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Identifying axion insulator by quantized magnetoelectric effect in antiferromagnetic
MnBi2Te4 tunnel junction
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The intrinsic magnetic topological insulator MnBi2Te4 is believed to be an axion insulator in its antiferromag-
netic ground state. However, the direct identification of axion insulators remains experimentally elusive because
the observed vanishing Hall resistance, while indicating the onset of the axion field, is inadequate to distinguish
the system from a trivial normal insulator. Using numerical Green’s functions, we theoretically demonstrate the
quantized magnetoelectric current in a tunnel junction of atomically thin MnBi2Te4 sandwiched between two
contacts, which is a smoking-gun signal that unambiguously confirms antiferromagnetic MnBi2Te4 to be an
axion insulator. Our predictions can be verified directly by experiments.
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Recently, topological insulators with intrinsic magnetism
have become a new frontier, dubbed intrinsic magnetic topo-
logical insulators (MTIs), where the time reversal symmetry
is broken by spontaneous magnetic ordering rather than
magnetic disorders [1–6], holding great potential for the
realization of high-temperature topological materials. Since
the topological phases of intrinsic MTIs are highly min-
gled with the magnetic states, manipulating the magnetic
ordering through external magnetic fields, temperature, or
thickness will simultaneously tune the correlated topological
states [7,8]. For example, depending on the magnetic states,
MnBi2Te4 (MBT) can exhibit versatile topological phases
such as topological insulators [9], (high Chern number) Chern
insulators [2,10], quantum spin Hall insulators and Weyl
semimetals [7], and in particular, axion insulators [11].

Unlike other topological phases characterized by the first
Chern number [12,13], an axion insulator is in a higher-order
topological phase characterized by the symmetry-protected
axion field θ = π [14–17], which can manifest as the quan-
tized topological magnetoelectric (TME) effect [18–20] and
other striking transport phenomena [21–25]. However, be-
cause the first Chern number of an axion insulator vanishes
identically, the ensuing transport effect on a Hall bar de-
vice exhibits a vanishing Hall resistance accompanied by a
large longitudinal resistance, which is just similar to a normal
insulator. This property makes it rather elusive to properly
distinguish axion insulators from normal insulators by trans-
port experiments [11]. Therefore, to confirm the existence
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of an axion insulator, a viable experimental scheme without
ambiguity is needed.

In this Letter, we propose an axion insulator tunnel junc-
tion consisting of a few-layer MBT sandwiched between two
metallic contacts as an experimental setup to unambiguously
identify axion insulators through the quantized TME. We first
show that a perpendicular magnetic field can induce a surface
charge polarization that is physically related to the layer-
resolved Chern numbers and the quantized axion field θ = π .
When the magnetic field adiabatically varies with time (i.e.,
with a frequency far less than the insulating gap), the surface
charge polarization becomes time dependent and will generate
an ac charge current through the tunnel junction. We use the
time-dependent nonequilibrium Green’s function to quantity
the detectable ac current driven by a harmonic magnetic field,
which agrees remarkably well with the time derivative of
the induced charge polarization, thus strengthening the valid-
ity and reliability of our proposed scheme to identify axion
insulators. Since archetypal materials parameters have been
adopted in the modeling, we anticipate our theory to be able
to inspire and guide experiments in the foreseeable future.

Low-energy effective Hamiltonian. MBT is a van der
Waals magnet consisting of Te-Bi-Te-Mn-Te-Bi-Te sep-
tuple layers (SLs) arranged on a triangle lattice with
parallel intralayer ferromagnetic order while adjacent
SLs are coupled antiferromagnetically. Under the basis
[|p+

z ,↑〉, |p−
z ,↑〉, |p+

z ,↓〉, |p−
z ,↓〉]T with |p+(−)

z , σ 〉
the spin-σ orbital of Bi (Te), the low-energy Hamiltonian for
a layered MBT can be written as [4,26,27]

H =
3∑

a=0

da(k)�a + �
∑

i

mi · σ ⊗ τ0. (1)

