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Revealing the topological nature of the bond order wave in a strongly correlated quantum system
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We investigate the topological properties of the bond order wave phase arising in the extended Fermi-Hubbard
model. In particular, we uncover a topological sector, which remained elusive in previous finite-size numerical
studies due to boundary effects. We first show that, for an infinite system, the bond order wave regime is
characterized by two degenerate bulk states corresponding to the trivial and topological sectors. The latter turns
out to be indeed characterized by an even degeneracy of the entanglement spectrum and long-range order of
a string correlation function. For finite-size systems, we show that the topological sector can be stabilized
by imposing a suitable border potential. This therefore provides a concrete protocol for the observation of
topologically protected degenerate edge modes in finite-size systems. Furthermore, we show that the bulk of
the system is characterized by exotic solitonic solutions interpolating between the trivial and topological sectors.
Finally, we propose an implementation and detection scheme of this strongly correlated topological phase in a
quantum simulator based on dipolar Fermi gases in optical lattices.

DOI: 10.1103/PhysRevResearch.4.L032005

Introduction. In the recent years, great effort has been
devoted toward the study of symmetry-protected topological
(SPT) phases [1–5]. These exotic phases, characterized by
nonlocal order parameters, escape the conventional Ginzburg-
Landau theory of phases of matter [6,7], and their robustness
with respect to local perturbations allows for applications
going from metrology to quantum computation [8,9]. Owing
to their high level of control [10,11], ultracold atomic sys-
tems represent an ideal platform where such intriguing states
of matter can be investigated [5,12]. In one dimension, one
of the most paradigmatic models hosting a SPT phase, the
Su-Schrieffer-Heeger (SSH) model [13], has been realized in
atomic quantum simulators [14,15] and its robustness to dis-
order has been probed [16]. While these experiments probed
noninteracting models, the inclusion of interactions can lead
to much richer phenomena [17,18].

Furthermore, SPT phases can arise directly from interac-
tions, as it is the case of the original SSH Hamiltonian in
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polyacetylene. There, a bond order wave (BOW) arises spon-
taneously from the coupling between electrons and phonons
through a Peierls mechanism [19], which can also occur
in spin-boson models [20–22]. Interestingly, similar BOW
phases also appear in interacting single-species systems,
induced by frustration between competing orders [23–43],
including strongly correlated electrons, quantum magnets,
or ultracold atomic systems. Although the insulating nature
and effective dimerization of these systems have been very
carefully characterized, their topological nature still needs to
be unveiled. The latter requires an accurate analysis of such
many-body interacting systems, as the sole presence of a
spontaneous dimerization, i.e., a local order parameter, does
not directly translate into a nontrivial topology.

In this Letter, we reveal and characterize the SPT nature
of such BOW phases arising from frustration in the presence
of chiral symmetry [26–43]. Moreover, we propose a realistic
implementation and detection scheme for the realization of
the frustration-induced topological BOW phase with dipolar
gases in optical lattices. Our proposal allows us to go beyond
the experimental simulation of noninteracting SPT phases,
promising to access both bulk and edge physics of a strongly
correlated topological phase with richer phenomenology.

More specifically, we focus our analysis on the one-
dimensional (1D) extended Fermi-Hubbard (EFH) model. We
demonstrate that, in the case of an infinite chain, two ex-
actly degenerate BOW ground states occur. These states are
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invariant under chiral and bond-inversion symmetries, and
correspond to the topological and the trivial ground states of
the interacting SSH model [44–51]. As indeed required by
SPT phases, we find that the topological state is characterized
by the long-range order of a specific nonlocal string correlator
[52–54] and by an even degeneracy of the entanglement spec-
trum (ES) [3,55]. Furthermore, we show that, in a finite-size
system, the topological sector of the BOW can be stabilized by
means of a suitable local pinning. In this case, the bulk-edge
correspondence of SPT phases translates into the presence of
gapless spin edge modes that were not observed in previous
finite-size studies. Exemplary to the rich phenomenology of
the system, we find that further spin bulk excitations create
solitonic structures interpolating between the topological and
trivial sectors of the BOW.

