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Hubble selection of the weak scale from QCD quantum critical point
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There is growing evidence that the small weak scale may be related to self-organized criticality. In this regard,
we note that if the strange quark were lighter, the QCD phase transition could have been first order, possibly
exhibiting quantum critical points at zero temperature as a function of the Higgs vacuum expectation value vh

smaller than (but near) the weak scale. We show that these quantum critical points allow a dynamical selection of
the observed weak scale, via quantum-dominated stochastic evolutions of the value of vh during eternal inflation.
Although the values of vh in different Hubble patches are described by a probability distribution in the multiverse,
inflationary quantum dynamics ensures that the peak of the distribution evolves toward critical points (self-
organized criticality), driven mainly by the largest Hubble expansion rate there—the Hubble selection of the
universe. To this end, we first explore the quantum critical points of the three-flavor QCD linear sigma model,
parametrized by vh at zero temperature, and we present a relaxion model for the weak scale. Among the patches
that have reached reheating, it results in a sharp probability distribution of vh near the observed weak scale,
which is critical not to the crossover at vh = 0 but to the sharp transition at ∼�QCD.
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I. INTRODUCTION

The Planck weak-scale hierarchy may be addressed by the
near criticality of the Higgs mass parameter [1,2]. In this
viewpoint, the small weak scale close to zero is special be-
cause the universe transitions between broken and unbroken
phases of the electroweak symmetry at zero. The transition
could generate various standard model (SM) backreactions
that allow dynamical selection of the weak scale [3–8]. How-
ever, this transition is a second-order crossover in the SM,
providing only relatively smooth selection rules. In addition,
the SM Higgs potential, once renormalization-group evolved,
was found to yield another almost degenerate vacuum near
the Planck scale [9,10]. This surprising coincidence provides
more evidence that the particular (seemingly unnatural) value
of the weak scale might be related to criticality. This motivated
ideas of the multiple-point principle [11–15], classical scale
invariance [16–18], as well as Higgs inflation [19–21]. Ex-
tremely small dark energy is also thought to be near the critical
point. But yet, whether and how criticality plays a crucial role
in naturalness remain unclear.

Recently, a cosmological selection mechanism for critical-
ity was developed in Ref. [22], where inflationary quantum-
dominated evolution of the relaxion inevitably drives a theory
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parameter close to a quantum critical point. In one setup, it
is crucial that the critical point be the first-order separation
between discrete phases with a significant energy difference,
so that the Hubble rate can be sharply largest there. Then
after long enough inflation (essentially eternal as will be dis-
cussed), such Hubble patches having a theory near the critical
point will dominate the multiverse, as they are expanding
and are reproduced most rapidly—Hubble selection of the
universe. This mechanism realizes self-organized criticality
[22]; see also Refs. [23,24].

Then we ask the following: Why is the selection of criti-
cality the selection of the observed small weak scale? To what
first-order critical points does the Higgs mass have relevance?
Reference [22] analyzed the aforementioned renormalization-
scale dependence of the SM Higgs vacuum structure [9,10],
but the critical scale was found to be far above the weak scale.
References [5,6] studied a prototype model with multiple
axions, where a QCD barrier trapping an axion disappears
when vh turns off, so that the axion suddenly rolls down to
the minimum, generating a large energy contrast necessary
for Hubble selection. Critical changes of a theory could also
induce the small weak scale in association with much smaller
dark energy [7,8].

In this Letter, we present a cosmological account of the
weak scale from possible first-order zero-temperature (hence,
quantum) critical points of QCD.1 We first point out that
QCD may have built-in quantum critical points at some v∗

h �
vEW = 246 GeV; this has yet to be studied, and we initiate an

1The small weak scale, if not due to criticalities or symmetries,
could also be a result of the cosmological selection of anthropic
[7,25–29] or entropic [30–35] principles in a multiverse.
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exploration using the three-flavor linear sigma model (LSM)
of low-energy QCD. Then we present a relaxion model that
realizes Hubble selection of the QCD criticality and self-
organizes vh close to the observed value. Then, vh is critical to
∼�QCD (not to the crossover at zero). An added benefit is that
the weak scale and �QCD are generically close, which other-
wise is accidental. Furthermore, building upon earlier works,
we elaborate Hubble selection with different semiquantitative
derivations.

