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Transient nuclear inversion by x-ray free electron laser in a tapered x-ray waveguide
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The enhancement of x-ray-matter interaction by guiding and focusing radiation from x-ray free electron lasers
is investigated theoretically. We show that elliptical waveguides using a cladding material with a high atomic
number, such as platinum, can maintain an x-ray intensity of up to three orders of magnitude larger than in
free space. This feature can be used to place a nuclear sample in the waveguide focal area and drive nuclear
Mössbauer transitions up to transient nuclear population inversion. The latter is a long-standing goal related to
gamma-ray lasers or nuclear state population control for energy storage. We show that inverted nuclei numbers
of up to approximately 2 × 105 are achievable in the realistic region of longitudinal x-ray-free-electron-laser
coherence time �10 fs. Our results anticipate the important role of tapered x-ray waveguides and strategically
embedded samples in the field of x-ray quantum optics.
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Introduction. The first x-ray free electron laser (XFEL)
facilities [1,2] open new avenues for the interaction of high-
frequency lasers with atoms, molecules, or even atomic nuclei
which can be resonant to x-ray frequencies. However, even
intense XFEL radiation is still far from achieving substantial
nuclear excitation or population inversion [3,4]. Historically,
the latter has been mentioned in the context of gamma-ray
lasers, but so far never achieved [5]. Efficient nuclear pop-
ulation control would also be desirable for a safe and clean
energy storage solution based on long-lived nuclear excited
states, i.e., isomers [6]. In addition, transient nuclear inversion
paves the way towards a new type of strong XFEL Mössbauer
source [7,8] whose polarization and wavefront are much eas-
ier to control via magnetic switching [9,10] or mechanical
vibration [11,12] compared to XFEL wavefronts.

So far, nuclear condensed matter [9,11,13–19] and x-ray
quantum optics experiments [3,12,20–27] drove Mössbauer
transitions in the weak-excitation, single-photon regime at
synchrotrons. The more desirable nonlinear regime, which
would allow for photon-photon interactions in the x-ray
frequency range, could not be accessed thus far. The cor-
responding strong x-ray-nuclear interaction also requires,
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apart from increased brilliance, enhancement of nuclear-x-
ray interactions in cavities and waveguides (WG). Grazing
incidence x-ray cavities with embedded Mössbauer nuclei
[20–24,26,28] or normal-incidence cavities based on diamond
mirrors [29,30] are lossy and cannot match performances
at optical frequencies. Theoretical predictions on nuclear
excitation in x-ray thin-film cavities have placed high require-
ments on the x-ray photon number per pulse for population
inversion [31]. The nanofocusing capabilities of tapered
capillary WG on the other hand was demonstrated nearly
three decades ago [32] with continuous progress ever since
[33–42].

In this Letter, we investigate the prospects of tapered x-ray
WG for efficient nuclear excitation towards the non-linear
regime with an XFEL. A tapered WG presents a gradual
narrowing structure of the cladding material and focuses x
rays [36,39,40,43–45], boosting their capability of resonantly
interacting with and exciting atomic nuclei. We show that
elliptical waveguides (EWG) using a cladding material such
as platinum can maintain an x-ray intensity up to three orders
of magnitude larger than its input. Based on this enhance-
ment, by placing a Mössbauer nuclear sample at the focal
area, transient nuclear population inversion can be reached
for realistic XFEL parameters. This nuclear population in-
version can pave the way towards nonlinear x-ray effects,
release on demand of nuclear energy from isomers or sec-
ondary graser-like x-ray sources. Furthermore, our results
design a tool for XFEL nanofocusing which will be useful
for a plethora of fields, starting from imaging, holography,
condensed matter physics, and in particular nuclear physics
or energy storage, opening additional physics cases at XFEL
facilities.
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FIG. 1. (a) A nuclear sample (yellow cylinder) is placed at the
WG focal point (sketch not to scale). The intrawaveguide x-ray
intensity is depicted below. (b) A bottle-like tapered WG with in-
put radius ri, output radius ro and focusing length Lf . (c) 57Fe
nuclear level scheme. A linearly polarized XFEL pulse (blue ar-
rows) drives the two �m = 0 transitions. We label the two ground
states with |1〉, |2〉 and the relevant excited states with |3〉 and |4〉,
respectively.

