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We propose the Sachdev-Ye-Kitaev Lindbladian as a paradigmatic solvable model of dissipative many-body
quantum chaos. It describes N strongly coupled Majorana fermions with random all-to-all interactions, with
unitary evolution given by a quartic Hamiltonian and the coupling to the environment described by M quadratic
jump operators, rendering the full Lindbladian quartic in the Majorana operators. Analytical progress is possible
by developing a dynamical mean-field theory for the Liouvillian time evolution on the Keldysh contour. By
disorder-averaging the interactions, we derive an (exact) effective action for two collective fields (Green’s
function and self-energy). In the large-N , large-M limit, we obtain the saddle-point equations satisfied by the
collective fields, which determine the typical timescales of the dissipative evolution, particularly the spectral gap
that rules the relaxation of the system to its steady state. We solve the saddle-point equations numerically and
find that, for strong or intermediate dissipation, the system relaxes exponentially, with a spectral gap that can be
computed analytically, while for weak dissipation, there are oscillatory corrections to the exponential relaxation.
In this letter, we illustrate the feasibility of analytical calculations in strongly correlated dissipative quantum
matter.
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The dynamics of complex interacting many-body open
quantum systems, their timescales, and their correlations are
a timely topic with major conceptual and experimental sig-
nificance. In addition to dissipation and decoherence, contact
with different environments may induce currents of other-
wise conserved quantities, such as energy and charge, and
the observables of the system typically attain a steady state.
A compact form for describing the dynamics of a quantum
system in the presence of an environment with a short memory
time (i.e., in the Markovian approximation) is to consider
the quantum master equation for the density matrix of the
system ∂tρ = L(ρ), where the Liouvillian generator is of the
Lindblad form [1–3]:

L(ρ) = −i[H, ρ] +
M∑

m=1

(2LmρL†
m − {L†

mLm, ρ}). (1)

Here, H is the Hamiltonian of the system, while the M jump
operators Lm describe the effective coupling to the environ-
ment.
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Even within this simplified setup, describing interact-
ing open quantum systems is a daunting task. Considerable
progress has been achieved in the past decade for integrable
models. In generic (i.e., chaotic) closed many-body quantum
systems, interactions may entail such a complex structure that
the Hamiltonian behaves in several aspects like a large random
matrix, as conjectured by Bohigas, Giannoni, and Schmit [4].
Extending this result to the dissipative realm is a fundamen-
tal problem that has attracted considerable attention recently
[5–11]. Along similar lines, the past couple of years have seen
the development of the (non-Hermitian) random matrix theory
of Lindbladian dynamics [12–20]. By randomly sampling the
Hamiltonian and jump operators, many statistical properties,
including the spectral support [12] and distribution [19], the
spectral gap [13–15], and the steady state [15,21] have been
computed. However, physical systems have few-body inter-
actions, rendering them very different from dense random
matrices. It is natural to ask what properties are similar (i.e.,
universal) in both cases. Steps in this direction were taken in
Refs. [16,17,20], where local operators were modeled as Pauli
strings with a fixed number of nonidentity operators.

We instead propose using the Sachdev-Ye-Kitaev (SYK)
model [22–26], a model of N Majorana fermions with random
all-to-all couplings, to describe both the Hamiltonian and the
jump operators of the dissipative system. The SYK model
originated in nuclear physics 50 years ago [27–31] but has
seen a recent surge of interest because of its connection to
two-dimensional quantum gravity, after it was shown to be
maximally chaotic, exactly solvable at strong coupling, and
near conformal [23–25,32–37]. Later, it was also found that
it displays an exponential growth of low-energy excitations
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typical of black holes and heavy nuclei [38–40], that it realizes
the full Altland-Zirnbauer classification [38,39,41–48], and
that it captures many features of non-Fermi liquids [49–53]
and wormholes [54–64]. These developments placed the SYK
model in a prominent position at the intersection of high-
energy physics, condensed matter, and quantum chaos, as one
of the few analytically tractable models of both holography
and strongly interacting quantum matter. Moreover, several
experimental implementations have been proposed [65–70],
and its practical and technological relevance has been high-
lighted [71–76]. Finally, non-Hermitian SYK models have
also started gaining traction, with studies focusing on ther-
modynamics and wormhole physics [77,78], symmetries and
universality [11], entanglement dynamics [79,80], and the
effect of decoherence on quantum chaos [81,82].