We are inspired by observations that if the strange quark
were slightly lighter, the (finite-temperature T ) QCD chiral
phase transition could have been first order. Although not
yet firmly established [36–43], this possibility has been ex-
pected based on the (non)existence of infrared fixed points in
the three-dimensional LSM [44,45]. In other words, QCD at
T = 0 too (relevant during inflation) may have a rich vacuum
structure, as a function of variable quark masses or vh. Our
initial phenomenological exploration of the vacuum structure
shall be verified by dedicated research.

The Letter discusses the basic model ingredients (Sec. II),
exploration of QCD quantum critical points (Sec. III), Hubble
selection (Sec. IV), realization of the weak-scale criticality
(Sec. V), and conclusions with future improvements.

II. MODEL

The model consists of the relaxion φ [3], the Higgs h,
and the meson field �: Vtot = Vφ + Vh + V� . The relaxion
couples only to the Higgs sector, scanning vh. But the change
of vh induces changes in the � sector, developing the desired
quantum criticality at v∗

h . Then the Hubble selection (acting
on φ) self-organizes the universe to the critical point.

The real-scalar relaxion potential is axionlike:

Vφ = �4
φ cos

φ

fφ
. (1)

For Hubble selection, its field range fφ shall exceed the
Planck scale (see later), which is possible with multiple axions
[46–48].

The Higgs potential takes the SM form (λh � 0.13) plus
the coupling to the relaxion (see Ref. [3] for details),

Vh = 1

2
(M2 − gφ̃)h2 + λh

4
h4 → −1

2
(gφ)h2 + λh

4
h4, (2)

where h is the real Higgs field in unitary gauge. We shift φ

such that the quadratic term μ2
h = −gφ vanishes at φ = 0.

v2
h ≡ −μ2

h/λh = gφ/λh is used to label the relaxion scanning
(vEW = 246 GeV).2 The required field range of φ to scan μ2

h
up to the cutoff M2 is δφ ∼ M2/g, thus we set fφ = M2/g.
The dimensionful coupling g is a spurion of the relaxion shift
symmetry, and thus can be small naturally.

Below �QCD = 200 MeV, meson fields �i j (x) are relevant
degrees of freedom, whose condensates are order parame-
ters for chiral symmetry breaking. This vacuum structure
as a function of vh is what we want to explore. It can be

2QCD backreaction Vh � yqh〈q̄q〉/√2 is ignored, as it is sizable
only for the SU(3)V vacuum which is not Hubble selected for vh � v∗

h

conveniently described by the LSM with U (Nf )L × U (Nf )R

symmetry of QCD [49–51],

V� = μ2 Tr[��†] + λ1(Tr[��†])2 + λ2 Tr[(��†)2]

− c(det � + det �†) − Tr[H(� + �†)], (3)

where fields and parameters are decomposed as � = (σa +
iπa)T a, H = haT a with generators T a satisfying Tr[T aT b] =
δab/2 for a = 0, . . . , N2

f − 1. Without losing generality,
λ1,2, ha are real, c > 0, and μ2 can take either sign. � is
bifundamental under the symmetry. The first line of Eq. (3)
conserves SU(Nf )L × SU(Nf )R; λ2 is nonzero, otherwise
symmetry is enhanced to O(2N2

f ). One of the remaining
U (1)’s is identified as the conserved baryon number U (1)V ,
simply omitted in our discussion. The other U (1)A is anoma-
lous, broken by the instanton contribution c down to ZA(Nf )
[52,53]. Symmetries are further broken by H, the leading
chiral-symmetry-breaking mass term. We fix Nf = 3 with
the isospin symmetry mu = md , as a first exploration; only
h0, h8 �= 0.

It is worthwhile to note that the LSM indeed possesses
necessary features for quantum critical points. For Nf = 3,
the instanton term is a cubic potential, possibly creating local
vacua (even with μ2 > 0). The linear term H can destabilize
the local vacua at critical quark masses or v∗

h , just as the
external magnetic field (the linear term) in ferromagnets flips
higher-energy spin directions at a critical field strength.

III. QCD QUANTUM CRITICAL POINTS

To explore the vacuum structure as a function of vh, we first
fix the benchmark “SM point” parameters of V� , reproducing
a measured meson spectrum, and then we deduce how these
parameters change with vh.