Finally, we propose an experimental setup based on erbium
magnetic atoms trapped in a 1D optical lattice. Impressive
steps forward have been achieved in ultracold systems made
of magnetic atoms with large dipolar momenta to simulate
large and nonlocal interactions [56]. The peculiar nonlocal
dipolar repulsion has made possible the experimental study
of exotic states of matter, such as droplet liquids [57,58] and
supersolids [59–62], as well as the investigation of ergodic
behaviors [63]. Furthermore, it has been also experimen-
tally demonstrated that, when trapped in a lattice, magnetic
atoms mimic the physics of extended Hubbard Hamiltonians
[64–69]. As we reveal, such a setup allows, on one side, to
have sizable nonlocal repulsion required to achieve the BOW
regime and, on the other, to perform very accurate measure-
ments of density distribution and string correlators through a
quantum gas microscope [70–73].

Extended Fermi-Hubbard model. The EFH model describes
a chain of length L where N spinful fermions, labeled by
σ =↑,↓, interact through contact and nearest-neighbor (NN)
repulsion. The Hamiltonian modeling such a system reads as

Ĥ = − t
∑
〈i j〉,σ

(ĉ†
i,σ ĉ j,σ + H.c.) + U

L−1∑
i=0

n̂i,↑n̂i,↓

+ V
∑
〈i j〉

n̂in̂ j, (1)

where t parametrizes the NN hopping, U accounts for the
on-site Hubbard interaction, and V describes the repulsion
between fermions in NN sites. Here, we restrict our investi-
gation to the case where both N and the total magnetization
Ŝz ≡ ∑

i(n̂i,↑ − n̂i,↓)/2 are conserved and, unless specified,
we consider the half-filled case with N = L and Ŝz = 0. We
emphasize that, for spinful fermionic systems, both charge
and spin degrees of freedom have to be considered. More
precisely, we refer to a gapped charge or spin sector when
the system has to pay a finite energy for adding/removing an
up-down pair, or flipping a single fermion, respectively.

Phase diagram. When U dominates the system is a Mott
insulator (MI) with a finite charge gap and short-range anti-
ferromagnetic order. Alternatively, for large V the system has
a fully gapped charge density wave (CDW), characterized by
an effective antiferromagnetic order, with alternating empty
and doubly occupied sites. In the strongly interacting limit
U,V � t there is a direct transition between these two phases

FIG. 1. (a) |�B| at fixed U = 4t and different values of V/t . We
use the iDMRG algorithm with a two-site unit cell and a large bond
dimension χ = 3000. The dashed line V/t � 2.14 corresponds to the
maximum value of �B. (b) Sketch of the spontaneous dimerization
in the BOW phase, with bonds corresponding to a large |B̂i| depicted
in blue. The upper chain corresponds to the trivial case, while the
lower chain is topologically nontrivial and exhibits edge states under
open boundary conditions.

at U = 2V . However, when V and U compete and are compa-
rable to the hopping amplitude t , frustration effects induce a
third phase, the fully gapped BOW [28,30–39]. Such a phase
is characterized by a uniform distribution of particles, as in
MIs, accompanied by a spontaneous dimerization that leads
to a staggered expectation value of the bond operator B̂i =
1
2

∑
σ (ĉ†

i,σ ĉi+1,σ + H.c.) captured by �Bi ≡ 〈B̂i − B̂i+1〉. In-
terestingly, including dipolar interactions beyond the NN term
sensibly enlarges the range of parameters where the BOW can
be found [39].