Figure 1(a) illustrates our setup. The XFEL is pre-
focused by, e.g., Kirkpatrick-Baez focusing mirrors which
have reached sub-μm capabilities [46]. A nuclear sample
is directly embedded in the WG focal area. A tapered WG
is described by the focusing length L f , the input (output)
port radius ri (ro), the cladding material, and the cladding-
vacuum interface geometry illustrated in Fig. 1(b). Nuclear
resonance fluorescence will be emitted in WG modes, leading
to directional emission relevant for downstream detection and
applications. As a main example we consider a sample of 57Fe
Mössbauer nuclei, which have a 14.4 keV nuclear transition of
magnetic dipole multipolarity. Similar Mössbauer transitions
with ground (excited) state nuclear spin Ig = 1/2 (Ie = 3/2)
in 133Ba, 187Os, and 169Tm are also addressed, see Table I. In
the chosen setup geometry, the pulse drives the two transitions
�m = me − mg = 0, where me (mg) are the corresponding
spin projections.

Theoretical model. We consider a linearly polarized and
fully coherent XFEL pulse. Later on we use the partial-
coherence method to numerically simulate the self-amplified
spontaneous emission (SASE) XFEL pulse structure [49].
Fully coherent x-ray pulses can be delivered by seeded
XFELs [50–55], an XFEL oscillator (XFELO) [56–61],
or their combination [62,63]. The nuclear dynamics is
described by Bloch equations for the density matrix ρ

[64,65],
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where the subscripts (e, g) = (3, 1) or (4, 2) label the nuclear
states as illustrated in Fig. 1(c). In Eqs. (1)–(3), the incoherent
decay is attributed to the internal conversion rate α

1+α
�s which

cannot be suppressed by the WG, where �s is the spontaneous
radiative decay rate and α the internal conversion coefficient.
Following Refs. [64,66–68], we define the Rabi frequency
� = �E/h̄, where E = |E| is the electric field strength
modulus and � = 4aμ

√
1.79(2Ie + 1)πB(M1)/3 the nuclear

matrix element with μ = 0.105 e fm the nuclear magneton, e
the electron charge, Ie = 3/2 the excited state spin, a = √

2/3
the corresponding Clebsch-Gordan coefficient, and B(M1) the
reduced transition probability for the magnetic dipole nuclear
transition, respectively. The Maxwell wave equation describes
the x-ray propagation [68–71]:
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Here, k is the x-ray wave vector and c denotes the speed of
light in vacuum. N (r) is the nuclear particle number den-
sity distribution, flm the Lamb-Mössbauer factor, and n(r) =
1 − δ(r) + iβ(r) the electronic index of refraction [40,70,72],
respectively. The position in space r determines the WG
material, with the index of refraction values for Pt, Si or
the nuclei of interest presented in Table I. We numerically
solve Eqs. (1)–(4) in cylindrical coordinates (r, z) with the
initial conditions ρ33(r, z, 0) = ρ44(r, z, 0) = ρ31(r, z, 0) =
ρ42(r, z, 0) = E (r, z, 0) = 0, ρ11(r, z, 0) = ρ22(r, z, 0) = 1/2,
and the boundary condition [66,67,73] at z = 0
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σ 2
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4τ 2

)
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Here, ε0 is the vacuum permittivity, tc = 250 fs is the XFEL
peak time, and Et the nuclear transition energy, respectively.
Furthermore, np, σ , and τ are the photon number per pulse,
beam waist (after the first focusing mirror), and pulse duration

TABLE I. For each nucleus with atomic mass number A we present the nuclear transition energy Et , the number density N , the calculated
Lamb-Mössbauer factor flm, the reduced nuclear transition probability B(M1) in Weisskopf units (W.u.), the internal conversion coefficient α

and the spontaneous radiative rate �s. The last six columns give the x-ray index of refraction n = 1 − δ + iβ for WG materials [47,48].