The masses of pions and kaons, being pseudo-Goldstones,
are given by symmetry-breaking terms H, related by partially
conserved axial-vector currents,

∂μ jμ5
a = m2

πa
fπaπa = πbhcdabc, (4)

where the last equality is obtained by the variation of
V� under chiral transformations. For pions π0 = π3 with
d3b0 = √

2/3δb3, d3b8 = 1/
√

3δb3, and for kaons K0 = (π6 +
iπ7)/

√
2 with dKb0 = √

2/3δbK , dKb8 = −1/
√

12δbK , we have

m2
π fπ =

√
2

3
h0 + h8√

3
, m2

K fK =
√

2

3
h0 − h8

2
√

3
. (5)

Using measured values of mπ,K (Table I), we fix the SM-point
value of h0,8 [54],

h0(vEW) = (287 MeV)3, h8(vEW) = −(312 MeV)3. (6)

We proceed to fit masses of other pseudoscalar and scalar
mesons to data. The minima of V� are numerically found
by considering the stability along all 18 field directions.
The Nf = 3 LSM is known to have three types of vacua
at H = 0 [56,57]: SU(3)L × SU(3)R (s1 = s3 = 0), SU(3)V

(s1 = s3 �= 0), and SU(2)L × SU(2)R × U (1)V (s1 = 0, s3 �=
0), where 〈�〉 = σ0T 0 + σ8T 8 = diag(s1, s1, s3). In particu-
lar, the global SU(3)V vacuum (that we live in today) and
the local SU(3)L × SU(3)R vacuum coexist if μ2 > 0 and
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TABLE I. Predictions of the benchmark SM point [Eqs. (6) and (7)], compared with data from the Particle Data Group [55]. In units of MeV.

Parameter fπ fK mπ mK mη mη′ ma0 mf0 (500) mf0 (1370) mK∗ (1430)

Measured 92.4 113 139.57±0.005 497.61±0.013 547.86±0.017 957.78±0.06 980±20 500±150 1370±150 1425±50

Benchmark 92.4 113 137 491 534 973 1050 731 1260 1140

K ≡ c2

2μ2(3λ1+λ2 ) > 4.5 with 3λ1 + λ2 > 0 [57]. Thus, this pa-
rameter space is our focus, that potentially exhibits first-order
quantum critical points.

By scanning with these constraints, we found a range
of good parameter space (see Appendix A in Supplemental
Material [58]). The benchmark SM point is [with Eq. (6)]

μ2 = (60 MeV)2, c = 4800 MeV, λ1 = 7, λ2 = 46,

(7)
yielding K = 47.8. Its goodness of fit to the meson spec-
trum (Table I) is χ2/degrees of freedom = 0.44 with the first
seven observables and 3.11 including all. The first seven
are the most reliable, while the last three are less precisely
measured with unclear identities [55]. Here, 5% theoretical
uncertainties are added as typical sizes of the perturbative
corrections. Our benchmark is as good as existing benchmarks
in the literature: Ref. [56] (with μ2 > 0) yielded 0.20 and
2.84, respectively, and Ref. [59] (μ2 < 0) yielded 1.22 and
4.64.3 But ours differs in that quantum critical points v∗

h may
exist.

We turn to discuss the vacuum structure away from the SM
point for vh < vEW. How does V� , in particular H, depend
on vh? Since this is not known, we deduce it as follows. The
current divergence [Eq. (4)] calculated from QCD or chiral
Lagrangian yields m2

π ∝ mq, which is also ∝h0,8 from Eq. (5).
It suggests h0,8 ∝ vh. Indeed, identifying the H term and the
current mass term, L � −mq(ūu + d̄d ) − mss̄s, yields the ra-
tio h8/h0 � ( mq−ms√

3
)/( 2mq+ms√

6
) � −1.3 using mq = (mu+md )

2 =
3.4 MeV and ms = 93 MeV [55], the same as the ratio from
Eq. (6). Thus, we assume that H is linear to vh as

h0,8(vh) = h0,8(vEW)
vh

vEW
. (8)

Other LSM parameters and dimensionful factors could also
depend on vh, either directly or indirectly, e.g., via con-
densation or �QCD. �QCD depends on quark masses via
renormalization running but only logarithmically, and instan-
ton contributions on masses and condensates but complicated
and nonperturbative [65]. In this initial exploration, Eq. (8) is
assumed to be the only change of V� induced by the scanning
of vh.