Here, the first term is an effective Hamiltonian for a
three-dimensional topological insulator, where d0(k) = M0 −
B1k2

z − B2(k2
x + k2

y ), d1(k) = A2kx, d2(k) = A2ky, d3(k) =
A1kz, with A1(2), B1(2), M0 being system parameters and
the lattice momentum k = (kx, ky, kz ). �0 = σ0 ⊗ τ3 and
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TABLE I. Parameters adopted. a0 is the lattice constant. M0,
A1(2), and B1(2) are based in Ref. [26]. J , K , and MS are chosen from
Ref. [28]. μB is the Bohr magneton. The exchange gap � is evaluated
from Refs. [29,30].

a0 (nm) � (eV) M0 (eV) A1 (eV nm) A2 (eV nm)

5 −0.05 −0.1165 0.27232 0.31964

J (meV) K(meV) MS (μB) B1 (eV nm2) B2 (eV nm2)

0.68 0.21 5/2 0.119048 0.094048

�a = σa ⊗ τ1 (a = 1, 2, 3) where σa and τa are Pauli matrices
acting on the spin and orbital spaces, respectively. The second
term describes the exchange interaction between topological
electrons and magnetic ordering, where � is the exchange
strength and mi is the unit magnetization vector of the ith
SL [4]. Henceforth in all numerical calculations, the materials
parameters are shown in Table I, and temperature is set to be
zero.

Since the topological states of MBT are intertwined with
the magnetic ordering, we first need to determine its mag-
netic configuration. In the macrospin approximation (spatially
uniform magnetization within a particular SL), the magnetic
property of an N-SL MBT can be characterized by the free
energy [31]

U = J
N−1∑
i=1

mi · mi+1 −
N∑

i=1

[
K

2

(
mz

i

)2 + MsB · mi

]
, (2)

where J is the antiferromagnetic interlayer exchange in-
teraction, K is the easy-axis anisotropy, B is the external
magnetic field, and Ms is the saturation magnetization of
each SL. The magnetization vector is parametrized as mi =
{sin θi cos φi, sin θi sin φi, cos θi} with θi (φi) the polar (az-
imuthal) angle. Without losing generality, we assume that B
is applied along the z direction and mi rotates only in the
xz plane. We obtain the equilibrium magnetic configuration
by minimizing the free energy U using the steepest descent
method [32], which is detailed in the Supplemental Material
(SM) [33].

Figure 1(a) shows the total magnetization as a function
of the applied magnetic field for a 6-SL MBT, where we
identify the spin-flop critical points at around B±

c ≈ ±3 T, be-
yond which the Zeeman energy overcomes the exchange and
anisotropy interactions and induces noncollinear spin configu-
rations until the system is fully polarized into a ferromagnetic
state at above 10 T (see Fig. S1 in the SM). Such a distinct
magnetic evolution is in quantitative agreement with exper-
iments [2,11]. The complicated spin configurations in the
intermediate spin-flop phases are discussed in the SM [33].

In-plane transport properties on a Hall bar. To study the
electronic transport, we first discretize the continuum Hamil-
tonian Eq. (1) on a cubic lattice (a0 = 5 nm) invoking the
k · p perturbation. Then, under a Hall bar device geometry
as illustrated in the inset of Fig. 1(a), we calculate the Hall
resistivity ρxy and the longitudinal resistivity ρxx using the
Landauer-Büttiker formula [33,34]. To incorporate fluctua-
tions, we also add a disorder potential HD = V (r)sz ⊗ σ0 to

FIG. 1. (a) Total magnetization as a function of magnetic field
for a 6-SL MBT. Inset: Schematics of a Hall bar device where the
metallic leads are shaded orange and the MBT is colored green. The
red curve marks the edge channel when the MBT becomes a Chern
insulator (i.e., when |B| > |B±

c |). (b) Longitudinal resistivity ρxx and
Hall resistivity ρxy as functions of magnetic field. The data are ob-
tained on a Hall bar of size L1×L2×L3×W = 5×50×30×50 with a
disorder strength D = 0.1 eV (comparable to the magnetic exchange
gap) after averaging over 160 computations. Insets: Band structures
along the x direction for a 6-SL MBT in its antiferromagnetic (left)
and ferromagnetic (right) states.

the lattice Hamiltonian, where V (r) is uniformly distributed
within [−D/2, D/2] with D being the disorder strength. The
Fermi level is zero as we do not consider doping or gating.

