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Directed percolation in temporal networks
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Connectivity and reachability on temporal networks, which can describe the spreading of a disease, the
dissemination of information, or the accessibility of a public transport system over time, have been among the
main contemporary areas of study in complex systems for the last decade. However, while isotropic percolation
theory successfully describes connectivity in static networks, a similar description has not yet been developed
for temporal networks. Here, we address this problem and formalize a mapping of the concept of temporal
network reachability to percolation theory. We show that the limited-waiting-time reachability, a generic notion
of constrained connectivity in temporal networks, displays a directed percolation phase transition in connectivity.
Consequently, the critical percolation properties of spreading processes on temporal networks can be estimated
by a set of known exponents characterizing the directed percolation universality class. This result is robust across
a diverse set of temporal network models with different temporal and topological heterogeneities, while by using
our methodology we uncover similar reachability phase transitions in real temporal networks too. These findings
open up an avenue to apply theory, concepts, and methodology from the well-developed directed percolation
literature to temporal networks.

DOI: 10.1103/PhysRevResearch.4.L022047

Many dynamical processes evolving on networks are re-
lated to the problem of reachability. Reachability describes
the existence of a possible path of connections between two
nodes, denoting the possibility and the extent that one node
can affect, cause a change in, or communicate with the oth-
ers based on interactions represented in the network. The
conception and formalism of reachability, however, change
dramatically if one considers the time-varying nature of
connections between nodes [1] as opposed to the classic
static network modeling of systems where connections are
considered constant. Time induces an inherent direction of
connectivity, as it restricts the direction of influence or infor-
mation flow. This in turn has an impact on many dynamical
processes evolving on such networks, such as spreading [2–4],
social contagion [5,6], ad hoc message passing by mobile
agents [7], or routing dynamics [8]. In these processes, in-
teracting entities may have limited memory, thereby only
building up paths constrained by limited waiting times, fur-
ther restricting the eligible temporal structure for their global
emergence.

Directed percolation (DP) is a paradigmatic example to
characterize connectivity in temporal systems. This process
exhibits dynamical phase transitions into absorbing states with
a well-defined set of universal critical exponents [9–12]. Since
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its introduction [13] and during its further development [14],
directed percolation has attracted considerable attention in
the literature. It has applications in reaction-diffusion systems
[15], star formation in galaxies [16], conduction in strong
electric fields in semiconductors [17], and biological evolution
[18]. While it is straightforward to define idealized mod-
els governed by directed percolation, such as lattice models
[19–25], its features are more difficult to realize in nature
[12,26], allowing only a few recent experimental realizations
of directed percolation [27–29]. Nevertheless, this description
is advantageous in providing an understanding of the connec-
tivity of temporal structures to describe ongoing dynamical
processes [30–40].

There is a thorough theoretical understanding of static
network connectivity with several concepts borrowed from
percolation theory, such as phase transitions, giant compo-
nents, and susceptibility. These concepts, originally developed
for lattices and random networks, are routinely used to
analyze real-world networks and processes, e.g., disease
spreading [41–45]. Connectivity is also a central property of
temporal networks, with several recent techniques to charac-
terize it, e.g., using limited-waiting-time reachability [46–50].

A mapping between the temporal reachability phase transi-
tion and directed percolation has been anticipated before. This
is a straightforward intuition as directed percolation accounts
for the time-induced inherent directionality that characterizes
temporal networks. For the special cases of contact suscep-
tible → infected → susceptible (SIS) and susceptible →
infected → recovered → susceptible (SIRS) processes, this
mapping has been shown over a regular lattice structure with
the assumption that the contact between nodes follows a
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FIG. 1. Different representations of an instantaneous, undirected
temporal network. (a) Vertices vi are connected via dyadic instan-
taneous events e j . (b) In a weighted temporal event graph, adjacent
events are connected via links directed by time and weighted with the
time difference �t between them. Paths in an event graph are equiva-
lent to time-respecting paths [56]. (c) Waiting-time constrained event
graphs with links of weights �t � δt removed contain all δt-limited
paths. (d) Reduced event graph in which locally redundant links
are removed (see main text). The highlighted line represents a time
respecting path (a) and its equivalent path over event graphs (b) and
(c) and reduced event graph (d).