The vacuum structure as a function of vh (other parameters
fixed to the benchmark) is shown in Fig. 1. As K > 4.5 dic-
tates, there are coexisting vacua at vh = 0. As vh (hence, H)
increases with Eq. (8), and the metastable SU(3)L × SU(3)R

vacuum becomes shallower and unstable at the critical point,
which is found at v∗

h � 20 MeV; in fact, a wider range of

3Large uncertainties of the last three observables allow various
good fits; otherwise, the LSM would have been overconstrained at
the tree level. Higher-order, nonperturbative, and other effects may
be calculated by lattice simulations [60–64].

v∗
h = O(1–100) MeV is consistent with the meson data (see

Appendix A in Supplemental Material [58]). The energy dif-
ference of the coexisting vacua at the critical point is 93 MeV,
comparable to �QCD; the potential energies are parametrized
in Eqs. (14) and (15).

In all, we have shown that QCD may possess quantum crit-
ical points at v∗

h < vEW, which needs dedicated verification.

IV. HUBBLE SELECTION

Inflationary quantum fluctuations on the scalar field allow
access to a higher potential regime, which is forbidden clas-
sically. Although the field in each Hubble patch always rolls
down in average, larger Hubble rates at higher potentials can
make a difference in the global field-value distribution among
patches, culminating in Hubble selection. This section reviews
and supplements it [22].

The volume-weighted (global) distribution ρ(φ, t ) of
the field value φ obeys the modified Fokker-Planck equa-
tion (FPV) [66–69]

∂ρ(φ, t )

∂t
= ∂

∂φ

(
V ′

3H
ρ

)
+ 1

8π2

∂2(H3ρ)

∂φ2
+ 3Hρ. (9)

The first two terms represent the flow and diffusion, just
as in the original Fokker-Planck equation which aver-
ages over Langevin motions. The variation of the Hubble
rate 3H (φ) = V (φ)

2M2
PlH0

� 3H0 accounts for volume weights

within a distribution: MPl = 2.4 × 1018 GeV. The meanings
become clearer if we look at a solution (for a linear potential
without boundary conditions),

ρ(φ, t ) ∝ exp

{ −1

2σ 2
φ (t )

[
φ − (

φ0 + φ̇ct + 3
2 (H )′σ 2

φ t
)]2

}
,

(10)
where the exponent describes the motion of a peak. φ̇c =
−V ′/3H is classical rolling. Remarkably, an additional

FIG. 1. Vacuum energies of benchmark coexisting QCD vacua at
T = 0, as functions of vh. The critical point is at v∗

h � 20 MeV, with
a �QCD-scale energy difference.

L022048-3



SUNGHOON JUNG AND TAEHUN KIM PHYSICAL REVIEW RESEARCH 4, L022048 (2022)

velocity φ̇H = 3(H )′σφ (t )2 with opposite sign arises from
volume weights within the width σφ , which grows in the be-
ginning of FPV evolutions due to quantum diffusion σ 2

φ (t ) =
( H

2π
)2Ht from the de Sitter temperature H/2π [70,71].

“Hubble selection” starts to operate when the peak of
a distribution starts to climb up the potential: σ 2

φ � 2
3 M2

Pl.
The width at this moment is always Planckian, reflecting its
quantum nature. The field excursion by this moment is non-

negligible, φ ∼ 4π2MPl
9

�4
φ

H4
MPl

M2/g . Thus, for a peak to climb, the

field range δφ ∼ M2/g (needed to scan μ2
h up to M2) must ac-

commodate both the field excursion φ (stronger condition)
and width σφ , yielding respectively

g � H
H

MPl

M2

�2
φ

� M2

MPl
. (11)

We call this condition global quantum beats classical (QBC).
It is stronger than the usual local QBC, V ′ � H3, requiring
g � H H2

�2
φ

M2

�2
φ

, because �2
φ � HMPl from condition 1 later. It

also has different meanings as it involves the field range while
the local one depends only on the potential slope. It turns
out to be equivalent to the Quantum+Volume (QV) condi-
tion in Ref. [22] (see Appendix B in Supplemental Material
[58]) which also accounted for volume effects. If it is not
satisfied, ρ makes an equilibrium at the bottom of a potential,
but with the sub-Planckian width consistently σφ ∼ H2/mφ ∼
H2M2/�2

φg � MPl [72,73]. Thus, we require the global QBC
Eq. (11) for Hubble selection.

The e-folding until this moment N � 8π2M2
Pl

3H2 already sat-

urates the upper bound for finite inflation, 2π2

3
M2

Pl
H2 , given by

the de Sitter entropy [74–76]. Thus, Hubble selection needs
eternal inflation, and the universe eventually reaches a station-
ary state [77–80]. Probability distributions are to be defined
within an ensemble of Hubble patches that have reached
reheating [81–83]. As the latest patches dominate the ensem-
ble with an exponentially larger number, only stationary or
equilibrium distributions matter; for landscapes, this can be
different [84–87].

