursts of
neurons [32]; (ii) the Hindmarsh-Rose (HR) model which is a
phenomenological neuron model exhibiting irregular spiking-

bursting behavior [33]; (iii) the two coupled Van der Pol
(tc-VdP) model which is a combination of fast and slow limit
cycle oscillators with nonlinear damping [34]; (iv) the two
coupled Lorenz (tc-Lorenz) model which is a caricature repre-
senting the interaction between the ocean with slow dynamics
and the atmosphere with fast dynamics [35,37]. There is a
large timescale gap between the fast and slow subsystems.

We generated time series data from each dynamical system
model using the parameter values listed in Table I. The ODE
models were numerically integrated using the Runge-Kutta
method with time step �t . Then, we separated the whole
time series data of total length Ttotal into transient data of
length Ttrans, training data of length Ttrain, and testing data of
length Ttest . The transient data was discarded to wash out the
influence of the initial condition of the reservoir state vector.
We set the time step and the durations of data as listed in
Table II unless otherwise noted.

First, we performed the one-step-ahead prediction task
(Task 1) using the open-loop model shown in Fig. 1(b),
where the states of the whole variables at one step ahead are
predicted only from the input time series of fast variables.
The prediction performance is evaluated with the following
normalized root mean squared error (NRMSE) between the
model predictions and the target outputs:

NRMSE =
√

〈||y(t + k�t ) − d(t + k�t )||22〉k√
〈||d(t + k�t ) − 〈d(t + k�t )〉k||22〉k

, (6)

where 〈·〉k denotes an average over the testing period.
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Figures 3(a)–3(d) show the comparisons between the DTS-
ESN and the LI-ESN in the NRMSEs for the four dynamical
systems models listed in Table I (see the Supplemental Mate-
rial for examples of predicted time series [36]). The horizontal
axis is αmin for the DTS-ESN and α for the LI-ESN. When
αmin = α = 1, the two models coincide and yield the same
performance. The prediction performance is improved as αmin

is decreased from 1 for the DTS-ESN, mainly due to an
increase in the prediction accuracy with respect to the slow
variables (see the Supplemental Material [36]). The DTS-ESN
can keep a relatively small prediction error when αmin is
decreased even to 10−3 in contrast to the LI-ESN. The best
performance of the DTS-ESN is obviously better than that of
the LI-ESN for all the target dynamical systems, indicating
a higher ability of the DTS-ESN. Moreover, even with αmin

fixed at 10−3, the DTS-ESN can achieve the performance
comparable to the best one obtained by the LI-ESN for all
the target dynamics. This effortless setting of leak rates is an
advantage of the DTS-ESN over the LI-ESN and the hierar-
chical LI-ESNs.

Figures 4(a)–4(d) demonstrate the absolute output weights
in Ŵ out of the trained DTS-ESNs, plotted against the leak rates
of the corresponding neurons. Each panel corresponds to an
output neuron for the variable specified by the label on that.
The results indicate that the reservoir neurons with large αi,
having small timescales, are mainly used for approximating
the fast subsystems (red points) and those with small αi,
having large timescales, are for the slow subsystems (blue
points). We can see that the neuronal states with appropriate
timescales are selected to comply with the timescale of the
desired output as a result of model training. In Fig. 4(d) for
the tc-Lorenz model, the reservoir neurons with relatively
small αi are used for the slow variable Z but not for the other
slow variables (X and Y ). This means that the dynamics of
X and Y are essentially not as slow as that of Z , causing
the performance degradation with a large decrease in αmin

as shown in Fig. 3(d). By increasing the reservoir size and
the length of training data, this degradation is mitigated (see
Supplemental Material [36]). The natural separation of the
roles of neurons can be regarded as a spontaneous emergence
of modularization found in many biological systems [38–40].