Poisson point process [9,12,51]. This mapping has been
shown for a particular class of temporal dynamical systems,
involving deterministic walks and discrete temporal layers
[40]. For a more general class of temporal networks, Ref. [52]
conjectured the mapping with directed percolation based on
semantic similarities between the two systems and some em-
pirical evidence. However, these studies could not provide
conclusive evidence for this mapping for a broader set of
temporal networks. In this Research Letter, we aim to show
analytically that limited-waiting-time reachability on tempo-
ral networks, under a mean-field assumption of connectivity,
has a phase transition in the directed percolation universality
class. Combined with the experimental results of Ref. [53], we
conclude that the same is true for a diverse subset of temporal
networks, with a wider range of temporal and spatial con-
nectivity compared with the mean-field assumption. Lastly,
we illustrate how the directed percolation methodology, the
formalism, and the introduced characteristic quantities can be
used to analyze real-world temporal networks, for example, in
detecting the onset of reachability phase transitions.

Modeling approach. A temporal network G = (V, E, T )
is defined as a set of nodes V connected through events
e = (u, v, tstart, tend) ∈ E , each of which represents an in-
teraction of two nodes u, v ∈ V starting at time tstart and
ending at time tend observed during an observation period T
(i.e., tstart, tend ∈ T ∀e ∈ E and tstart < tend). The connectivity
of events is characterized by time-respecting paths [34,54],
defined as sequences of adjacent events. Here, we call two
distinct events e, e′ ∈ E adjacent and denote this by e → e′, if
they follow each other in time (t ′

start > tend) and share at least
one node in common ({v, u} ∩ {v′, u′} �= ∅) as demonstrated
in Fig. 1(a). For simplicity, we assume that temporal network
events are instantaneous (tstart = tend), but all of our notations
can be easily extended to directed events and to temporal
hypergraphs [47,55].

While time-respecting paths encode the possible routes
of information, some dynamical processes have further re-
strictions on the duration they can propagate further after
reaching a node. For example, in disease spreading, infected
nodes may recover after some time, becoming unable to infect
other nodes unless reinfected. In our definition, we define
limited waiting times in temporal paths by allowing adja-
cent events e = (u, v, tstart, tend) and e′ = (u′, v′, t ′

start, t ′
end) to

be connected (δt adjacent) only if there is less than δt time
between them (i.e., t ′

start − tend < δt). In contrast to the control
parameters based on node or event occupation probabilities,
which could be used to adjust the overall activity level of the
network, changing δt modifies the behavior of the spreading
itself. Additionally, processes unconstrained by waiting time
can be modeled as a special case of the limited-waiting-time
process, with an infinitely large value of δt .

A compact way of describing the problem of reachability
on temporal networks is provided by the weighted event graph
representation D = (E, ED,�t (e, e′)), a static directed acyclic
representation of temporal networks [52]. In this description,
events act as nodes, and two events e and e′ are connected
through a directed, weighted link if they are adjacent with
weights defined as �t (e, e′) = t ′

start − tend, i.e., ED = {(e, e′) ∈
E × E | e → e′}. The event graph contains a superposition of
all temporal paths [56] and retains the arrow of time even after
turning the temporal structure into a static one [Fig. 1(b)].
Event graph representation of temporal networks has proven
to be suitable for studying properties of temporal networks
such as occurrences of motifs [57], decomposition of the tem-
poral network into smaller components [58], and providing
a lower-dimensional embedding of the temporal network that
can be consumed by many machine-learning methods [59].
For our use case, a superposition of all δt-limited-time tem-
poral paths (Dδt ) of the temporal network can be achieved
by constructing the event graph of the temporal network and
removing all the event graph links with weights larger than
δt ; in other words, Dδt is a directed graph with the same set of
vertices and the same weight function as D and set of edges
{(e, e′) ∈ ED | �t (e, e′) � δt} [see Fig. 1(c)].