ρ(φ, t ) makes an equilibrium somewhere near the top of
a potential, which is the critical point φ∗ in this work. The
distribution can be especially narrow [Planckian in the global
QBC regime; see Eq. (B6) in Supplemental Material [58]] if
energy drops sharply after φ∗. This is how Hubble selection
self-organizes the universe toward critical points [22].

The flatter the potential is (with stronger quantum effects),
the closer to φ∗ is the equilibrium. The closest possible field
distance is Planckian, again reflecting the uncertainty princi-
ple. For even flatter potentials, the equilibrium distribution
rather spreads away from φ∗, because distributions will be
flat in the limit V ′ → 0. The equilibrium near φ∗ is esti-
mated as follows. The boundary condition ρ(φ � φ∗) = 0
(discarding Hubble patches with φ � φ∗) induces repulsive
motion φ̇b ∼ −H3/(8π2σφ ) [58], so that the balance requires
φ̇c + φ̇H + φ̇b � 0. When φ̇b � φ̇c, an equilibrium is reached
with

σφ �
(

M2
PlH

4

4π2V ′

)1/3

�
(

M2
PlM

2H4

4π2g�4
φ

)1/3

, (12)

which is the width in the Quantum2 + Volume (Q2V) regime
[22]. The width indeed increases as V flattens; nevertheless,
the vh distribution can be arbitrarily narrowed, as will be dis-
cussed. One also expects |φpeak − φ∗| ∼ σφ from dimensional
ground. These heuristic discussions on Q2V are demonstrated
with the method of images in Appendix B of Supplemental
Material [58].

A theory enters the Q2V regime when the balance width
becomes larger than MPl (the width in the global QBC):

g � H
H

MPl

H2M2

�4
φ

. (13)

This is equivalent to V ′ � H3H/MPl [22], which is also de-
rived from the local balance near φ∗. Q2V is typically stronger
than the global QBC and not absolutely needed for Hubble
selection, but later will be useful for efficient localization
of vh.

V. THE WEAK-SCALE CRITICALITY

Finally, we come to calculate the equilibrium distribution
of ρ(vh) in our model. We first discuss conditions for the suc-
cessful Hubble selection of v∗

h , and then present benchmark
results.

The scanning of vh starts by φ rolling up its potential from
φ < 0 to > 0. When φ < 0 (μ2

h > 0), vh = 0 and Vh = V� =
0 remain unchanged with φ. Thus φ simply keeps growing,
driven by quantum effects. The only constraint is that Vφ must
not affect the inflation dynamics (condition 1): �4

φ � H2M2
Pl.

As soon as φ > 0 (μ2
h � 0), the Higgs gets the vacuum

expectation value vh > 0, and Vh,V� minima now evolve with
φ. Vh = − λh

4 v4
h , and coexisting vacua of V� are, at leading

orders in vh,

V�(L×R) � −a1�
4
QCD

v2
h

v2
EW

, (14)

V�(V ) � −�4
QCD

(
a2 + a3

vh

vEW

)
, (15)

where a1 � 114, a2 � 0.059, a3 � 1.38 for the benchmark
(Fig. 1). 〈σ0〉(L×R) � −〈σ8〉 � a4vh with a4 � 0.025. Note
that Vh,� decrease with φ, which must be slower than the

increase of Vφ � g�4
φ

M2 φ, for Hubble selection.
Which potential dominates the φ dynamics? Figure 2

shows individual potential with φ, whose slope is

δVφ

δφ
∼ g

�4
φ

M2
,

δV�(L×R)

δφ
∼ −a1

g

λh

�4
QCD

v2
EW

,

δVh

δφ
∼ − g

2
v2

h,
δV�(V )

δφ
∼ −a3

g

λh

�4
QCD

vhvEW
. (16)

The dominance of growing δVφ/δφ up to vh � v∗
h requires

�2
φ/M � v∗

h , unless vh is too small. After �QCD-scale energy
drops in V� at v∗

h , dominant Vφ keeps growing. For large
enough vh � �QCD(�v∗

h ), decreasing Vh begins to dominate
and is prohibited from being Hubble selected again. So we
need to make sure that Vφ never compensates the energy
drop in the intermediate region v∗

h � vh � �QCD: Vφ �
g�4

φ

M2

λh�
2
QCD

g � �4
QCD. In all, Vφ cannot be too flat or too steep

L022048-4
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FIG. 2. Top: Total potential energy near the critical point as a
function of φ, for the benchmark Eq. (18); dashed line for compar-
ison. Inset: Zoom-in near φ∗. Bottom: Individual contribution from
Vφ , |V� |, and |Vh|.