Here, we complement previous analyses in finite systems
by performing infinite density matrix renormalization group
(iDMRG) calculations [74] where boundaries do not play any
role, thus allowing one to study only the properties of the bulk
of the system. Figure 1(a) shows |�B| ≡ |�BL/2| as a function
of V for U = 4t : While the BOW-CDW transition can be
accurately determined at VBOW-CDW � 2.16t , the Berezinskii-
Kosterlitz-Thouless nature of the MI-BOW transition makes it
challenging to derive the transition point accurately (see Sup-
plemental Material [75]). Previous finite-size extrapolations
of the thermodynamic limit yield VMI-BOW � 1.88t [33,38].
However, the more recent study of Ref. [76], based on a
gap-scaling analysis in finite systems, results in a considerably
larger value VMI-BOW � 2.08t . Here, by working directly in the
thermodynamic limit, we refine such predictions, and obtain
VMI-BOW � 2.01t .

Degeneracy of the BOW phase. Our iDMRG calculations
allow one to identify an exact bulk degeneracy between the
two ground states. Such equivalent bulk solutions correspond
to the two bulk sectors of the spontaneously symmetry-broken
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FIG. 2. Topological properties of the BOW at half filling for U =
4t and V = 2.14t obtained with iDMRG. Red (blue) colors are used
for the trivial (topological) sectors. (a) Long-range behavior of the
odd string order parameters. Solid circles (open squares) are used for
the spin (charge) strings. (b) ES energies ελ ≡ − log S2

λ.

BOW with ±|�B| [Fig. 1(b)]. Notice that these two de-
generate ground states correspond to two effective lattice
dimerizations, which are reminiscent of the two possible static
dimerizations in the SSH model. Indeed, the behavior of the
parity operators in the BOW phase [53] is the same as in
the SSH model with on-site repulsion [50]. In what follows,
by characterizing the topology of the BOW in the bulk, we
confirm that the system realizes a SPT phase protected by
chiral and inversion symmetry.

Characterization of the topological bulk sector. For one-
dimensional interacting systems, the presence of a SPT phase
is signaled by a nonvanishing value of a nonlocal string
order parameter [52–54] that can be measured in ultracold
atomic systems with a quantum gas microscope [70–73].
In particular, the topological nature of SSH-like chains is
captured by the long-range order of the following string
correlator [77–79],

Oν
odd(|i − j|) =

∣∣∣∣∣4
〈

Ŝν
2i+1 exp

[
iπ

2 j−1∑
k=2i+2

Ŝν
k

]
Ŝν

2 j

〉∣∣∣∣∣, (2)

where ν = s, c denotes the spin and charge sectors. Due to
the fully gapped nature of the BOW phase, we calculate
the string correlator (2) both in the spin sector, where Ŝs

i =
1
2 (n̂i,↑ − n̂i,↓) and in the charge sector, where Ŝc

i = 1
2 (n̂i − 1).

Figure 2(a) shows the spin and charge strings of the de-
generate ground states. A proper scaling of these quantities
allows one to infer the limit of Oν

odd ≡ lim|i− j|→∞ Oν
odd(|i −

j|): Os
odd and Oc

odd are finite for the gapped topological spin
and charge sectors and vanish for the topologically trivial
phase. Since the two bulk ground states are identical up to
a translation of one site, the even string order Oν

even(|i − j|) =
|4〈Ŝν

2i exp[iπ
∑2 j

k=2i+1 Ŝν
k ]Ŝν

2 j+1〉| has the opposite property: It
is finite in the trivial sector and vanishing in the topological
one. Nevertheless, as our goal is to characterize both bulk and
edge topological properties, Oν

odd is the proper observable to
predict the appearance of edge states in finite-size systems.

Moreover, the degeneracy of the ES also allows one to
characterize the topology of the degenerate ground states
[3,55]: In 1D, it has been shown that, under the preservation
of their protecting symmetries, SPT phases exhibit an even
degeneracy of the ES, and therefore phases with the same

FIG. 3. Finite DMRG results at half filling for U = 4t , V =
2.14t , L = 200, and χmax = 1200. Red (green) points are used for
the even (odd) bonds or sites. (a), (b) Expectation value of the bond
operator in the BOW phase exhibiting the trivial (a) and topological
(b) staggered patterns. Only the first sites on the left part of the
chain are shown, as the bond profile is symmetric with respect to
its center. Solid lines represent the iDMRG value with χmax = 3000.
(c), (d) Local polarization of two degenerate topological solutions
corresponding to the bond staggerization of (b) for Sz = 0 (c) and
Sz = +1 (d).