Furthermore, we define the reduced temporal event graph
D̂ and its waiting-time constrained variation D̂δt , where only
the first adjacency relationships per temporal network node
for each event are retained. D̂ and D̂δt nodes have a maximum
in- and out-degree of 2, yet they contain all the reachabil-
ity relationships of the original event graph [60]. That is,
the reduced event graph exactly retains the reachability of
the original event graph by removing redundant connections
(feed-forward loops) between events. The reduction allows
interpretation of the three possible out-degrees using the ter-
minology of directed percolation as annihilation (0), diffusion
(1), and decoagulation (2) in the case that the out-neighbors
are not already reachable through some longer loop. Note
that this upper bound on in- and out-degrees is valid if the
probability of simultaneous occurrence of adjacent events is
negligible. See Supplemental Material (SM) for more details
[61].

Order parameters and other characteristics. Compared
with static structures, temporal networks incorporate time as
an additional degree of freedom, which introduces an extra
dimension to the characterization of their structural phase
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transition of connectivity around a critical point. This is sim-
ilar to directed percolation, where dimensions are related to
space and time with associated independent critical exponents
[62,63]. We measure the expected δt-limited-waiting-time
reachability starting from a random event e. Of interest is the
number of unique reachable nodes Ve→ ⊆ V , the time dura-
tion of the longest path (i.e., its lifetime [52]) Te→ ⊆ T , and
the total number of reachable events Me→ ⊆ E . The expected
values of these are analogous to the mean spatial volume V =
〈|Ve→|〉, mean survival time T = 〈max Te→ − min Te→〉, and
mean cluster mass M = 〈|Me→|〉 in the directed percolation
formalism (respectively) [9,12]. Furthermore, in parallel to
directed percolation, we define the survival probability P(t )
as the probability that there is a path from a randomly se-
lected initial source event at t0 to an event after time t0 + t .
The ultimate survival probability P∞ = limt→∞ P(t ) is then
the survival probability at large values of t . Note that when
defining these quantities, we opted for simplicity (see Supple-
mental Material [61] for discussion).

Using the maximum waiting time δt as a control parameter
is a natural choice as it has a clear physical interpretation.
However, unlike occupation probabilities that are typically
used as control parameters in directed percolation, the scale
of δt depends on the timescales of the system. Furthermore,
although it is related to the local connectivity, this relationship
is indirect and might depend on, e.g., the temporal inhomo-
geneities in interaction sequences. For this reason, we define
another control parameter that directly measures the local con-
nectivity of the system. We use the local effective connectivity
q̂out(δt ), which is the average excess out-degree of the reduced
event graph D̂δt . This is a monotonically increasing function
of δt , which normalizes the changes in connectivity given by
the changes in the maximum allowed waiting time δt . We
then centralize this quantity by subtracting its value from its
phase-transition critical point q̂out

c and denote the resulting
control parameter as τ = q̂out − q̂out

c .
In addition to the single-source scenario, where the compo-

nent starts from a single node in Dδt , we investigated the fully
occupied homogeneous initial condition, where we compute
paths starting from all nodes in Dδt with time t < t0. Analo-
gous to directed percolation, we define particle density ρ(t ) as
the fraction of infected nodes in Dδt at time t , while stationary
density ρstat(τ ), the order parameter, is defined as the particle
density after the system reached a stationary state. We can in-
corporate the effects of an external field h into this scenario: In
continuous time, this would be equivalent to the spontaneous
emergence of sources of infection, i.e., occupation, of nodes
in Dδt (events in G) through an independent Poisson point
process with rate h. Susceptibility χ (τ, h) = ∂

∂hρstat(τ, h) can
then be measured through observing the effect of changing the
external field [12].