In this letter, we exploit the solvability of the SYK model
and develop an analytic theory for the relaxation of generic
strongly interacting dissipative quantum systems. Nonequi-
librium real-time Hamiltonian dynamics of the SYK model
(e.g., thermalization and transport) have been studied be-
fore by either coupling it to an external bath [83–90] or
quenching its interactions [91–95] (see also Refs. [96,97]
for non-Markovian entropy dynamics and Refs. [98–100] for
a continuously monitored SYK model), but a fully fledged
quantum-master-equation approach to strongly interacting
dissipative dynamics has remained unaddressed. Here, we
bridge this gap. Working on the Keldsyh contour [101–104],
we extend the dynamical mean-field theory for the collective
degrees of freedom (mean-field Green’s function and self-
energy) [26,105–107] to the Lindbladian evolution. Because
the interactions are random and all to all, this mean-field
theory is exact. From its saddle-point equations, we compute
the retarded Green’s function and determine the approach to
the nonequilibrium steady state.

To start, we consider the Hamiltonian H and the M jump
operators Lm in Eq. (1) to be SYK operators:

H =
N∑

i< j<k<l

Ji jklχiχ jχkχl and Lm = i
N∑

i< j

�m,i jχiχ j . (2)

The Majorana operators χi satisfy the N-dimensional Clifford
algebra {χi, χ j} = δi j , and the totally antisymmetric couplings
Ji jkl and �m,i j are independent Gaussian random variables with
zero mean and variance:

〈
J2

i jkl

〉 = 3!J2

N3
and 〈|�m,i j |2〉 = γ 2

N2
, (3)

respectively (Ji jkl must be real to ensure Hermiticity of the
Hamiltonian, while �m,i j can generally be complex). No-
tice the nontrivial scaling of the quadratic SYK couplings,
which is required for a nontrivial theory in the large-N
limit. The scales J and γ measure the strength of the
unitary and dissipative contributions to the Liouvillian, re-
spectively. The Hamiltonian describes coherent long-range
four-body interactions, while each Lm gives an indepen-
dent channel for incoherent two-body interactions, in such
a way that the full Liouvillian is quartic in the Majorana

operators:

L(ρ) = −i
N∑

i< j<k<l

Ji jkl (χiχ jχkχlρ − ρχiχ jχkχl )

−
N∑

i< j
k<l

�i jkl (2χiχ jρχkχl − χkχlχiχ jρ

− ρχkχlχiχ j ), (4)

where we defined the positive-definite matrix:

�i jkl =
M∑

m=1

�m,i j�
∗
m,kl , (5)

which satisfies �i jkl = −� jikl = � jilk = −�i jlk = �∗
kli j . If we

let N, M → ∞ with m = M/N fixed, �i jkl also becomes
Gaussian distributed. Then Eq. (3) implies that the mean and
the variance of �i jkl are, respectively,

〈�i ji j〉 = mγ 2

N
and 〈|�i jkl |2〉con = mγ 4

N3
. (6)

The system undergoes nonunitary time evolution toward
a steady state ρ∞, satisfying L(ρ∞) = 0. For simplicity, we
restrict ourselves to Hermitian jump operators (i.e., real �m,i j).
In that case, the steady state is the infinite-temperature state
ρ∞ = 1/2N/2. We are interested in the relaxation to ρ∞. To
that end, we consider the retarded Green’s function:

iGR(t ) δi j = 	(t )〈Tr[ρ∞{χi(t ), χ j}]〉, (7)

where 〈· · · 〉 denotes the average over both Ji jkl and �i jkl ,
and the (Heisenberg-picture) Majorana operator χi(t ) satisfies
the adjoint Lindblad equation ∂tχi = L†(χi ). The relaxation
dynamics are characterized by the late-time decay of iGR(t ).
An exponential decay signals a well-defined spectral gap (re-
laxation rate).