For a 6-SL MBT device reflecting a real experimental
setup [11], we obtain ρxx and ρxy by averaging 160 repeated
calculations, which are plotted as functions of magnetic field
B (along z) in Fig. 1(b). The results show a topological phase
transition from a normal insulator (indistinguishable from an
axion insulator) with a vanishing Chern number C = 0 at low
magnetic fields into a quantum anomalous Hall insulator with
C = ±1 at high magnetic fields. When |B| < B+

c , the mag-
netic ground state remains antiferromagnetic with antiparallel
spins on the adjacent SL, and the system preserves the PT
symmetry. Because the spin flips its sign under PT opera-
tion [PT : H(k,↑) → H(k,↓)], the bands must be doubly
degenerate with a band gap of δ ≈ 2� at kx = 0, as shown
in the left inset in Fig. 1(b). Consequently, we obtain C = 0,
hence a vanishing Hall resistivity and a large longitudinal
resistivity akin to a normal insulator. While angle-resolved
photoemission spectroscopy (ARPES) experiments showed
controversial results on the band gap in MBT [29,35], trans-
port measurements strongly support the existence of large
gaps in both the antiferromagnetic and ferromagnetic states
of MBT [2,10,11] by confirming the insulating behavior in
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longitudinal transport, even though this insulating gap cannot
tell axion insulators from normal insulators.

When |B| exceeds B+
c , however, the magnetic moments

undergo a spin-flop transition which breaks the time rever-
sal symmetry for electrons. Correspondingly, the topological
Chern number becomes C = −sgn(B), leading to a quantized
Hall resistivity ρxy = h/(Ce2) and a vanishing longitudinal
resistivity ρxx = 0 [12]. The deviations of ρxy around the
integer values are ascribed to the finite-size effect, which
can be suppressed by enlarging the system size. The in-plane
resistivities shown in Fig. 1 agree quantitatively with experi-
mental observations [11,36] widely regarded as evidence of an
axion insulator. Nevertheless, the topological phase transition
taking place here is inadequate to determine an axion insulator
because the C = 0 phase appearing at small fields by itself is
indistinguishable from a normal insulator.

Surface charge polarization and layer-resolved Chern num-
bers. A defining feature of an axion insulator is the topological
TME enabled by the quantized θ field, which, unlike the
Chern number C, can uniquely characterize the axion in-
sulator phase. On the one hand, a magnetic field B below
the spin-flop threshold will induce a quantized charge po-
larization P = e2θB/(2πh) [14], which is intimately related
to the layer-resolved Chern numbers. If the applied B field
is time dependent, a charge current proportional to dP/dt
will be generated, enabling a directly detectable signal to be
discussed later. On the other hand, the TME also manifests as
the magnetization induced by an electric field [37]. However,
the TME coefficient quantized by θ is typically two orders
of magnitude smaller than that of ordinary magnetoelectric
materials [38]. Therefore, the TME is more amenable to trans-
port measurement as the sensitivity of the detecting current is
extremely high. Nonetheless, as a consistency check, we also
calculated the tiny magnetization induced by an electric field,
which indeed turns out to be quantized by the θ field (see the
SM [33]).

To calculate P, we consider a slab of thickness Lz and
widths Lx = Ly with open boundary conditions and assume
that a static magnetic field B = (0, 0, B) is applied along the z
direction, which amounts to a magnetic flux of �0 = Ba2

0 per
unit cell. Using the equilibrium Green’s function method [33],
we obtain the charge distribution Q(r) = −e〈n̂(r)〉, where −e
is the electron charge and n̂(r) is the electron density operator.
Figure 2 (blue dots) plots the charge distribution among each
SL, Qz = ∑

x,y Q(r), with respect to an averaged background

charge Q(r) = ∑
x,y,z Q(r)/Lz which compensates the positive

ions in the lattice. Since Q(r) is an odd function of z, as
shown in Fig. 2, there is indeed a finite charge polariza-
tion P = ∫