Critical behavior in random systems. Next, we derive a
mean-field approximation for the above-defined measures and
identify the critical point. We model temporal networks with
an underlying static structure, where events are induced via
links activating by independent and identical continuous-time
stochastic processes. In order to do so, we need to first derive
the degree distribution of the reduced event graph D̂δt , i.e.,
probabilities that one can reach zero, one, or two events from
a randomly chosen event in the temporal network. Given the

excess degrees l and r of the two temporal network nodes
in G incident to the link corresponding to the event e ∈ E ,
we can compute the probability of a zero out-degree for a
node in D̂δt (i.e., an event in original temporal network G) as
p̂out

0 = �δt�̂
l+r
δt . Here, �δt is the cumulative interevent time

distribution induced by a link activation process for a given δt ,
and �̂δt is the corresponding cumulative residual interevent
time distribution. Similarly, for out-degree 2, we can compute
p̂out

2 = ∫ ∞
0 (1 − �̂l

min δt,t )(1 − �̂r
min δt,t )πt dt , where πt is the

interevent time distribution. Given that the maximum out-
degree of events in the reduced event graph is 2, the p̂out

1 can be
derived as p̂out

1 = 1 − p̂out
0 − p̂out

2 . In-degree probabilities can
be derived similarly.

The joint in- and out-degree distribution of the event
graph can be computed from the excess degree distribution
qk of the underlying static network. If the degrees are in-
dependent, this becomes p̂in,out

i,o = ∑
l,r p̂in

i p̂out
o qlqr . We will

denote the generating function of the joint degree distribu-
tion as G0(zin, zout) and the corresponding excess out-degree
distribution as Gout

1 (zout). We construct the mean-field rate
equation for occupation density ρ(t ) in the homogeneous
occupation initial condition using the excess out-degree distri-
bution of the event graph q̂out

k = dk

k!dzk Gout
1 (z)|z=0. The excess

out-degree of nodes in the event graph D̂ gives the change in
the number of further nodes we can reach from an already
reached node: Nodes with out-degree 2 increase the number
of reached nodes by 1, nodes with out-degree 1 do not affect
the number of reached nodes, and nodes with out-degree 0
reduce by 1 the number of reached nodes. The total change
therefore is q̂out

2 − q̂out
0 . In addition, some nodes we can reach

are already reachable through other paths. In total we reach
on expectation q̂out

1 + 2q̂out
2 nodes where each node is already

reached with probability ρ(t ). The rate equation becomes

∂tρ(t ) = [
q̂out

2 − q̂out
0

]
ρ(t ) − [

q̂out
1 + 2q̂out

2

]
ρ2(t ). (1)

In this equation the values of q̂out
k are constants in time. Not-

ing the critical point for this equation as q̂out
2 − q̂out

0 = 0 and
noting that the expected value is by definition q̂out = q̂out

1 +
2q̂out

2 and that q̂out
2 − q̂out

0 = q̂out − 1, we can write Eq. (1) as
∂tρ(t ) = τρ(t ) − q̂outρ2(t ).

Equation (1) follows the same form as the directed perco-
lation mean-field equation for a (d + 1)-dimensional lattice
[12] and can be solved explicitly (see Supplemental Material
[61]). It has the critical point at τ = 0, while it indicates that
ρ → τ/q̂out for τ > 0. Asymptotically, it provides the critical
exponents as ρ(t ) ∼ t−α at τ = 0 and ρstat(τ ) ∼ τβ when
τ > 0 and t → ∞ with values α = β = 1, where α = β/ν‖
and ν‖ is the temporal correlation length exponent, in accor-
dance with the corresponding mean-field directed percolation
critical exponents [12].

The expected out-component size, i.e., mean cluster mass
M, can be computed from the joint degree distribution of the
event graph D̂δt by assuming that it is a random directed graph
with the same joint in- and out-degree distribution as D̂δt . The
out-component size distribution probability-generating func-
tion H0 can be derived from H0(zout) = zoutG0(1, H1(zout)),
H1(zout) = zoutGout

1 (H1(zout)), and the mean out-component
size can be written as M = ∂H0(zout )

∂zout
|zout=1 [64]. These equa-

tions, when τ → 0−, lead to M ∼ −τ−γ with γ = 1 (see
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Supplemental Material [61]). Here, γ = ν‖ + dν⊥ − β − β ′,
matching the mean-field exponent of mean cluster mass in di-
rected percolation [12]. Here, ν⊥ indicates the spatial temporal
correlation exponent.