We now switch to the Keldysh path-integral representation
of the Majorana Liouvillian (see the Supplemental Material
(SM) [108] for a derivation and Ref. [109] for the bosonic
version). We introduce real Grassmann fields ai(z) living on
the closed-time contour z ∈ C = C+ ∪ C−, where real time
runs from −∞ to +∞ (branch C+) and then back again to
−∞ (branch C−). The Grassmann field ai(t+) [ai(t−)], with
t+ ∈ C+ (t− ∈ C−), propagates forward (backward) in time
and is the path-integral representation of a Majorana opera-
tor acting on the density matrix from the left (right). Using
Eq. (4), we can immediately write down the partition function:

Z =
∫ N∏

i=1

Dai exp(iS[ai]), (8)

where we omitted an initial-state contribution that is irrelevant
for the long-time dissipative dynamics, and the Lindblad-
Keldysh action is

iS[ai] = i
∫
C

dz
1

2

N∑
i=1

ai(z) i∂zai(z)

−i
∫
C

dz
N∑

i< j<k<l

Ji jkl ai(z)a j (z)ak (z)al (z)
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+
∫
C

dz dz′ K (z, z′)
N∑

i< j
k<l

�i jkl ai(z)a j (z)ak (z′)al (z
′).

(9)

The memory kernel K (z, z′) allows for both Markovian and
non-Markovian dissipative dynamics (see the SM [108] for a
discussion on how a non-Markovian thermal bath fits into our
framework). Comparing Eqs. (4) and (9), we can read off the
lesser and greater components of the Markovian kernel:

K<(t1, t2) = K (t+
1 , t−

2 ) = 2 δ(t1 − t2), (10)

K>(t1, t2) = K (t−
1 , t+

2 ) = 0, (11)

respectively. Equations (9)–(11) can also be derived mi-
croscopically by tracing out the environment in a unitary
system-plus-environment theory [108]. We further define the
(mean-field) Green’s function:

G(z, z′) = − i

N

N∑
i=1

ai(z)ai(z
′), (12)

and the self-energy 
(z, z′) as a Lagrange multiplier enforcing
the definition of Eq. (12) in the path integral.

To proceed, we average over the random couplings Ji jkl

and �i jkl , in the limit N, M → ∞ with m = M/N fixed. The
averaging procedure is straightforward and is presented in the
SM [108]. The resulting averaged partition function is

〈Z〉 =
∫

DGD
 eiSeff [G,
], (13)

with mean-field action:

iSeff [G, 
] = N

2

{
Tr log (i∂ − 
) −

∫
C

dz dz′ 
(z, z′) G(z, z′) − J2

4

∫
C

dz dz′ [G(z, z′)]4

+ mγ 4

4

∫
C

dz dz′ dw dw′ K (z, z′) K (w,w′)[G(z,w′)]2[G(z′,w)]2

+ mγ 2
∫
C

dz dz′ K (z, z′)[G(z, z′)]2

}
. (14)

Variation of Eq. (14) with respect to 
(z, z′) and G(z, z′) (recall that both are antisymmetric in their contour indices) leads to the
Schwinger-Dyson equations on C:

(i∂ − 
) · G = 1C, (15)


(z, z′) = −J2[G(z, z′)]3 + mγ 4

2
G(z, z′)

∫
C

dw dw′ [K (z,w)K (w′, z′) + K (w, z)K (z′,w′)][G(w,w′)]2

+ mγ 2[K (z, z′) + K (z′, z)]G(z, z′), (16)

where Eq. (15) is to be understood as a matrix equation,
while Eq. (16) acts on each matrix element individually. These
equations are exact for the SYK Lindbladian in the large-N ,
large-M limit.