dV rQ(r). As will be shown later, only surface
charges contribute to the detectable current, thus only the
surface charge polarization Pz = [Q(Lz/2) − Q(−Lz/2)]/2 −
Q(r) is relevant to our discussion. Ideally, the surface charge
polarization Pz should be very close the total polarization
P, but finite-size effects can bring about deviations. Fortu-
nately, we find that the finite-size effects are well suppressed
by increasing the thickness Lz. It turns out that Pz(Lz =
6, 8, 10) = 0.91, 0.97, 0.99 (e2�/2h) with � = LxLy�0 be-
ing the total magnetic flux penetrating the slab, rapidly
approaching the quantized value determined by the axion
field θ = π .

FIG. 2. Charge distribution among each SL relative to the back-
ground average Qz − Q(r) (blue dots) and layer-resolved Chern
numbers Cz (red squares) for MBT of thickness (a) Lz = 6, (b) Lz =
8, and (c) Lz = 10 on a slab of size Lx × Ly × Lz with Lx = Ly = 40.
Here, the magnetic flux per unit cell is �0 = 0.05h/2e and the total
magnetic flux is � = LxLy�0, which corresponds to a magnetic
field of B = 2 T smaller than the spin-flop threshold Bc ≈ 3.0 T
(a0 = 5 nm).

We now turn to the layer-resolved Chern numbers Cz

which reflect the relative contribution to the system topology
by different SLs. To this end, we adopt periodic boundary
conditions in the lateral dimensions under the same slab ge-
ometry used above. While the layer-resolved Chern numbers
can be straightforwardly obtained by projecting the wave
functions onto each SL [33] in a clean system, here we
resort to the noncommutative approach which is able to in-
corporate disorders [39], Cz = −2π i Tr{P̂[[x̂, P̂], [ŷ, P̂]]P̂z},
where x̂ (ŷ) is the position operator, P̂ is the projector onto
the occupied bands, P̂z ≡ |ψz〉〈ψz| is the projector onto the
zth SL, [· · · ] is the commutator, and Tr denotes the trace.
In the presence of PT symmetry, P̂z flips sign on oppo-
site surfaces because P̂−z = |ψ−z〉〈ψ−z| = PT |ψz〉〈ψz|PT =
(PT )2|ψz〉〈ψz| = −|ψz〉〈ψz| = −P̂z, ensuring that the layer-
resolved Chern numbers are odd in z/Lz.

Figure 2 shows the layer-resolved Chern numbers Cz with
three different thicknesses Lz = 6, 8, 10 (red squares), which
agree remarkably well with the charge distribution Qz. Even
in the presence of disorders, we find that Cz and Qz are very
robust (see SM [33]), suggesting that they are topologically
protected properties intrinsic to the axion insulator. Corre-
spondingly, the surface Chern number CLz

surf = ∑0
z=−Lz/2 Cz is

almost half quantized, C6
surf = 0.46, C8

surf = 0.48, and C10
surf =

0.49, indicating a distinct bulk axion field θ = π [40].
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FIG. 3. (a) Schematics of the proposed AITJ setup to detect the
dynamical TME. The metallic leads are connected to a bias tee to
separate the harmonic ac output from the dc output which is short cir-
cuited. The hexagonal boron nitride (hBN) flakes are added to avoid
degradation [43], and the whole device is placed on a silicon dioxide
substrate. (b) Output current I (t ) induced by an ac magnetic field
ẑB sin ωt calculated by the time-dependent nonequilibrium Green’s
function (NG) (solid blue), and the adiabatic variation of the surface
charge polarization (AP) (solid red), respectively. The ideal case (IC)
(dotted black) for an exactly quantized axion field θ = π is plotted
as a reference. System size: Lx = Ly = 20 and Lz = 6. Magnetic flux
per unit cell: �0 = 0.05h/2e. Driving frequency: h̄ω = 0.001 eV.
Inset: Surface charge polarization as a function of the magnetic flux
for three different thicknesses Lz = 6, 8, 10.