δ(10−6) β(10−7)

AX Et (keV) N (1028/m3) flm B(M1) (W.u.) α �s (MHz) AX Pt Si AX Pt Si

169Tm 8.410 3.32 0.84 0.0342 263 169 19.0 47.5 6.94 13.4 43.7 1.46
187Os 9.756 7.15 0.96 0.0260 280 291 36.0 34.7 5.14 24.6 25.7 0.81
133Ba 12.327 1.54 0.38 0.0230 69.5 99.0 3.93 21.2 3.21 3.10 28 0.32
57Fe 14.413 8.49 0.80 0.0078 8.65 7.05 7.44 16.1 2.34 3.39 24.9 0.17
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FIG. 2. (a) Intrawaveguide x-ray concentration ratio Rc(r = 0, z)
(left vertical axis) and transmission T (right vertical axis) of the
CWG (blue empty squares and blue dashed line) and EWG (red
dots and red dashed-dotted line) with common parameters (ri, Lf ,
ro, σ ) = (150 nm, 160 μm, 15 nm, 120 nm). (b) Contour plots of
Rc(r, z) for a Pt-cladding EWG. The red-upward arrow pinpoints the
EWG focal point. White dashed lines indicate the platinum cladding
and vacuum interface. The inset zooms in on the WG focal point.
The white horizontal (vertical) arrow indicates the intrawaveguide
Rayleigh length (focal spot size).

of the input XFEL pulse, respectively. Notably, the use of
Eq. (4) and Eq. (5) is more realistic than the effective intensity
approach [74] and renders stronger nuclear excitation. We
define the intrawaveguide x-ray concentration ratio Rc and the
focal transmission T to characterize the present WGs

Rc(r, z) = |E (r, z)|2/|E (0, 0)|2, (6)

T =
(∫ ro

0
|E (r, z f )|2rdr

)/(∫ ri

0
|E (r, 0)|2rdr

)
. (7)

Rc depicts the degree of x-ray focusing and the spatial inten-
sity distribution, and T reveals the throughput rate at the focus
z = z f . Numerically, the cladding term dominates over the nu-
clear coherences in Eq. (4), which allows for the steady-state
calculation, i.e., solving Eq. (4) without nuclear coherence
and temporal derivative terms [37,70]. By calculating the
steady-state Rc [37,70], we obtain the XFEL pulse area and
the nuclear inversion Iv = ρ33 + ρ44 − ρ11 − ρ22 [74]
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The number of inverted nuclei can be calculated as∫
Iv>0 N (r)[ρ33(r) + ρ44(r)]d3r. In the following we refer to

the active volume as the region where Iv > 0.
Focusing x-rays in a tapered waveguide. In Fig. 2 we

present our steady-state solutions of Eq. (4) with only Pt
cladding. We compare an EWG with a conical waveguide
(CWG), whose cladding-vacuum interface is a cone, both
sharing the parameters (ri, ro, σ ) = (150 nm, 15 nm, 120 nm).

An EWG with r = ri

√
(1 − (z/L f )2) will guide x rays from

one focal point to another via only a single reflection on
the interface, reducing photon loss. In practice, ellipsoidal
glass capillaries have been used as condensers for x-ray mi-
croscopes [34]. X rays experience focusing for z � 160 μm
in both WGs, but behave very differently for z > 160 μm.
Fig. 2(a) shows the L f -dependent focal Rc(0, z f ) and T val-
ues. The EWG transmission becomes higher than that of
CWG when L f � 80 μm, and the gap between the two
Rc curves is increasing for L f > 40 μm. In contrast to the
maximum CWG Rc ≈ 250 at L f = 90 μm, the EWG RC

remarkably reaches the greatest concentration ratio of ap-
prox. 800 at L f = 150 μm. We use the product T Rc(0, z f )
as the WG figure of merit. The EWG’s value reaches the
optimal case around L f = 160 μm, where it offers both tight
x-ray focusing and high transmission. Figure 2(b) illustrates
the spatial distribution of Rc(r, z) for Pt-cladding EWG at
L f = 160μm where the EWG is optimized. The axial de-
pendence defines the intrawaveguide Rayleigh length as the
full width half maximum (FWHM) of R(0, z). The EWG
Rc(0, 161 μm) ≈ 800 value is four times that of CWG with
the same parameters [see red arrow in Fig. 2(b)].