ES degeneracy can be connected adiabatically and are thus
topologically equivalent. We therefore compute the ES Sλ,
given by the eigenvalues of the reduced density matrices for a
bipartite cut of the infinite chain. Figure 2(b) shows the ES for
the two degenerate iDMRG ground states of the BOW: The
BOW is either a trivial phase with a lack of even degeneracy
of the ES or a topological phase with an even degenerate spec-
trum, as in the dimerized SSH-Hubbard model [46–48,50].
The latter is consistent with the previous string order analysis.

Topological edges in finite-size systems. For a finite-size
system, border effects break the degeneracy of the two ground
states and the topological dimerized pattern turns out to be an
excited state for open boundary conditions: In the bulk, the
fermions always tunnel to the left/right site with an effective
hopping strength t (1 ± |�B|) but, at the edge of the chain,
the system is forced to select the most favorable hopping con-
figuration, namely the one given by t (1 + |�B0|). Therefore,
previous finite DMRG studies of Eq. (1) only focused on the
state related to the trivial topology. We now show how such
a BOW phase can be stabilized in the presence of edges with
finite DMRG. In order to select a given dimerization, we use a
local pinning field that fixes the bond pattern at the borders of
the chain [75]. Figures 3(a) and 3(b) show the two staggered
bond patterns obtained by varying the sign of the pinning
field, that correspond to the trivial and topological BOW
phase, respectively. Figure 3(c) shows the spin-polarized edge
states only appearing in the topological sector. As these edge
states couple weakly with the bulk (see Supplemental Material
[75]), we can approximate the reduced density matrix of the
edges by the product state wave function |	〉edges = |·〉L |·〉R,
where |·〉L(R) represents the quantum state of the first (last)
site of the chain. Let us now discuss the degeneracy of such
an edge state manifold. In the Ŝz = 0 sector, the system has
two degenerate topological ground states corresponding to

L032005-3



SERGI JULIÀ-FARRÉ et al. PHYSICAL REVIEW RESEARCH 4, L032005 (2022)

FIG. 4. Finite DMRG results for U = 4t , V = 2.14t , L = 80,
and χmax = 1200, with Sz = +1. (a) Solitonic profile in the bond
order. (b) Local magnetization profile exhibiting a delocalized spin
excitation.

|↓〉L |↑〉R and |↑〉L |↓〉R [see Fig. 3(c)], in accordance with
the twofold degeneracy of the ES. Furthermore, as shown
in Fig. 3(d), these two ground states also have gapless edge
spin excitations: The spin sector Sz = ±1 exhibits degenerate
ground states of the form |↑〉L |↑〉R or |↓〉L |↓〉R, respectively.
Therefore, the edge state manifold for a finite-size system,
including both the Sz = 0 and Sz = ±1 sectors, is fourfold
degenerate.

Let us now compare this degeneracy with the well-
known case of the SSH model including the Hubbard
interaction U , i.e., the SSH-Hubbard model [44–51]. In
the limiting case U = 0, the SSH topological ground
state exhibits a sixfold degeneracy composed by the
states |↑〉L |↓〉R , |↓〉L |↑〉R , |↑↓〉L |0〉R , |0〉L |↑↓〉R in the Sz =
0 sector, and |↑〉L |↑〉R , |↓〉L |↓〉R for Sz = ±1. However,
a finite U results in an energy penalty for the states
|↑↓〉L |0〉R , |0〉L |↑↓〉R, which become gapped. Hence, the
interaction-induced BOW phase exhibits the same edge state
manifold as a static dimerized model with on-site interaction
U .