The component survival probability P(t ) is measured by
the out-component time span of nodes in the event graph, and
the occupation density ρ(t ) is calculated by the in-component
sizes of all possibly reachable nodes, implying that these two
quantities are equal, ρ(t ) = P(t ) (see Supplemental Material
[61]). Consequently, given the control parameter τ , ρstat(τ ) =
P∞(τ ) as long as the time-reversed event graph has the same
probability of being generated as the original one (e.g., if
∀i,o pin,out

i,o = pin,out
o,i ). This leads us to the rapidity-reversal

symmetry for event graphs similarly characterizing directed
percolation [65] where β = β ′ and P∞(τ ) ∼ τβ ′

. Note that
while the condition above holds for a variety of random tem-
poral network models, for real-world systems intuition might
suggest, e.g., a higher probability of pin,out

1,2 as compared with

pin,out
2,1 due to over-representation of causal motifs [57]. In

practice, however, we observed no deviations from the above
condition in two large real-world systems (see Supplemental
Material [61]).

Finite-size scaling in random systems. The critical expo-
nents can be empirically verified through finite-size scaling
of the system close to its percolation critical point, where its
large-scale properties become invariant under scale transfor-
mations. We simulate random temporal networks of varying
size and perform efficient reachability estimations [47] from
single-source and homogeneous fully occupied initial con-
ditions. We expect that curves of macroscopic quantities
collapse when using the correct critical exponents of β, ν‖,
and ν⊥ corresponding to the mean-field values of directed
percolation. The results confirm that the directed percolation
mean-field exponents characterize the percolation phase tran-
sition of random temporal networks. This is demonstrated in
Figs. 2(a)–2(f) for temporal networks induced on a 9-regular
network with links activated via independent Poisson pro-
cesses. These results are robust in the presence of several types
of temporal and spatial heterogeneities [53].

Directed percolation measures in real-world temporal
networks. We measure the same macroscopic quantities as
before for four different real-world systems, concentrating
on temporal networks describing air transportation, public
transportation, Twitter mentions, and mobile phone calls
[Figs. 3(a)–3(d)], respectively]. In these networks, an event
represents a flight between two airports in the United States,
a public transport vehicle transiting between two consecutive
stations on a typical Monday in Helsinki, a user mention-
ing another user in a tweet on Twitter, and a mobile phone
subscriber calling another subscriber of a major European
carrier, respectively. For details of the data sets, see Table
S1 of the SM. In each system, there is clear evidence of an
absorbing to active phase transition in terms of M, V , and
ρstat. Note that the scales of these quantities are not directly
comparable, highlighting the fact that distinguishing between
the different notions of connectivity is important in practical
terms. Furthermore, multiple peaks in susceptibility indicate
multiple connectivity timescales.

The reachability phase transition can be better understood
by investigating temporal connectivity profiles represented by

FIG. 2. Finite-size scaled (a) and (c) mean cluster mass M,
(b) and (d) volume V , and (e) survival probability P̂(t ) for single-
source spreading scenarios. (f) Particle density ρ(t ), (g) static density
ρstat, and (h) susceptibility χ (δt, 0) as a function of δt for the homo-
geneous initial condition. Measurements are averaged over at least
256 (up to 4096) realizations of temporal network constructed from
random 9-regular networks (N ∈ {28, . . . , 217}) and Poisson point
process activations λ = 1 of links. All functions of time are measured
at δt = δtc = 0.088 08. d is set to directed percolation upper critical
dimension dc = 4.

cluster volumes of individual events. Structures similar to
those of random networks (see Supplemental Material [61])
can be observed for air transport and Twitter [Figs. 3(e)
and 3(g)]. However, in air transport, the structure is regular,
following the diurnal pattern of flights. In Twitter, the compo-
nents do not reach most nodes due to the greater separation
of temporal components, and their structure reflects the rare
emergence of possible macroscopic cascades. Public transport
(1 day) and mobile networks display a single winglike struc-
ture [Figs. 3(f) and 3(h)]. This is induced by early components
that can reach a significant fraction of nodes, which are then
joined by other components reaching smaller subsets. This is
also indicated by the horizontal structures under the wings.