Nuclear population inversion. In free space (Rc = 1), full
nuclear population inversion Iv = 1 requires unrealistic x-ray
intensities, i.e., either tight focusing or very high photon num-
ber. In an EWG, the free-space Rabi frequency is enhanced by
the maximum factor of

√
Rc(0, z f ). As demonstrated in Fig. 2,

the required input XFEL photon number np for achieving nu-
clear inversion is reduced by a factor of 28 for the EWG and of
14 for the CWG. Based on Eq. (8), three requirements deter-
mine the efficiency of a tapering structure: (i) a few-nanometer
x-ray focal spot, defined by the radial FWHM of Rc(r, z f )
in the inset of Fig. 2(b), (ii) a long intrawaveguide Rayleigh
length, given by the axial FWHM of Rc(0, z) in the inset of
Fig. 2(b), and (iii) low photon loss. The focusing spot radius
and the Rayleigh length of the EWG are approximately 5 nm
and 2 μm, respectively. We denote the volume defined by the
product of the focusing spot and the Rayleigh length as the
active volume where the nuclear excitation is predominantly
taking place. The EWG in Fig. 2(b) supports an active volume
containing 106 nuclei with particle number density in Table I.
Moreover, the EWG can achieve T = 0.8 and so fulfill the
condition (iii).

We numerically solve Eqs. (1)–(4) and present the full
XFEL-nuclear dynamics in Fig. 3. Figure 3(a) demonstrates
the propagation of an XFEL pulse through a Pt-cladding EWG
of Fig. 2(b) where a 57Fe sample is embedded in 160 μm �
z � 165 μm. The axial Rc(0, z) shows that the XFEL intensity
reaches the maximum when arriving at z ≈ 161 μm as also
predicted by Fig. 2(b). We use the XFEL parameters np =
2.88 × 1011, σ = 120 nm and pulse duration τ = 42.5 fs cor-
responding to the FWHM 2

√
2ln2τ = 100 fs. On this time

scale, the 57Fe nuclei are coherently excited by the pulse and
become fully inverted in the focal point region. As showed
in Fig. 3(b) which considers now the nuclear inversion at the
end of the pulse, the XFEL leaves behind an active volume
of π × 3 nm × 3 nm × 1.7 μm, containing 2.5 × 106 in-
verted 57Fe nuclei out of 4.1 × 106 totally embedded isotopes.
In Figs. 3(c) and 3(d) we show the np-dependent maxi-
mum Iv of the isotopes 133Ba, 57Fe, 187Os and 169Tm using
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FIG. 3. (a) Axial x-ray Rc(0, z, t ) for 14.4 keV x-ray propagation
in a Pt-cladding EWG. (b) Spatial distribution of Iv (r, z) driven
by a propagating XFEL with (np, σ , τ ) = (2.88 × 1011, 120 nm,
42.5 fs). The maximum Iv for 133Ba (unfilled red square), 57Fe (filled
blue triangle), 187Os (filled yellow circle), and 169Tm (unfilled green
diamond) is depicted as a function of the photon number per pulse
in a (c) platinum- (d) silicon-cladding EWG. The solid lines are
calculated using Eq. (8) with steady-state Rc. (ri, Lf , ro) = (150 nm,
160 μm, 15 nm) are used for all graphs.

Pt- and Si-cladding EWG, respectively. The numerical results
obtained from Eqs. (1)–(4) (points) agree with Eq. (8) for the
steady-state value of Rc (solid lines) up to a relative error
of less than 0.1%, confirming the validity of the steady-state
calculation.

Three conclusions can be drawn based on the results
presented in Figs. 3(c) and 3(d). First, all four considered iso-
topes can be fully inverted around the focus in a Pt-cladding
EWG for 1011 < np < 1012. Significant inversion occurs also
for photon numbers in the range 1010 < np < 1011 in a Pt-
cladding EWG for 133Ba, 187Os, and 169Tm. Considering the
generic figure 1012 photons/pulse, our results offer a budget

of 1%–10% throughput rate for the required prefocusing. A
comparison with predictions in Ref. [31] shows that popu-
lation inversion in EWG should occur more efficiently and
require significantly smaller photon numbers np than in x-
ray thin-film cavities. Second, the coherent x-ray pulse can
drive a Rabi oscillation [66,74]. Third, a comparison between
Figs. 3(c) and 3(d) demonstrates that the Pt-cladding EWG
provides a better x-ray focusing than the silicon-cladding
EWG.