We now move back from contour times (z, z′) to real
times (t1, t2). For Majorana fermions, there is a single
independent Green’s function [91,110], say, the greater com-
ponent G>(t1, t2) = G(t−

1 , t+
2 ), while the lesser component

G<(t1, t2) = G(t+
1 , t−

2 ) satisfies G<(t1, t2) = −G>(t2, t1). Re-
stricting Eq. (15) to (z, z′) = (t−

1 , t+
2 ) and using Eqs. (10) and

(11), Eq. (16) reads as [108]


>(t1, t2) = G>(t1, t2){−J2[G>(t1, t2)]2

− mγ 4[G<(t1, t2)]2

+ 2mγ 2 δ(t1 − t2)}. (17)

Next, we change variables to t = t1 − t2 and T = (t1 +
t2)/2. For long times T → ∞, the system loses any informa-
tion about its initial state and relaxes to the steady state. The
Green’s function G> depends now only on t , and we move

to Fourier space with continuous frequencies ω. We further
perform a Keldysh rotation by defining the real quantities
[111]:

ρ±(ω) = − 1

2π i
[G>(ω) ∓ G>(−ω)], (18)

ρH(ω) = − 1

π
P

∫
dν

ρ−(ν)

ω − ν
, (19)

and analogously for 
>(ω). Here, ρ+(ω) is proportional to
the Keldysh component of the Green’s function GK(ω) =
−2π iρ+(ω), while the spectral function ρ−(ω) is normal-
ized

∫
dω ρ−(ω) = 1 and, together with its Hilbert transform

ρH(ω), completely determines the retarded Green’s function
GR(ω) = −π [ρH(ω) + iρ−(ω)]. Because the steady state is
the infinite-temperature state, we have ρ+(ω) = 0, and we can
write Eq. (7) as

iGR(t ) = 	(t )
∫

dω ρ−(ω) cos ωt . (20)
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FIG. 1. Spectral function ρ−(ω) obtained from the numerical so-
lution of the Schwinger-Dyson equations, Eqs. (21) and (22), for J =
1, m = 2, and different γ . For large γ , the solution is well described
by a Lorentzian (dashed lines) with the width computed analytically,
Eq. (25). For intermediate γ (e.g., γ = 0.4), the Lorentzian ansatz
still gives a reasonable description of the result (especially for low
frequencies), but it fails for low dissipation.

After the Fourier transformation and Keldysh rotation, the
self-energy, Eq. (17), is given by

σ−(ω) = mγ 2

π
+ J2 + mγ 4

4

×
∫

dμ dν ρ−(ω − μ − ν)ρ−(μ)ρ−(ν), (21)

while the Dyson equation, Eq. (15), reads as

ρ−(ω) = σ−(ω)

[ω + πσ H(ω)]2 + [πσ−(ω)]2
. (22)

The Schwinger-Dyson equations can be solved numeri-
cally in a self-consistent manner by proposing an ansatz for
ρ−(ω) and σ−(ω) and then iterating Eqs. (21) and (22) un-
til convergence is achieved [111]. Details on our numerical
procedure are given in the SM [108]. The results for J = 1,
m = 2, and different values of γ are plotted in Fig. 1. For
large-enough γ , the spectral function is well approximated by
a Lorentzian. Fourier transforming back to the time domain
[Eq. (20)], see Figs. 2(a) and 2(b), this implies a well-defined
spectral gap � (i.e., relaxation rate), as the retarded Green’s
function decays exponentially iGR(t ) = 	(t ) exp{−�t}. The
spectral gap can be determined analytically as follows. We
propose the Lorentzian ansatz:

ρ−(ω) = 1

π

�

ω2 + �2
, (23)

for the spectral function, and because the Lorentzian is stable
under convolution, Eq. (21) leads to the self-energy:

σ−(ω) = mγ 2

π
+ J2 + mγ 4

4π

3�

ω2 + (3�)2
. (24)

Since we are interested in the low-frequency response, we set
ω = 0. The regime of validity of this approximation can be
determined self-consistently and is presented in the SM [108].
Plugging Eqs. (23) and (24) back into the Dyson equation,

FIG. 2. Retarded Green’s function as a function of time for J =
1, m = 2, and different γ . The full blue curves are obtained by
Fourier transforming the numerical solution for ρ−(ω), as prescribed
in Eq. (20). The dashed black lines give the best asymptotic fit to
Eq. (26).