Second, we performed the autoregressive prediction task
(Task 2). As shown in Fig. 1(c), the open-loop model is trained
using the training data, and then the closed-loop model is used
to generate predicted time series autonomously. We increased
Ttrain from 60 in Table II to 120 for the tc-Lorenz model, in
order to improve the prediction performance. In the testing
phase, we evaluated the valid time [6] for the slow dynamics,
indicating the elapsed time duration (measured in actual time
units) before the normalized prediction error E (t ) exceeds a
threshold value ε in the testing phase. The error E (t ) is defined
as follows [7]:

E (t ) = ||x̃(t ) − d̃(t )||2
〈||d̃(t + k�t )||22〉1/2

k

, (7)

where x̃(t ) and d̃(t ) represent the reservoir state vector and the
target vector of slow variables, respectively, and 〈·〉k denotes
an average over the testing period.

FIG. 5. Examples of predictions (red and blue solid lines) by
the closed-loop DTS-ESN models, superimposed on the target time
series (black dashed lines). The orange vertical dashed line indicates
the valid time. (a) The Rulkov model. Nx = 400, γ = 0.8, ρ = 1,
ζ = 1, β = 10−3, αmin = 10−6/9, and ε = 0.01. (b) The HR model.
Nx = 400, γ = 0.6, ρ = 0.2, ζ = 0.4, β = 10−3, αmin = 10−24/9,
and ε = 0.05. (c) The tc-VdP model. Nx = 400, γ = 0.1, ρ = 0.03,
ζ = 0.2, β = 10−6, αmin = 10−2/9, and ε = 0.4. (d) The tc-Lorenz
model. Nx = 1000, γ = 0.01, ρ = 0.01, ζ = 0.04, β = 10−4, αmin =
10−8/9, and ε = 0.4.

Figures 5(a)–5(d) show examples of autoregressive pre-
dictions (red lines for fast variables and blue lines for slow
ones) by the closed-loop DTS-ESN models for the four target
dynamical systems. The predicted time series approximates
the target time series well (black dashed lines) until the valid
time indicated by the vertical dashed line. The divergence
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FIG. 6. Comparisons of the valid time between the DTS-ESN
(green circles) and the LI-ESN (black crosses). The marks indicate
the average values over 20 simulation runs with different reservoir
realizations. The error bar indicates the standard error. The parameter
conditions and data settings are the same as those for Fig. 5, except
for the varied one. (a) The Rulkov model. (b) The Hindmarsh-Rose
model. (c) The tc-VdP model. (d) The tc-Lorenz model.

of the prediction error after a finite time is inevitable due
to the chaotic dynamics. We note that, in Fig. 5(c) for the
tc-VdP model, the discrepancy between the predicted and
target time courses is not prominent until around t = 240 but
the normalized error exceeds ε = 0.4 at around t = 221. If the
threshold value is changed to ε = 3, the valid time is increased
to around 44. Figures 6(a)–6(d) demonstrate the comparisons
of the valid time between the closed-loop DTS-ESN and the

closed-loop LI-ESN for the four target dynamical systems.
In all the panels, the largest valid time is achieved by the
DTS-ESN, suggesting its higher potential in the long-term
prediction. The valid time largely depends on the hyper-
parameter setting including the range of leak rates, which
may be associated with the attractor replication ability of
the DTS-ESN as measured by the Lyapunov exponents (see
Supplemental Material [36] for details).

Discussion and conclusion. We have proposed the RC
model with diverse timescales, the DTS-ESN, by incorpo-
rating distributed leak rates into the reservoir neurons for
modeling and prediction of multiscale dynamics. The re-
sults of the prediction tasks indicate the effectiveness of our
randomization approach to realizing a reservoir with rich
timescales. Although we assumed a specific distribution of
leak rates in this study, another distribution could further
improve the prediction performance. Moreover, another type
of heterogeneity of reservoir components could boost the
ability of RC systems in approximating a wide variety of dy-
namical systems. Future applications include a prediction of
large-scale spatiotemporal chaotic systems [6,41] from partial
observations and an inference of slow dynamics from ex-
perimentally measured data involved in real-world multiscale
systems [31,42].
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