Charge current in MBT tunnel junction. To detect the
quantized TME in MBT using a transport experiment, we
need to consider a time-dependent magnetic field such that the
induced surface charge polarization becomes dynamical and
produces a charge current in the z direction. This approach has
been utilized to characterize multiferroic materials exhibiting
nonquantized magnetoelectric effects [38]. To this end, we
conceive an axion insulator tunnel junction (AITJ) consisting
of an even-SL MBT sandwiched between two metallic con-
tacts [41] as illustrated in Fig. 3(a). In the adiabatic limit, the
charge polarization follows the magnetic field at any instant
of time, which can be detected directly as an ac output signal
from the AITJ. Since the metallic contacts are connected only
to the top and bottom layers, only the surface polarization Pz

is relevant to the transport measurement.
Using the lattice Hamiltonian, we resort to the time-

dependent nonequilibrium Green’s function to compute the
output current in the AITJ [33]. A harmonic magnetic field
B(t ) = ẑB sin ωt applied to the AITJ converts to a phase
�0(t ) = �0 sin ωt for electrons, where �0 = Ba2

0 is the mag-
netic flux per unit cell. As a result, the effective Hamiltonian
acquires a time-dependent perturbation that drives the electron
motion, forming a charge current. Since the system is now
periodic in time, the induced charge current can be expanded

into a Fourier series as [33,42]

I (t ) =
∞∑

n=−∞
Ineinωt , (3)

where In is the nth harmonic component satisfying In =
−I∗

−n, ensuring a real current. The total current I (t ) includes
a dc component I0 and a series of ac components In>0.
Truncating the Green’s function at order n = 4 suffices to
yield a converging result [33]. Figure 3(b) (solid blue curve)
plots the numerical result of I (t ) for one period of oscilla-
tion, where the first-order term In=±1 indeed dominates all
other components. The plot is offset by I0 because this dc
component is short circuited via the bias tee illustrated in
Fig. 3(a).

As an independent confirmation, we use the same harmonic
field B(t ) = ẑB sin ωt in the surface charge polarization Pz and
calculate the resulting charge current Iz(t ) = dPz(t )/dt [44],
assuming an adiabatic condition that P undergoes a quasistatic
variation without interband transitions induced by the os-
cillating B(t ) [45]. Figure 3(b) (solid red curve) plots Iz(t )
within one period of oscillation for the same MBT slab,
which agrees remarkably well with the harmonic signal I (t )
obtained by the nonequilibrium Green’s function method. To
benchmark the accuracy of our numerical results, we also plot
the ideal case for an infinite system, where I (t ) = dP(t )/dt =
θe2/(2πh)ω� cos ωt with a strictly quantized axion field θ =
π [dotted black curve in Fig. 3(b)]. We see that our numerical
results obtained both from the nonequilibrium Green’s func-
tions and from Pz(t ) only slightly deviate from the ideal case,
which demonstrates the validity and reliability of our pro-
posal. We mention in passing that if the Fermi level is tuned
into the conducting band (e.g., by gating the device [46]), the
MBT will become metallic and the induced ac current will
vanish.

For an MBT of size Lx = Ly = 10 μm, a harmonic mag-
netic field of strength B ∼ 100 G s and frequency ω/2π =
1 GHz induces an output ac current I ∼ 1.1 nA, which is a
conservative estimation. Since I scales as ωBLxLy, the output
current can be amplified by increasing the driving frequency
ω, the magnetic field B, or the system size in the lateral
dimensions. In the ideal case, the induced surface charge
polarization Pz should scale linearly with the magnetic flux per
unit cell �0. To evaluate potential deviations due to finite-size
effects, we plot Pz as a function of �0 for different thicknesses
against the ideal scaling in the inset of Fig. 3(b), where the
finite-size effects turn out to be negligible, further confirming
the validity of our calculations.

In summary, we have theoretically proposed an experimen-
tal setup to unambiguously identify antiferromagnetic MBT
as an axion insulator by detecting the ac current induced
by a harmonic magnetic field under the adiabatic condition.
Comparing to the vanishing Hall resistance measured in pre-
vious experiments, which is inadequate to confirm the axion
insulator phase, our proposed scheme provides a smoking-gun
signal to identify MBT as an axion insulator.

This work is supported by the Air Force Office of Scientific
Research under Grant No. FA9550-19-1-0307. We acknowl-
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