(condition 2):

v∗
h � �2

φ/M � �QCD. (17)

In addition, h and � are required to sit in their respec-
tive minima, not quantum driven to overflow their potentials.
Their equilibrium widths must be small enough: H2/mh,� �
�QCD, with mh ∼ vh and m� ∼ �QCD in the higher-energy
SU(3)L × SU(3)R vacuum. Since v∗

h � �QCD from condition
2, we obtain (condition 3) H � v∗

h .

For numerical studies, we use the following benchmark (v∗
h

from Sec. III),

v∗
h � 20 MeV, H = v∗

h , M = 3 × 10−3MPl,

�2
φ = 10−2HMPl, g = 10−3H2/MPl, (18)

satisfying the global QBC [Eq. (11)](and Q2V [Eq. (13)]
marginally) and conditions 1–3. Potential energies near v∗

h are
shown in Fig. 2. As desired, the total energy peaks sharply at
v∗

h , drops significantly, and is never compensated afterwards;
for much smaller or larger V ′

φ , energy would not sharply peak.
The large-time equilibrium distribution of vh is shown in

Fig. 3; see Appendix C in Supplemental Material [58] for
details. The width σvh is translated from σφ via v2

h = gφ/λh

as

σvh � gσφ

2λhv
∗
h

, (19)

where σφ � 1.3MPl from Eq. (12) for the benchmark with
marginal Q2V.4 Thus we have σvh � 0.1 MeV � v∗

h , which is

4The Planckian width is a generic result of the global QBC, σφ �
φ∗( 3φ2∗

2M2
Pl

)−1/2 ∼ MPl; see Eq. (B6) in Supplemental Material [58].

FIG. 3. The probability distribution of vh among Hubble patches
that have reached reheating. σvh � 0.1 MeV � v∗

h for the benchmark
Eq. (18); dashed line for comparison.

narrow enough so that most Hubble patches self-organize to
have vh ≈ v∗

h (∼ vEW). Note that it can be arbitrarily narrower
at the price of arbitrarily smaller g or a larger φ range, moving
into a deeper Q2V regime; only the resulting hierarchy fφ =
M2/g � MPl needs to be generated consistently in field theory
[46–48]. On the other limit, unwanted σvh � v∗

h is resulted
for 10–100 times larger g, where Q2V is not even marginally
satisfied.

Postinflationary dynamics is model dependent but such that
φ slow rolls to today’s vEW. Today, φ could be still safely slow
rolling or trapped by SM backreactions. Signals from time-
dependent vh or phase transitions could be produced.

VI. DISCUSSION

In this Letter, we have discussed the self-organized crit-
icality of the weak scale, by exploiting possible first-order
quantum critical points of QCD. Although we saw some suc-
cess, our exploration of critical points is much simplified and
far from conclusive. We have used only LSM with Nf = 3
at the tree level with a simplified dependence on vh � vEW

in Eq. (8). They shall be verified and generalized by lattice
calculations [36–43], incorporating higher-order and nonper-
turbative effects [60–64], not only for the SM point but also
away from it with vh � vEW. Nf > 3 likely yields a richer vac-
uum structure but needs a dedicated calculation. Theoretical
intuitions from confining gauge theories might also be useful.
If such a critical point is indeed built in QCD, it would shed
significant light on the role of near criticality of the SM.

The proposed scenario makes an advancement on the hier-
archy problem, albeit not yet completely solving it. It is not
complete because Hubble selection requires a mild separation
of scales �φ � M from Eq. (17) (if M ∼ �φ strictly, M �
�QCD is too low) but this is not quantum stable (Higgs loop
diagrams with external relaxion legs yield �φ ∼ cutoff M
[4,47]). Thus, a little hierarchy remains; with the fine-tuning
ε ≡ �φ/M < 1, the cutoff can be as high as M � �QCD/ε2.
Another advancement is that choosing �φ can be translated to
a dynamical problem of choosing dimensionless parameters
of the extended relaxion sector, such as in Ref. [4]. Further
explorations will be enlightening.

L022048-5
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The near criticality and naturalness of nature may be in-
timately connected by quantum cosmology, with necessary
criticality perhaps built in just around the SM. Further theo-
retical and experimental studies are encouraged to unveil this
connection.
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