Eq. (22), we find

� = mγ 2

2

(
1 +

√
3m + 1

3m
+ J2

3m2γ 4

)
. (25)

Equation (25), the analytical relaxation rate of a strongly
correlated dissipative quantum system, is the main result of
this letter. The comparison with the numerical solution is
given in Fig. 1. For J = 1 and m = 2, already for γ = 0.9,
there is excellent agreement. Accordingly, we see a clear
exponential decay of iGR(t ) in Fig. 2(a). For intermediate
γ , say, γ = 0.4, there are noticeable deviations in the tails,
but the low-frequency part of ρ− is still perfectly described
by Eqs. (23) and (25), and iGR(t ) still decays exponentially,
see Fig. 2(b). For small γ , the tails of the spectral function
are very far from Lorentzian. This signals possible power-law
or oscillatory corrections to the asymptotic decay of GR(t )
[depending on the precise form of ρ−(ω), which cannot be
determined analytically], which we confirm numerically, see
Figs. 2(c) and 2(d). We can extract the spectral gap from
iGR(t ) by fitting the numerical results to an exponential func-
tion with power-law and oscillatory corrections. We found the
former to be negligible in general but the latter to be relevant
for small γ , i.e.,

iGR(t ) = A e−�t cos(�t + φ) (26)

gives an excellent fit for t � 1 with fitting parameters A, �,
�, and φ. The resulting spectral gap is plotted in Fig. 3 as
a function of γ . We conclude that, for large γ , � grows
quadratically, in agreement with Eq. (25), while it starts to
deviate from the Lorentzian ansatz at intermediate values
γ ≈ 0.5. As γ further decreases, our results are consistent
(within the numerically accessible time window) with a bi-
furcation of the real gap � to a pair of complex-conjugated
gaps � ± i� at γ ≈ 0.28, see inset of Fig. 3. Remarkably, as
γ → 0, � saturates to a finite value, indicating that even an
infinitesimally small amount of dissipation leads to relaxation
at a finite rate. This is admissible given that we took the
thermodynamic limit first. Notice that the strict limit γ = 0

L022068-4
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FIG. 3. Spectral gap � as a function of dissipation strength γ for
J = 1 and m = 2. The red dots are obtained from the fit to Eq. (26),
while the blue line is the analytical result from the Lorentzian ansatz,
Eq. (25). The two agree for large γ but saturate to different values as
γ → 0. Inset: Frequency � of the oscillatory correction as a function
of γ . For γ � 0.28, the period of oscillations either diverges (� = 0)
or becomes longer than the numerically accessible time window.

is singular, as no steady state exists, and the solution of the
Schwinger-Dyson equations depends on the initial state (here,
the infinite-temperature equilibrium state) [108]. Although
the Lorentzian ansatz and the numerical solution saturate to
different values when γ → 0, the former still gives a qualita-
tively correct picture for the relaxation rate of the SYK model
across all dissipation scales.

In summary, we studied the dissipative dynamics of the
SYK model in the framework of the Lindbladian quantum
master equation. We found exponential relaxation to the
infinite-temperature steady state (with possible oscillatory
corrections) and analytically computed the spectral gap in
the limit of strong dissipation. Our work paves the way for

further analytical investigations of dissipative strongly corre-
lated quantum matter, as many interesting questions remain
unanswered. First, our method can be straightforwardly gen-
eralized for arbitrary q-body interactions [108] (here, q =
4). The question arises whether the physics is qualitatively
the same for all q, and, particularly, what happens in the
large-q limit, where there are simplifications in the standard
SYK model [34]? Second, our work can be used to study
more general setups with non-Markovian dissipation by tun-
ing the kernel K (z, z′). Third, going away from the scalings of
Eq. (3) and considering 1/N corrections and non-Hermitian
jump operators allows for nontrivial steady states. An analysis
of the spectral and steady-state properties of general SYK
Lindbladians, based on exact diagonalization along the lines
of Refs. [15,21], is a natural next step. Finally, we men-
tion the possibility of studying the symmetries of fermionic
open quantum matter [11,112,113] in the context of the SYK
model, for which a rich classification exists in the closed case
[41–43].

Note added. After our manuscript appeared on the arXiv,
we were made aware of subsequent related work [114] which
independently addresses the same problem through slightly
different techniques. Their findings corroborate the results of
Fig. 3.
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