For a more realistic modeling, we have also investigated
the effect of surface roughness at the vacuum-cladding inter-
face by introducing random fluctuations of amplitude Ap of
the elliptical cladding surface. Glass capillaries have surface
roughness of only 0.2 − 0.5 nm [34], but for other materials
Ap can reach several nanometers [75]. Our numerical results
in Fig. 4(a) show that the number of inverted nuclei in the
focal volume remains ∝ 106 despite increasing Ap from 0 to
10 nm. We also use the partial-coherence method to model
SASE XFEL pulses [49] with limited longitudinal coherence
times τc. As demonstrated in Fig. 4(b), for all nuclear species,
the amount of inverted nuclei reaches the 105 region when
τc > 10 fs. The statistics at τc = 50 fs shows that 106 inverted
187Os, 169Tm, and 57Fe nuclei are already produced by an
average of 〈np〉 ≈ 2 × 1011 photons per pulse. Fig. 4(c) high-
lights the realistic region of τc � 10 fs which can be generated
by modern seededXFEL [55]. Inverted nuclei numbers on the
order of 105 are achievable for all considered isotope species.
Thus, nuclear inversion is potentially in reach also for just
partially coherent XFEL pulses in an EWG.

Discussion. A stronger intensity carries with it more de-
structive power in the form of heat load. The off-resonant
components of the incoming xrays can be decreased by
narrow-band monochromatization using 57FeBO3 or 57Fe2 O3

crystals [9,13,14]. We estimate via Beer’s law the heat load
on 57FeBO3, a canted antiferromagnet, using the pure nuclear
reflections on the (111) and (333) crystal planes. Considering
an incident XFEL pulse of 2.5 mm beam diameter, 10 meV
bandwidth and 1011 photons on a cm-size 57FeBO3 crystal
of 100 μm thickness, a single pulse produces a temperature
increase of �T = 0.08 K. This temperature increase has a

FIG. 4. (a) Ap-dependent number of inverted 187Os (red solid line), 169Tm (green dashed line), 57Fe (blue dotted line), and 133Ba (orange
dashed-dotted line) nuclei. The shaded regions depict the error bars averaged over 100 realizations. (b), (c) τc-dependent number of inverted
nuclei. The XFEL FWHM is 100 fs and Ap = 0 for all cases. The shaded regions depict the error bars from 5000 SASE realizations, for
illustration purposes scaled by a factor of 0.2. An EWG with (ri, Lf , ro) = (150 nm, 160 μm, 15 nm) is used for both panels.
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negligible effect on the lattice constant according to thermal
expansion data of 57FeBO3 [76,77] and does not jeopardize
the Bragg conditions for the pure nuclear reflections. We note
here that our setup does not require and cannot benefit from a
large XFEL pulse repetition rate since the nuclear population
inversion is achieved in a single shot and decays before the
next pulse arrives. Instead, a low XFEL repetition rate, for
instance 60 Hz (PAL XFEL [55]), would provide sufficient
time between pulses for optimal monochromatization.

Our results demonstrate that x-ray waveguides can increase
the radiation intensity by up to three orders of magnitude. An
integrated design embedding the nuclear sample directly at
the focal area will lead to strong nuclear excitation, accessing
the nonlinear effects and nuclear population inversion, a key
ingredient for gamma-ray lasers. The successful nuclear popu-
lation control could be used for depleting nuclear isomers and

thus releasing the energy stored therein. A classical example
is the 2.4 MeV 93mMo isomer with 6.8 hours half-life. By
driving a 4.8 keV transition upwards to a gateway state, the
ground state can be reached in ns [6,78,79]. Our calculations
for 93mMo show that, although nuclear population inversion
requires higher photon per pulse than presently available at
XFEL facilities, an EWG enhances the achievable excitation
by a factor of approximately 200.
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