Solitonic bulk excitations. Another interesting aspect of the
BOW in a finite chain is related to the interplay between spon-
taneous symmetry breaking and topology when bulk excited
states are considered. In noninteracting topological insulators
with static dimerizations, such as the SSH model, the excited
bulk states are described as gapped modes carrying charge or
spin on top of a background with a fixed sector of the dimer-
ization. In contrast, here the dimerization is spontaneously
induced via interactions, allowing for solitonic excitations
interpolating between the two possible dimerization patterns.
We note that, although topological defects also appear in the
presence of phononic degrees of freedom [13,80,81], here
we observe them for single species through the frustration-
induced spontaneous symmetry-breaking mechanism. We
focus on bulk spin excitations of the topological BOW at half
filling, as the charge gap is significantly larger [38].

Importantly, such excitations also represent a route to ob-
tain the topological sector of the BOW in a finite chain without
relying on a pinning mechanism at the borders. This is what is
shown in Fig. 4(a), where one can observe the first bulk spin
excitation (Sz = +1) in the trivial BOW phase. We observe the
solitonic domain walls interpolating between the trivial dimer-
ization (left and right borders) to the topological one (central
region). Notice that, as shown in Fig. 4(b), this corresponds
to a delocalized soliton picture and thus this static solution

is expected to be mobile; the DMRG solution corresponds to
the minimum of a soliton band in the spin sector. The latter is
reminiscent of a Peierl’s mechanism with quantum phonons,
but in the present case the solitons are generated by the same
fermionic interactions.

Experimental proposal with ultracold dipolar gases.
Hamiltonian (1) can be simulated using a spin mixture in a
dipolar Fermi gas of highly magnetic atoms. Since the emer-
gence of the BOW phase is a rather general phenomenon, it
can be experimentally investigated using various platforms
and under realistic parameters. As an example, we consider
lattice-confined fermionic erbium [69] in a rectangular 3D lat-
tice with spacings (�x,�y,�z) = (266, 266, 532) nm and
lattice depths (Ex, Ey, Ez ) = (19, 40, 80)Erec. This results in
tunneling rates (tx ≡ t, ty, tz ) = (12.5, 0.5, 0.001) Hz, realiz-
ing the required effective 1D chains. Here, Erec is the photon
recoil energy. The states |↑〉 and |↓〉 can be mapped into the
two lowest Er Zeeman states. We find that the BOW phase,
i.e., U/t ∼ 4 and V/t � 2, can be realized in the experi-
ment with realistic parameters that allow us to match these
conditions. For the above lattice parameter and a scattering
length of as = 20a0 between |↑〉 and |↓〉, we indeed cal-
culate U = 55 Hz and V = 28 Hz. Notice that higher-order
terms in the Hamiltonian, such as dipolar interactions beyond
nearest neighbors [39], density-induced tunneling [82], or
spin-dependent dipolar terms, do not destabilize the BOW
phases and its topological phases (see Supplemental Material
[75] for an extended discussion).

Magnetic atoms lend themselves very well to all the Hamil-
tonian manipulation and engineering techniques developed
with alkali atoms. This includes preparation of Mott states,
spin manipulation, high-resolution imaging, and local control
made accessible via microscopic techniques [83]. In addition,
the rich atomic spectrum, distinctive of lanthanides [56], al-
lows for new types of ultrafast control of the spin dynamics
via optical manipulation based, e.g., on clock-type optical
transitions [84,85].

Conclusions. We showed that the BOW induced by frustra-
tion between competing couplings has a nontrivial topological
sector in the presence of chiral symmetry. To this aim, we
analyzed the BOW of the extended Fermi-Hubbard model.
We revealed its topological nature by finding a nonzero string
order correlator and a degenerate entanglement spectrum. We
then discussed strategies to stabilize the topological sector
in finite-size systems. The methods proposed in this Let-
ter are general and can be used to analyze the topology of
chiral-symmetric BOW phases induced by frustration, which
are encountered in very diverse strongly correlated quantum
systems. Finally, we also designed a realistic experimental
scheme involving magnetic atoms trapped in an optical lattice
where the topological BOW phase can be realized. The latter
paves the way towards an efficient quantum simulation of
topological phases in many-body quantum systems.
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