Conclusion. The connectivity of a network is an impor-
tant measure of its resilience and an underlying concept for
any dynamical process running on it. It encodes the possi-
ble transportation routes or paths of information diffusion
and determines how misinformation or diseases spread in
real-world settings. The connectivity of static networks and
related dynamical processes are routinely analyzed within the
framework of (isotropic) percolation theory [30,31,41] with
methods borrowed from critical phenomena [9,70]. Further-
more, many natural or synthetic networks, ranging from the
brain [71,72] or artificial neural networks [73] to geological
phenomena [74] and urban systems [75] tend to self-organize
their medium or their parameters or be optimized by outside
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FIG. 3. Mean cluster mass M, mean cluster volume V , static
density ρstat, and susceptibility χ (δt, 0) as a function of δt for four
real-world networks: (a) Air transport [66], (b) Helsinki public trans-
portation [67], (c) Twitter mentions [68], and (d) mobile phone calls
[69] display an absorbing to active phase transition around 470 s,
670 s, 25 min, and 7.5 h, respectively, as indicated by change from
very small values for M, V , and ρstat to values comparable to the
size of the system and a peak in susceptibility χ (δt, 0). Mobile and
Twitter networks show a second peak in susceptibility around 1.5 and
22 h, respectively, and Twitter data show a third peak around 14 h.
The trajectories are rescaled to the range [0,1]. δtc is estimated using
the analytical solution from Ref. [53] by approximating the network
to a temporal network with a random regular static base and Poisson
point process activation. This estimates the threshold at 500 s, 488 s,
119.1 h, and 22.5 h, respectively, displayed using solid vertical lines
in (a)–(d). The temporal reachability profiles display relative cluster
volumes for each event as a function of the event time for δt ≈ δtc

for (e) air transport, (f) Helsinki public transportation, (g) Twitter
mentions, and (h) mobile phone call networks.

intervention towards criticality [76,77]. Therefore it is of great
utility to locate the onset of critical phase-transition points and
predict the behavior of the system in that vicinity.

While connectivity transitions and the critical behavior
of the system are understood in static networks by means
of isotropic percolation theory, temporal networks, by and

large, have been out of reach of a similar methodology. This
has practical implications as connectivity is a limiting factor
of any dynamical processes and at the same time temporal
interactions have been shown to have dramatic effects on
the speed and volume of any ongoing dynamical process
[2–4]. For example, disease spreading in static networks can
be mapped to a percolation process leading to a theoretical
understanding of the epidemic threshold as a consequence of
connectivity phase transition [41]. This connection has been
extensively exploited to use the mathematical machinery of
network percolation to derive various theoretical and practi-
cal results on static networks [31,78]. In temporal networks,
such analysis is typically based on theoretical results on se-
quences of static networks [79] or case studies based purely
on simulations [69,80]. The concise theory of temporal net-
work connectivity provided here shows that the reachability
phase transition in temporal networks belongs to the directed
percolation universality class, which is a necessary step for-
ward from the limited description provided by the theory of
static networks. It also indicates that directed percolation may
have many counterparts in reality with the expected scaling
relations.

The mapping presented in this Research Letter allows for
predicting the critical thresholds and the connectivity be-
haviors of a diverse set of systems that can be modeled as
temporal networks. Now, similar to static network connec-
tivity, not only do we have theoretically grounded summary
statistics of the component size distribution (the order parame-
ters and cluster mass, volume, and lifetime), but also we know
ways to find their transitions even in finite-size systems. More-
over, we now possess a theory to predict the behavior of such
random systems and find transition points accurately. Real
networks are often approximated with random graphs, and
the random models are used as reference points: Deviations
from the minimal random models expose important structural
features of the real systems, and conversely, agreement with
these models tells us that the structures, correlations, and
inhomogeneities present in the data do not have a measurable
effect on the connectivity. Although introduction of hetero-
geneities might shift the critical threshold of connectivity in
temporal networks, the directed percolation phase transition
is surprisingly robust to several types of temporal and topo-
logical heterogeneities [53]. Consequently, further research is
required to find the boundaries and extremities of application
of this framework on theoretical and real-world networks.
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